Supplementary Information on manuscript: Can the roles of polar and non-polar moieties be reversed in non-polar solvents?

Cedrix J. Dongmo Foumthuime,
1 Manuel Carrere,
2 Maurine Houvet, 3

Tatjana Škrbić,^{1,4} Giuseppe Graziano,⁵ and Achille Giacometti^{a1,†}

¹Dipartimento di Scienze Molecolari e Nanosistemi,

Università Ca' Foscari di Venezia Campus Scientifico,

Edificio Alfa, via Torino 155,30170 Venezia Mestre, Italy

²Department of Chemistry and Hylleraas Centre for Quantum Molecular Sciences,

University of Oslo, PO Box 1033 Blindern, 0315 Oslo, Norway

³Polytech Nantes - Engineering school of the University of Nantes, Rue Christian Pauc, 44306 Nantes cedex 3.

⁴Department of Physics and Institute for Theoretical Science,

1274 University of Oregon, Eugene, OR 97403-1274, USA

⁵Department of Science and Technology, University of Sannio-Benevento,

via Francesco de Sanctis, 82100 Benevento, Italy

(Dated: September 11, 2020)

^eEqual contribution

^eEqual contribution

^aCorresponding author

[†] achille.giacometti@unive.it

Free energy differences between initial and final states can be computed using Eq.1 below :

$$\Delta G_{AB} = \int_{\lambda_A}^{\lambda_B} d\lambda \left\langle \frac{\partial V(\mathbf{r};\lambda)}{\partial \lambda} \right\rangle_{\lambda} \tag{1}$$

where $V(\mathbf{r}, \lambda)$ is the potential energy of the system as a function of the coordinate vector \mathbf{r} , and λ is a switching-on parameter allowing to go from state A to state B by changing its value from λ_A to λ_B .

The λ -dependence of the potential in bonded interaction is linear while non-bonded interaction can be described with linear dependence or with Soft-core interaction. It should be noted that in our simulations we are analyzing only small molecules, so we are only interested in turning off the inter-molecular interactions such as Lennard-Jones and Coulomb potentials. We used the standard linear interpolation shown in Eq.2

$$V = (1 - \lambda)V^{A} + \lambda V^{B}$$

$$\frac{\partial V}{\partial \lambda} = V^{B} - V^{A}$$
(2)

However, near off-states i.e. for values of λ equal to 0 and 1 large numerical fluctuations are sometimes recorded leading to clashes between decoupling atoms, thereby preventing a smooth derivative of the potential in Eq.2. A core softening (Eq.3) interacting potential was used to circumvent this issue

$$V_{soft-core}(r) = (1 - \lambda)V^{A}(r_{A}) + \lambda V^{B}(r_{B})$$

$$r_{A} = (\alpha R_{A}^{6} \lambda^{p} + r^{6})^{1/6}$$

$$r_{B} = (\alpha R_{B}^{6} (1 - \lambda)^{p} + r^{6})^{1/6}$$
(3)

where λ and p are respectively the soft-core and the soft-core power parameters, and R is the interaction radius, which is equal to the ratio between the Lennard-Jones parameters σ_{ij} .

S1. SUPPLEMENTARY TABLES

Character	Amino acid	Short name	Single letter	Equivalent
Hydrophobic	Alanine	ALA	А	Methane
Hydrophobic	Valine	VAL	\mathbf{V}	Propane
Hydrophobic	Isoleucine	ILE	Ι	Butane
Hydrophobic	Leucine	LEU	\mathbf{L}	Isobutane
Hydrophobic	Methionine	MET	Μ	Methyl-ethylsulfide
Hydrophobic	Glycine	GLY	G	Hydrogen
Hydrophobic	Phenylalanine	PHE	\mathbf{F}	Toluene
Hydrophobic	Tyrosine	TYR	Υ	4-Methylphenol
Hydrophobic	Tryptophan	TRP	W	3-Methylindole
Polar	Serine	SER	\mathbf{S}	Methanol
Polar	Asparagine	ASN	Ν	Acetamide
Polar	Glutamine	GLN	\mathbf{Q}	Propionamide
Polar	Cysteine	CYS	\mathbf{C}	Methanethiol
Polar	Threonine	THR	Т	Ethanol
Polar	Histidine	HIS	Η	Methylimidazole
Polar	Lysine	LYS	Κ	n-Butylamine
Polar	Arginine	ARG	\mathbf{R}	n-Propylguanidine
Polar	Aspartic acid	ASP	D	Acetic Acid
Polar	Glutamic acid	GLU	\mathbf{E}	Propionic Acid
-	Proline	PRO	Р	-

TABLE SI: The correspondence between the 20 amino acids and their neutral analog equivalent.

Hydrophobic	This work, $25^{\circ}C$	Ref. ^a	Ref. ^b	Ref. ^c
Methane(Ala)	8.47 ± 0.12	9.20	8.12	8.12
Propane(Val)	6.93 ± 0.50	10.70	8.33	8.33
Butane (Ile)	7.11 ± 1.83	10.70	9.00	9.00
Isobutane (Leu)	7.24 ± 1.34	10.40	9.54	9.55
Methyl-ethylsulfide (Met)	-0.80 ± 1.69	-6.19	-14.52	-6.20
3-methylindole (Trp)	-29.09 ± 2.34	-12.30	-24.60	-24.62
4-methylphenol (Tyr)	-33.79 ± 3.04	-22.40	-25.56	-25.58
Toluene (Phe)	-7.62 ± 1.12	-3.40	-3.18	-3.18
Polar	This work, $25^{\circ}C$	Ref. ^a	Ref. ^b	Ref. ^c
Methanol (Ser)	-21.92 ± 0.21	-14.10	-21.17	-21.19
Ethanol (Thr)	-21.41 ± 0.35	-13.70	-20.42	-20.43
Acetamide (Asn)	-41.75 ± 0.95	-18.80	-40.50	-40.53
Propionamide (Gln)	-44.97 ± 1.41	18.70	-38.25	-39.27
Methanethiol (Cys)	-8.70 ± 2.88	5.50	-5.19	-5.28
Methylimidazole (His)	-32.16 ± 1.74	-27.40	-42.97	-43.00
n-butylamine (Lys)	-18.11 ± 1.31	-15.50		-39.86
n-propylguanidine (Arg)	-50.05 ± 1.47	-30.10		-83.40
Acetic acid (Asp)	-28.98 ± 0.50	-18.20		-45.85
Propionic acid (Glu)	-31.55 ± 0.88	-16.20	·	-42.87

TABLE SII: Solvation free energies $(kJ mol^{-1})$ for hydrophobic and polar amino acid side chain analogs in water H₂O.

^a Villa & Mark (2002), 20°C ^b Chang *et al.* (2007), 25°C ^c Radzicka & Wolfenden (1988), 20°C

TABLE SIII: Solvation free energies $(kJ mol^{-1})$ for hydrophobic and polar amino acid side chain analogs in cyclohexane cC_6H_{12} .

Hydrophobic	This work, 25°C	Ref. ^c	Ref. ^b Ref. ^c
Methane(Ala)	0.60 ± 0.11	0.8 ± 0.6	1.05 0.54
Propane(Val)	-8.39 ± 0.25	-6.7 ± 0.9	-6.61 - 8.58
Butane (Ile)	-11.60 ± 0.89	-13 ± 1.5	$-9.91 \ -11.59$
Isobutane (Leu)	-11.23 ± 0.86	-9.8 ± 1.5	-9.16 - 11.05
Methyl-ethylsulfide (Met)	-15.77 ± 0.61	-14.4 ± 1.3	-14.52 -16.02
3-methylindole (Trp)	-36.55 ± 2.37	-35.9 ± 2.8	$-38.12 \ -34.35$
4-methylphenol (Tyr)	-24.38 ± 0.77	-28.3 ± 1.2	-22.68 - 24.98
Toluene (Phe)	-21.27 ± 1.65	-25.2 ± 1.0	-19.71 -15.65
Polar	This work, $25^{\circ}C$	Ref.ª	^h Ref. ^b Ref. ^c
Methanol (Ser)	-4.73 ± 0.13	-3.5 ± 0.9	-3.22 - 6.94
Ethanol (Thr)	-7.89 ± 0.20	-7.8 ± 0.8	-6.57 - 9.66
Acetamide (Asn)	-12.57 ± 0.41	-14.3 ± 1.0	$-13.68 \ -12.72$
Propionamide (Gln)	-15.32 ± 0.63	-19.3 ± 0.9	$-16.82 \ -16.07$
Methanethiol (Cys)	-8.55 ± 0.18	-7.9 ± 0.8	-8.95 - 10.54
Methylimidazole (His)	-19.34 ± 1.03	-21.1 ± 1.0	-19.04 - 23.47
n-butylamine (Lys)	-13.71 ± 0.55	-16.8 ± 1.8	16.61
n-propylguanidine (Arg)	-17.74 ± 2.08	-24 ± 1.8	20.92
Acetic acid (Asp)	-14.22 ± 0.18	-15.6 ± 1.1	9.33
Propionic acid (Glu)	-19.13 ± 0.55	-18.6 ± 1.1	14.35

^a Villa & Mark (2002), 20°C ^b Chang et al. (2007), 25°C ^c Radzicka & Wolfenden (1988), 20°C

TABLE SIV: Solvation free energies (kJ mol⁻¹) for hydrophobic and polar amino acid side chain analogs in ethanol EtOH. Note that here and below, results from Damodaran & Song (1986) are those from Nozaki & Tanford (1971) estrapolated at higher temperatures, and are included here for completeness.

Hydrophobic	This work, $25^{\circ}C$	Ref. ^a	h Ref. ^b	Ref.
Methane(Ala)	2.79 ± 0.17	5.92	4.75	5.05
Propane(Val)	-4.79 ± 0.71	2.03	0.50	1.13
Butane (Ile)	-6.23 ± 0.76		-4.46	-1.33
Isobutane (Leu)	-9.24 ± 0.47	0.01	0.40	3.03
Methyl-ethylsulfide (Met)	-12.52 ± 1.01		-12.93	-11.54
3-methylindole (Trp)	-33.43 ± 1.43	-33.77	-40.27	
4-methylphenol (Tyr)	-43.01 ± 0.95	35.20	-36.38	-37.21
Toluene (Phe)	-18.07 ± 0.68	-13.98	-15.15	-14.19
Polar	This work, $25^{\circ}C$	Ref. ^a	h Ref. ^b	Ref.
Methanol (Ser)	-23.56 ± 0.37	-19.54	-20.67	-20.97
Ethanol (Thr)	-25.56 ± 0.20		-19.97	-21.94
Acetamide (Asn)	-44.24 ± 0.58	_	-39.86	-39.86
Propionamide (Gln)	-48.46 ± 0.42		-38.28	-38.28
Methanethiol (Cys)	-15.64 ± 0.41		-11.28	
Methylimidazole (His)	-32.29 ± 0.57	-44.02	-45.45	
n-butylamine (Lys)	-21.83 ± 1.80		-24.70	
n-propylguanidine (Arg)	-42.24 ± 1.18	_	-48.06	
Acetic acid (Asp)	-33.72 ± 0.62	-26.87	-29.94	-29.76
Propionic acid (Glu)	-37.71 ± 0.42	-25.51	-29.08	-28.90

^a Nozaki & Tanford (1971), 25.10°C

^b Damodaran & Song (1986), 37°C

^c Tanford (1962), 20°C

TABLE SV: Classic SPT estimates of the Gibbs energy change, ΔG_0 , associated with the creation in water H₂O, cyclohexane cC₆H₁₂ and ethanol EtOH of a spherical cavity suitable to host methane, propane, toluene and methanol, at 28° and 1 atm; estimates of the solute-solvent interaction energy, consisting of a van der Waals contribution (assumed to be solvent-independent) and a H-bond contribution. A comparison between the $\Delta G_0 + E_a$ values and the experimental ΔG is shown in the last two columns (no optimization has been performed). For each solute, the first line refers to water H₂O, the second to cyclohexane cC₆H₁₂, and the third to ethanol EtOH. Units are (kJ mol⁻¹).

	ΔG_0	E_a	$\Delta G_0 + E_a$	ΔG
Methane(ALA) $\sigma = 3.70$ Å	22.9	-15.0	7.9	8.3
	16.0	-15.0	1.0	0.8
	17.7	-15.0	2.7	1.6
Propane(VAL) $\sigma = 5.06$ Å	38.7	-31.0	7.7	8.2
	25.7	-31.0	-5.3	-7.6
	29.0	-31.0	-2.0	-5.2
$\text{Toluene}(\text{PHE})\sigma = 5.64 \text{ Å}$	46.7	-50.0	-3.3	-3.7
	30.6	-50.0	-19.4	-18.7
	34.7	-50.0	-15.3	-14.2
$Methanol(SER)\sigma = 3.83 \text{ Å}$	24.2	-45.0	-20.8	-21.4
	16.8	-22.0	-5.2	-5.3
	18.7	-39.0	-20.3	-21.0

		Th	is work, $25^{\circ}C$		Baldwin (2	014), 25°C
Hydrophobic	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methane(Ala)	8.47 ± 0.12	-3.14 ± 1.55	11.61 ± 1.55	8.29	-2.61	4.61
Propane(Val)	6.93 ± 0.50	-11.17 ± 9.09	18.10 ± 9.25	8.21(8.21)	-5.02(-4.83)	6.98(6.79)
Butane (Ile)	7.11 ± 1.83	-28.28 ± 5.66	35.39 ± 6.52	8.75	-5.66	7.75
Isobutane (Leu)	7.24 ± 1.34	-9.46 ± 8.56	16.69 ± 8.30	9.71	-5.23	7.55
Methyl-ethylsulfide (Met)	-0.80 ± 1.69	-24.04 ± 14.04	23.23 ± 12.94			
3-methylindole (Trp)	-29.09 ± 2.34	-88.50 ± 23.89	59.41 ± 24.22			
4-methylphenol (Tyr)	-33.79 ± 3.04	-104.73 ± 13.86	70.93 ± 11.17			
Toluene (Phe)	-7.62 ± 1.12	-53.44 ± 7.56	45.83 ± 7.73			
Polar	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methanol (Ser)	-21.92 ± 0.21	-42.73 ± 1.38	20.82 ± 1.43			
Ethanol (Thr)	-21.41 ± 0.35	-43.56 ± 5.82	22.14 ± 6.08			
Acetamide (Asn)	-41.75 ± 0.95	-69.62 ± 7.73	27.87 ± 7.19			
Propionamide (Gln)	-44.97 ± 1.41	-71.56 ± 15.02	26.57 ± 15.64			
Methanethiol (Cys)	-8.70 ± 2.88	-25.67 ± 5.21	16.97 ± 5.30			
Methylimidazole (His)	-32.16 ± 1.74	-63.02 ± 8.18	30.86 ± 9.45			
n-butylamine (Lys)	-18.11 ± 1.31	-47.43 ± 9.80	29.32 ± 8.88			
n-propylguanidine (Arg)	-50.05 ± 1.47	-124.34 ± 26.07	74.29 ± 24.94			
Acetic acid (Asp)	-28.98 ± 0.50	-52.89 ± 8.53	24.59 ± 8.28			
Propionic acid (Glu)	-31.55 ± 0.88	-56.98 ± 16.34	25.43 ± 16.84			

TABLE SVI: Enthalpic and entropic contributions to the solvation free energies $(kJ \text{ mol}^{-1})$ for hydrophobic and polar amino acid side chain analogs in water H₂O.

 $\label{eq:svii} \mbox{TABLE SVII: Enthalpic and entropic contributions to the solvation free energies (kJ mol^{-1}) for hydrophobic and polar amino acid side chain analogs in cyclohexane cC_6H_{12}.$

		Tł	nis work, $25^{\circ}C$	Abrah	am (19'	79,1982), 25°C
Hydrophobic	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methane(Ala)	0.60 ± 0.11	-3.38 ± 1.37	3.98 ± 1.36	0.8	-0.9	1.7
Propane(Val)	-8.39 ± 0.25	-14.22 ± 4.31	5.84 ± 4.18	-7.6	-13.9	6.29
Butane (Ile)	-11.60 ± 0.89	-21.31 ± 2.25	9.71 ± 2.66	-11.1		
Isobutane (Leu)	-11.23 ± 0.86	-18.88 ± 9.48	7.62 ± 9.12	-9.7		
Methyl-ethylsulfide (Met)	-15.77 ± 0.61	24.59 ± 6.73	-40.37 ± 7.24			
3-methylindole (Trp)	-36.55 ± 2.37	14.60 ± 9.40	-51.16 ± 8.67			
4-methylphenol (Tyr)	-24.38 ± 0.77	-58.46 ± 19.00	34.08 ± 19.35			
Toluene (Phe)	-21.27 ± 1.65	-45.74 ± 12.23	24.47 ± 13.06			
Polar	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methanol (Ser)	-4.73 ± 0.13	-11.83 ± 0.74	7.10 ± 0.73			
Ethanol (Thr)	-7.89 ± 0.20	-15.00 ± 2.78	7.11 ± 2.86			
Acetamide (Asn)	-12.57 ± 0.41	-20.88 ± 2.18	8.30 ± 1.98			
Propionamide (Gln)	-15.32 ± 0.63	-25.10 ± 5.02	9.78 ± 4.93			
Methanethiol (Cys)	-8.55 ± 0.18	-17.85 ± 1.08	9.30 ± 1.30			
Methylimidazole (His)	-19.34 ± 1.03	-30.98 ± 12.85	11.64 ± 13.74			
n-butylamine (Lys)	-13.71 ± 0.55	-25.71 ± 9.33	12.00 ± 9.27			
n-propylguanidine (Arg)	-17.74 ± 2.08	-54.12 ± 15.35	36.38 ± 14.06			
Acetic acid (Asp)	-14.22 ± 0.18	-26.42 ± 3.00	12.20 ± 3.00			
Propionic acid (Glu)	$ -19.13 \pm 0.55 $	-30.74 ± 3.26	11.61 ± 3.59			

		Th	is work, $25^{\circ}C$	Abra	ham (19)	979,1982), 25°C
Hydrophobic	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methane(Ala)	2.79 ± 0.17	-0.43 ± 1.50	3.22 ± 1.43	1.6	-2.1	3.7
Propane(Val)	-4.79 ± 0.71	-16.44 ± 5.15	11.65 ± 5.19	-5.2	-12.4	7.22
Butane (Ile)	-6.23 ± 0.76	-17.25 ± 10.92	11.02 ± 11.10	-8.1	-17.7	9.6
Isobutane (Leu)	-9.24 ± 0.47	-16.86 ± 6.96	7.62 ± 7.16	-6.9	-16.1	9.21
Methyl-ethylsulfide (Met)	-12.52 ± 1.01	-25.82 ± 9.72	13.31 ± 9.65			
3-methylindole (Trp)	-33.43 ± 1.43	-56.80 ± 22.95	23.37 ± 23.62			
4-methylphenol (Tyr)	-43.01 ± 0.95	-90.35 ± 9.04	47.34 ± 9.08			
Toluene (Phe)	-18.07 ± 0.68	-28.56 ± 13.07	10.49 ± 13.08			
Polar	ΔG	ΔH	$-T\Delta S$	ΔG	ΔH	$-T\Delta S$
Methanol (Ser)	-23.64 ± 0.37	-43.22 ± 3.87	19.62 ± 3.69			
Ethanol (Thr)	-25.56 ± 0.20	-47.06 ± 2.70	21.50 ± 2.76			
Acetamide (Asn)	-44.24 ± 0.58	-70.71 ± 7.82	26.47 ± 7.78			
Propionamide (Gln)	-48.46 ± 0.42	-84.15 ± 16.67	35.69 ± 16.98			
Methanethiol (Cys)	-15.64 ± 0.41	-31.89 ± 4.51	16.25 ± 4.67			
Methylimidazole (His)	-32.29 ± 0.57	-54.20 ± 8.45	21.91 ± 8.57			
n-butylamine (Lys)	-21.83 ± 1.80	-37.84 ± 12.64	16.01 ± 11.80			
n-propylguanidine (Arg)	±	\pm	\pm			
Acetic acid (Asp)	-33.72 ± 0.62	-58.71 ± 5.25	24.99 ± 5.24			
Propionic acid (Glu)	-37.70 ± 0.42	-68.60 ± 7.06	30.90 ± 6.95			

TABLE SVIII: Enthalpic and entropic contributions to the solvation free energies $(kJ mol^{-1})$ for hydrophobic and
polar amino acid side chain analogs in ethanol EtOH.

TABLE SIX: Enthalpic and entropic contributions to the transfer free energies $(kJ \text{ mol}^{-1})$ from water H_2O to cyclohexane cC_6H_{12} for hydrophobic and polar amino acid side chain analogs.

			This work, $25^{\circ}C$	Wolfend	len (20	$15), 25^{\circ}C$	Abraha	m (197	$(9,1982), 25^{\circ}C$
Hydrophobic	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta\Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta\Delta H$	$-T\Delta\Delta S$
Methane(Ala)	-7.87 ± 0.23	-0.24 ± 2.92	-7.63 ± 2.91	-12.02	10.68	-22.69	-7.50	10.00	-17.5
Propane(Val)	-15.32 ± 0.75	-3.05 ± 13.40	-12.26 ± 13.44	-23.28	6.20	-29.48	-15.80	7.10	-22.29
Butane (Ile)	-18.71 ± 2.72	6.97 ± 7.91	-25.68 ± 9.18	-24.16	4.31	-28.47	-19.80		
Isobutane (Leu)	-18.47 ± 2.20	-10.42 ± 18.04	-8.03 ± 17.42	-24.16	2.51	-26.67	-19.40		
Methyl-ethylsulfide (Met)	-14.97 ± 2.30	48.63 ± 20.77	-66.60 ± 20.18	-10.89	3.35	-14.24			
3-methylindole (Trp)	-7.46 ± 4.71	103.1 ± 33.29	-110.57 ± 32.89	-10.42	-0.54	-9.88			
4-methylphenol (Tyr)	9.41 ± 3.81	46.27 ± 32.86	-36.85 ± 30.52	1.76	18.21	-16.45			
Toluene (Phe)	-13.65 ± 2.77	7.70 ± 19.79	-21.36 ± 20.79	-15.04	-1.05	-13.98			
Polar	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta\Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$
Methanol (Ser)	17.19 ± 0.34	30.91 ± 2.12	-13.71 ± 2.16	16.08	26.00	-9.92			
Ethanol (Thr)	13.52 ± 0.55	28.56 ± 8.60	-15.03 ± 8.94	10.42	28.14	-17.71			
Acetamide (Asn)	29.18 ± 1.36	48.74 ± 9.91	-19.57 ± 9.17	27.80	29.89	-2.14			
Propionamide (Gln)	29.65 ± 2.04	46.46 ± 20.04	-16.79 ± 20.54	23.19	36.80	-13.61			
Methanethiol (Cys)	0.15 ± 3.06	7.72 ± 6.29	-7.67 ± 6.6	-8.71	13.06	-21.77			
Methylimidazole (His)	12.82 ± 2.77	32.04 ± 21.03	-19.22 ± 23.19	19.89	48.53	-28.64			
n-butylamine (Lys)	4.40 ± 1.86	21.72 ± 19.13	-17.32 ± 18.15	1.55	22.23	-20.68			
n-propylguanidine (Arg)	32.31 ± 3.55	70.22 ± 41.42	-37.91 ± 39.00	24.62	57.53	-32.91			
Acetic acid (Asp)	14.76 ± 0.68	26.47 ± 11.53	-12.39 ± 11.28	18.71	34.92	-16.16			
Propionic acid (Glu)	12.42 ± 1.61	26.24 ± 19.59	-13.82 ± 20.41	12.85	43.43	30.48			

		Г	This work, 25°C	Abraha	m (197	9,1982), 25°C
Hydrophobic	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta \dot{\Delta} H$	$-T\Delta\Delta S$
Methane(Ala)	-5.68 ± 0.29	2.71 ± 3.05	-8.39 ± 2.98	-6.70	8.8	-15.50
Propane(Val)	-11.72 ± 1.21	-5.27 ± 14.24	-6.45 ± 14.44	-13.40	8.6	-21.97
Butane (Ile)	-13.34 ± 2.59	11.03 ± 16.58	-24.37 ± 17.62	-16.80	5.9	-22.69
Isobutane (Leu)	-16.48 ± 1.81	-7.40 ± 15.52	-9.07 ± 15.46	-16.60	5.8	-22.39
Methyl-ethylsulfide (Met)	-11.72 ± 2.70	-1.78 ± 23.76	-9.92 ± 22.59			
3-methylindole (Trp)	-4.34 ± 3.77	31.70 ± 46.84	-36.04 ± 47.84			
4-methylphenol (Tyr)	-9.22 ± 3.99	14.38 ± 22.90	-23.59 ± 20.25			
Toluene (Phe)	-10.45 ± 1.80	24.88 ± 20.63	-35.34 ± 20.81			
Polar	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$	$\Delta\Delta G$	$\Delta \Delta H$	$-T\Delta\Delta S$
Methanol (Ser)	-1.75 ± 0.58	-0.31 ± 5.25	-1.46 ± 5.12			
Ethanol (Thr)	-3.87 ± 0.55	-3.47 ± 8.52	-0.39 ± 8.84			
Acetamide (Asn)	-2.60 ± 1.53	-1.43 ± 15.55	-1.17 ± 14.96			
Propionamide (Gln)	-3.17 ± 1.83	-20.90 ± 31.69	17.75 ± 35.62			
Methanethiol (Cys)	-6.95 ± 3.29	-4.96 ± 9.72	-1.99 ± 9.97			
Methylimidazole (His)	-0.05 ± 2.31	8.24 ± 16.63	-8.26 ± 18.02			
n-butylamine (Lys)	-3.75 ± 3.11	9.72 ± 22.44	-13.47 ± 20.68			
n-propylguanidine (Arg)	±	\pm	\pm			
Acetic acid (Asp)	-4.74 ± 1.12	-5.93 ± 13.78	0.51 ± 13.58			
Propionic acid (Glu)	-6.16 ± 1.30	-10.47 ± 23.40	4.31 ± 23.79			

 $\begin{array}{c} \mathsf{TABLE}\ \mathsf{SX}:\ \mathrm{Enthalpic}\ \mathrm{and}\ \mathrm{entropic}\ \mathrm{contributions}\ \mathrm{to}\ \mathrm{the}\ \mathrm{transfer}\ \mathrm{free}\ \mathrm{energies}\ \mathrm{kJ}\ \mathrm{mol}^{-1})\ \mathrm{from}\ \mathrm{water}\ \mathrm{H}_2\mathrm{O}\ \mathrm{to}\ \mathrm{ethanol}\ \mathrm{EtOH}\ \mathrm{for}\ \mathrm{hydrophobic}\ \mathrm{and}\ \mathrm{polar}\ \mathrm{amino}\ \mathrm{acid}\ \mathrm{side}\ \mathrm{chain}\ \mathrm{analogs}. \end{array}$

cC_6H_{12}	a b c R^2 c	-29.3694 0.5972 -0.0872 0.95818 10.4958	8.9816 -0.5017 0.0778 0.96322 -7.3075	-93.0027 1.6432 -0.2405 0.97181 -104.581 ;	74.7048 - 2.0768 0.3139 0.94533 252.7160	$1117.2886 - 24.6814 \qquad 3.6649 \ 0.92475 - 182.5088$	2288.4173 - 51.2502 7.6264 0.95952 -93.8153	-339.6722 6.4313 -0.9432 0.93764 -55.0558	-52.8578 0.2420 -0.0239 0.93993 $\left -243.1796\right $	a b c R^2 c	-27.2782 0.3709 -0.0518 0.96906 -11.571	-15.8606 0.0431 -0.0029 0.97949 14.721	55.8768 -1.6963 0.2574 0.94491 89.5388	50.8798 - 1.6739 0.2548 0.93166 - 39.9522	-52.2218 0.8032 -0.1153 0.95474 -68.3014	-64.2742 0.7870 -0.1117 0.98703 $ -108.2614$	-13.7771 -0.2279 0.0400 0.93944 -221.8295	-941.5227 20.1262 -2.9884 0.90171 $$	104.4444 $1.79371 - 0.26170$ $0.98557 - 129.4953$	345187 = 1.4960 + 0.9180 + 0.0840 + 47.9406
EtOH	a b c R^2	55 - 0.2346 0.0366 0.99678	71 - 0.1660 0.0306 0.97862	3 1.9986 - 0.2929 0.92449	0 - 6.0302 0.9042 0.87209	3.5643 - 0.5255 0.98937	$0.9098 - 0.1241 \ 0.92019$	55 - 0.6341 0.1184 0.95091	9 4.8563 -0.7198 0.80403	a b c R^2	7 - 0.6459 0.1063 0.99971	1 - 1.3157 0.2072 0.98123	88 - 3.5109 0.5374 0.97194	22 - 0.8732 0.1482 0.95726	$4 0.8724 \ -0.1221 \ 0.98555$	$4 1.2879 \ -0.1813 \ 0.90130$	05 4.1868 -0.6171 0.94929		3 1.6740 - 0.2374 0.99669	16 9 1766 0 3817 0 00018
	a	-64.9942	-111.8008	-577.1131	-137.4634	139.2361	-185.8273	307.8364	-35.5509	a	-35.3124	-110.9791	8.7707	-105.0984	-116.9340	-517.3281	-206.4630	526.5740	-90.2838	916 3530
	9	1.4308 -	2.3413 -	12.5018 -	2.9061 -	-3.5924	2.3960 -	-9.0299	0.0252	9	-0.0971	1.5442 -	-1.6703	0.8572 -	2.1153 -	10.3350 -	3.6800 -	-14.5680	0.9694 -	2 665 A
H2	$c R^2$	$-0.2079 \ 0.99676$	$-0.3409 \ 0.90212$	-1.8502 0.95994	$-0.4250 \ 0.88111$	0.5486 0.82625	-0.3275 0.93339	1.3837 0.94686	0.0130 0.90851	c R^2	$0.0249 \ 0.99909$	$-0.2182 \ 0.98312$	0.2635 0.98706	$-0.1151 \ 0.92632$	$-0.3076 \ 0.9804$	-1.5278 0.83670	-0.5349 0.9192	2.2182 0.84890	-0.1338 0.98984	0 5345 0 03306

FIG. SI: (a) Hydrophobic amino acids. (b) Polar amino acids.

FIG. SII: Trend of the free energy of cavity creation in the three liquids versus the radius of the spherical cavity, calculated by means of classic SPT at 28°C and 1 atm; black line refers to water H_2O , blue line refers to ethanol EtOH, and red line refers to cyclohexane cC_6H_{12} .

FIG. SIII: Illustrative case of the decoupling process for Methanol, SER in cyclohexane, cC6H12. Blue histograms show the free energy difference between two consecutive lambda points while **red** ones display the integral i.e. the cumulative free energy change as a function of lambda. While throughout the work 21 lambda points were used, in this particular case the plot is displayed for 45 lambda points.

FIG. SIV: Change in the entropic term $-T\Delta\Delta S$ as a function of the change in the entropic part $\Delta\Delta H$ in the case of (a) water to cyclohexane; (b) water to ethanol. In the case of water to cyclohexane, results from Wolfenden *et al* are also included. Units are in kJ mol⁻¹).

FIG. SV: Time-based number of hydrogen bonds change for 3-methylindole in water, H_2O (left panel) and in ethanol, EtOH (right panel) at three different temperatures 280, 290 and 300 K upon moving from the top to the **bottom**, respectively. Insets are representative snapshots. Hydrogen bonds are computed using *gmx hbond* tool of Gromacs package implying that both faces of the phenyl rings are potentially involved in the geometric consideration for Hbond existence.

S14

