In Search of Molecular Ions for Optical Cycling: A Difficult Road. Supplemental Material.

Maxim V. Ivanov^a, Thomas-C. Jagau^b, Guo-Zhu Zhu^c,

Eric R. Hudson^{c,d} and Anna I. Krylov^a

^a Department of Chemistry, University of Southern California, Los Angeles, California, USA

 b Department of Chemistry, Katholieke Universiteit Leuven, Leuven, Belgium

 c Department of Physics and Astronomy, University of California Los Angeles, Los Angeles,

California, USA ^d UCLA Center for Quantum Science and Engineering, Los Angeles, California, USA

Computational details

All electronic structure calculations were performed using the Q-Chem package^{1,2}, except for EOM-IP-CCSDT, which were carried out with $Cfour^3$.

Radiative lifetimes are determined by the transition dipole moment (μ_{IF}) and frequency of the transition (ω_0) , as given by Einstein's coefficients A_{ba} :

$$A_{ba} = \frac{g_a \omega_0^3 \mu_{IF}^2}{3\hbar\pi c^3 \varepsilon_0},\tag{1}$$

where g_a is the degeneracy of the lower state.

TABLE S1: Einstein's coefficients for $A^2\Pi - X^2\Sigma^+$ transition in CaF and SrF computed by Eq. (1) using ω_0 and μ_{IF} obtained from EOM-EA-CCSD calculations. The computed values are compared with the experimentally⁴ determined values for the $A^2\Pi_{1/2}$ and $A^2\Pi_{3/2}$ states.

Molecule	E_{ex}, eV	μ_{IF} , au	A_{ba} , MHz	State	τ , ns	Γ , MHz
CaF	2 100	2 268	50.7	$A^2 \Pi_{1/2}$	21.9	45.7
Car	2.100	2.200	50.7	$A^{2}\Pi_{3/2}$	18.4	54.3
SrF	1 005	9 137	13.6	$A^2 \Pi_{3/2}$	24.1	41.5
SIL	1.900	2.407	45.0	$A^2 \Pi_{3/2}$	22.6	44.2

One can also compute spontaneous decay rates relative to a reference system. Specifically, we can use the computed values of ω_0 and μ_{IF} and scale the experimentally determined spontaneous decay rate of the $A^2\Pi_{1/2}$ state in SrF:

$$\gamma_{eff} = g_a \left[\frac{\omega_0}{\omega_0(\text{SrF})} \right]^3 \left[\frac{\mu_{IF}}{\mu_{IF}(\text{SrF})} \right]^2 \Gamma(\text{SrF}), \tag{2}$$

where γ_{eff} is an effective spontaneous decay rate, ω_0 and μ_{IF} are resonant frequency and transition dipole moment of a molecule computed using EOM-CC; $\omega_0(\text{SrF})$ and $\mu_{IF}(\text{SrF})$ are resonant frequency and transition dipole moment computed for $X^2\Sigma^+$ - $A^2\Pi$ transition in SrF; $\Gamma(\text{SrF}) = 2\pi \times 7$ MHz is an experimental value of the spontaneous decay rate of the $A^2\Pi_{1/2}$ state in SrF.

TABLE S2: Comparison of Einstein's coefficients A_{ba} with the effective spontaneous decay rates γ_{eff} computed using EOM-EA-CCSD for several selected molecules with similar electronic structure of the states involved in the excitation.

Molecule	A_{ba} , MHz	$\gamma_{eff}, \mathrm{MHz}$
YF^+	228.0	229.7
YOH ⁺	209.3	211.0
AlCl ⁺	91.3	92.1
$GaCl^+$	67.9	68.4
InCl^+	70.8	71.4

$$A^{2+}B^{-}: A = s^2 p^1, B = s^2 p^5$$

TABLE S3: Total electronic energies (at respectively optimized geometry), T_2^2 diagnostic, equilibrium bond length r_e of AlCl⁺, GaCl⁺, and InCl⁺ in the ground electronic state calculated using EOM-EA-CCSD and EOM-IP-CCSD.

FOM CC	AlCl ⁺		$GaCl^+$			InCl ⁺			
	E, Hartree	T_{2}^{2}	r_e	E, Hartree	T_{2}^{2}	r_e	E, Hartree	T_{2}^{2}	r_e
EOM-EA-CCSD	-701.695907	0.1258	2.015	-718.547498	0.1715	2.076	-649.389095	0.1967	2.279
EOM-IP-CCSD	-701.692874	0.1604	2.023	-718.545800	0.1851	2.086	-649.383885	0.2073	2.296

AB⁺: **A** =
$$s^2 p^1$$
, **B** = s^1

TABLE S4: Dissociation reactions and corresponding dissociation energies of AB^+ (A = B, Al, Ga; B = H, Li). Energies of B^+ , Al^+ , Ga^+ , and Li^+ are calculated using CCSD. Energies of B, Al, Ga, and Li are calculated using EOM-EA-CCSD.

Reaction	E_{dis}, eV
$\rm BH^+ \rightarrow B^+ + H$	2.09
$AlH^+ \rightarrow Al^+ + H$	0.74
$GaH^+ \rightarrow Ga^+ + H$	0.26
$BLi^+ \rightarrow B^+ + Li$	3.67
$AlLi^+ \rightarrow Al^+ + Li$	1.69
$GaLi^+ \rightarrow Ga^+ + Li$	1.66
$BLi^+ \rightarrow B + Li^+$	0.81
$ AlLi^+ \rightarrow Al + Li^+$	1.18
$GaLi^+ \rightarrow Ga + Li^+$	1.17

$$[AB]^+: A = s^2 p^2, B = s^2 p^4$$

SiO	EOM-IP-CCSD	$EOM-IP-CCSD(T)(a)^*$	EOM-IP-CCSDT	Ref. 5
$1^2\Sigma^+$	11.5178	11.4044	11.4130	11.61
$1^2\Pi$	12.0535	12.0522	12.0041	12.19
$2^2\Sigma^+$	15.1104	14.7287	14.6544	14.80
SiS	EOM-IP-CCSD	EOM-IP-CCSD(T)(a)* $ $	EOM-IP-CCSDT	Ref. 6
$1^2\Sigma^+$	10.5011	10.4125	10.4073	10.56
$1^2\Pi$	10.5823	10.5692	10.5600	10.53
$2^2\Sigma^+$	14.4522	14.0846	13.8370	13.88
SiSe	EOM-IP-CCSD	EOM-IP-CCSD(T)(a)* $ $	EOM-IP-CCSDT	Ref. 7
$1^2\Sigma^+$	10.1510	10.0557	10.0552	10.00
$1^2\Pi$	10.1172	10.1155	10.1090	9.98
$2^2\Sigma^+$	14.1808	13.7459	13.4071	13.20

TABLE S5: Vertical IEs (eV) of SiO, SiS, and SiSe computed using EOM-IP-CC methods with the aug-cc-pVTZ basis set in comparison with the literature values.

TABLE S6: Equilibrium bond lengths (Å) of the $X^2\Sigma^+$, $A^2\Pi$, and $B^2\Sigma^+$ states in SiO⁺ calculated using EOM-IP-CCSD/aug-cc-pVTZ in comparison with the literature values.

	$X^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$
EOM-IP-CCSD	1.526	1.640	1.506
Exp. ^{8,9}	1.519	1.637	1.527

FIG. S1: Potential energy curves of SiO^+ , SiS^+ , and $SiSe^+$ calculated using EOM-IP-CCSD(T)(a)* and EOM-IP-CCSDT using the aug-cc-pVTZ basis set.

$$[AB]^+: A = s^2 p^3, B = s^2 p^3$$

	EOM-IP-CCSD	Exp.				
$r_e(X^2\Sigma_q^+)$	1.110	1.116				
$r_e(A^2\Pi_u)$	1.161	1.175				
$r_e(B^2\Sigma_u^+)$	1.067	1.074				
$T_e(A^2\Pi_u)$	1.364	1.137				
$T_e(B^2\Sigma_u^+)$	3.205	3.157				
E	$B^2\Sigma^+_u \to X^2\Sigma^+_a$					
$0 \rightarrow 0$	0.6197	0.6481				
$0 \rightarrow 1$	0.3128	0.2619				
$0 \rightarrow 2$	0.0616	0.0705				
$A^2 \Pi_u \to X^2 \Sigma_q^+$						
$0 \rightarrow 0$	0.5567	0.4974				
$0 \rightarrow 1$	0.3060	0.3718				
$0 \rightarrow 2$	0.1030	0.1116				

TABLE S7: Comparison of the equilibrium bond lengths $(r_e, \text{ Å}), T_e \text{ constant (eV)}$ and FCFs of N_2^+ calculated using EOM-IP-CCSD with experimental data.

TABLE S8: Comparison of the vertical IEs of PN, T_e constants and equilibrium bond lengths of PN⁺ calculated using EOM-IP-CCSD with experimental data.

	$X^2\Sigma^+$	$A^2\Pi$	$B^2\Sigma^+$				
I	IE, eV						
EOM-IP-CCSD	11.868	12.478	16.434				
$Exp.^{10}$	11.88	12.30	15.74				
	T_e, eV						
EOM-IP-CCSD	0.000	0.513	4.538				
$Exp.^{10}$	0.000	0.42	3.86				
$r_e, \mathrm{\AA}$							
EOM-IP-CCSD	1.484	1.552	1.465				
$Exp.^{10}$	1.50	1.565	1.45				

- ¹ Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A.T.B.; Wormit, M.; Kussmann, J.; Lange, A.W.; Behn, A.; Deng, J.; Feng, X., et al. Advances in molecular quantum chemistry contained in the Q-Chem 4 program package *Mol. Phys.* **2015**, *113*, 184–215.
- ² Krylov, A. I.; Gill, P. M. W. Q-Chem: An engine for innovation WIREs: Comput. Mol. Sci. 2013, 3, 317–326.
- ³ Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagau, T.-C.; Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-cluster techniques for computational chemistry: The CFOUR program package J. Chem. Phys. **2020**, 152, 214108.
- ⁴ Dagdigian, P. J.; Cruse, H. W.; Zare, R. N. Radiative lifetimes of the alkaline earth monohalides J. Chem. Phys. **1974**, 60, 2330–2339.
- ⁵ Colbourn, E. A.; Dyke, J. M.; Lee, E. P. F; Morris, A.; Trickle, I. R. The vacuum ultra-violet photoelectron spectrum of the SiO $(X^1\Sigma^+)$ molecule *Mol. Phys.* **1978**, *35*, 873–882.
- ⁶ Cockett, M. C. R.; Dyke, J. M.; Morris, A.; Niavaran, M. H. Z. High-temperature photoelectron spectroscopy. a study of SiS (X¹Σ⁺) J. Chem. Soc., Faraday Trans. 2 1989, 85, 75–83.
- ⁷ Chattopadhyaya, S.; Das, K. K. Electronic spectrum of SiSe⁺: a MRDCI study Chem. Phys. Lett. 2004, 399, 140–146.
- ⁸ Herzberg, G. Molecular spectra and molecular structure: I. Spectra of diatomic molecules, Vol. I; van Nostrand Reinhold: New York, 1950.
- ⁹ Rosner, S. D.; Cameron, R.; Scholl, T. J.; Holt, R. A. A study of the X²Σ⁺ and A²Π states of SiO⁺ using fast-ion-beam laser spectroscopy J. Molec. Spect. **1998**, 189, 83–94.
- ¹⁰ Bulgin, D. K.; Dyke, J. M.; Morris, A. Vacuum ultraviolet photoelectron spectrum of the PN (X¹Σ⁺) molecule J. Chem. Soc., Faraday Trans. 2 1977, 73, 983–990.