Chiral discrimination between tyrosine and βcyclodextrin revealed by cryogenic ion trap infrared spectroscopy

Keisuke Hirata,^{1,2,3} Yuta Mori,^{1,2} Shun-ichi Ishiuchi*,^{1,3,5} Masaaki Fujii*^{1,2,3} and Anne

Zehnacker*^{3,4}

¹Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan.

²School of Life Science and Technology, Tokyo Institute of Technology. 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.

³Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovation Research, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, Japan.

⁴ Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France.

⁵ Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

Supplementary Information

Figure S1 IR-UV ion dip spectra of L-TyrH⁺ at (a) 35082 (Conf. A) and (c) 35112 cm^{-1} (Conf. B) and calculated IR spectra of (b) Conf. A and (d) B (cam-B3LYP/6-31G(d,p) Scaling factor = 0.961). The nomenclature of the conformers follows that of reference 1. See reference 2 for the experimental scheme.

Figure S2 (a) IRPD spectrum of H₂-tagged β -MCDH⁺ and calculated IR spectrum (cam-B3LYP/6-31G(d,p) Scaling factor = 0.961). Please note that the OH stretch is out of the experimental range.

Figure S3 IRPD spectra of H₂-tagged (a) L-TyrH⁺- β -MCD, (b) D-TyrH⁺- β -MCD, and (c) tyramineH⁺- β -MCD in the 3µm region. Green-, gray-, and blue-colored areas correspond to the bands assigned to v(OH_{phenol}), v(OH_{acid}), and v(NH), respectively.

Figure S4 ESI mass spectrum of the solution containing β -MCD, D-phenylalanine (Phe), and isotope (¹³C, ¹⁵N) -labelled L-Phe with the calculated isotope pattern of D-PheH⁺- β -MCD. Peak A (B) corresponds to the complex with D-PheH⁺ (L-PheH⁺). The concentrations of D- and L-Phe are equivalent.

	Conf. A		Conf. B	
	Exp.	Calc.*	Exp.	Calc.*
v(OH _{phenol})	3639	3708	3640	3707
$v(OH_{acid})$	3549	3620	3548	3619
v(NH)	3351	3404	3335	3389
v(NH) _{asym}	3082	3170	3123	3216
v(NH) _{sym}	3054	3130	3083	3156
v(CO)	1781	1803	1776	1803
$\beta(C_{arom}H) \ / \ v(CC_{arom})$	1617, 1288	1642, 1307	1615,1287	1641, 1302
β(CH)	1518	1527	1517	1527
$\beta(NH)_{sym}$	1435	1440	1426	1435
$\beta(NH)_{sym}$ / $v(C-OH_{arom})$	1407	1412	1417	1412
$\beta(OH_{acid})$	1170	1168	1176	1170
$\beta(OH_{phenol})$	1156	1154	1164	1153

Table S1 Summary of the assignment of the experimentally observed and calculated bands of L-TyrH⁺ (Conf. A and B) in the fingerprint region.

* cam-B3LYP/6-31G(d,p) Scaling factor = 0.961.

References

[1] J. A. Stearns, S. Mercier, C. Seaiby, M. Guidi, O. V. Boyarkin and T. R. Rizzo, *J. Am. Chem. Soc.*, 2007, **129**, 11814–11820.

[2] S. Ishiuchi, H. Wako, D. Kato and M. Fujii, J. Mol. Spectrosc., 2017, 332, 45-51.