Supporting Information

Single transition metal atoms anchored on C₂N monolayer as efficient catalysts for hydrazine electrooxidation

Dongxu Jiao,^a Yu Tian, ^{b,*} Hongxia Wang,^a Qinghai Cai,^a Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, China

^b Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, Jilin, China

*To whom correspondence should be addressed. Email: tiany516@nenu.edu.cn (YT); xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ)

Fig. S1. The optimized adsorption configuration of N_2H_4 molecule on pristine C_2N monolayer.

Fig. S2. The computed projected density of states (PDOSs) between the H_a -1s of adsorbed $N_2H_4^*$ species and the N_a -2p orbitals of C_2N monolayer.

Fig. S3. The involved reaction intermediates $N_2H_4^*$, $N_2H_3^*$, $N_2H_2^*$, N_2H^* , and N_2^* species during HzOR on (a) Ru@C₂N, (b) Mo@C₂N, (c) Ti@C₂N, (d) Co@C₂N, and (e) Fe@C₂N.

Fig. S4. The computed projected density of states (PDOSs) of (a) $Ru(4d_{xz})-N_2H_4^*(2p_x)$ and (b) $Ru(4d_{yz})-N_2H_4^*(2p_y)$ for N_2H_4 adsorption on $Ru@C_2N$.