Electronic Supplementary Information for

Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics

Aditya Nandy^{1,2,#}, Daniel B. K. Chu^{1, #}, Daniel R. Harper^{1,2}, Chenru Duan^{1,2}, Naveen

Arunachalam¹, Yael Cytter¹, and Heather J. Kulik^{1,*}

¹Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

02139

²Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139

[#]These authors contributed equally.

Contents

Table S1 Basis set and xc effects on geometry and sensitivity of Ru(II)(CO) ₆	Page S3
Table S2 Loose/tight geometric and electronic criteria for retained calculations	Page S4
Table S3 Number of structures eliminated by each criterion	Page S5
Table S4 Number of computed sensitivities after filtering	Page S6
Table S5 Statistics of relative S values for cases with all three ΔE values	Page S7
Table S6 Sensitivity statistics of pairs of 3d and 4d TMCs	Page S8
Table S7 Outlier cases where $S(4d) \ge S(3d)$	Page S9
Table S8 Outlier cases where $S > 0$ for H-I and H-L	Page S9
Table S9 Outlier cases where $S > 0$ for I-L	Page S10
Table S10 $\Delta E_{\text{H-L}}$ for 3 <i>d</i> CO/H ₂ O TMCs	Page S11
Table S11 $\Delta E_{\text{H-L}}$ for 4 <i>d</i> CO/H ₂ O TMCs	Page S12
Table S12 $S(\Delta E_{H-L})$ for 3 <i>d</i> and 4 <i>d</i> TMCs of CO and H ₂ O	Page S13
Table S13 $\Delta E_{\text{H-I}}$ for 3 <i>d</i> CO/H ₂ O TMCs	Page S14
Table S14 $\Delta E_{\text{H-I}}$ for 4 <i>d</i> CO/H ₂ O TMCs	Page S15
Figure S1 $S(\Delta E_{H-I})$ for 3 <i>d</i> vs 4 <i>d</i> TMCs of CO and H ₂ O	Page S15
Table S15 $S(\Delta E_{\text{H-I}})$ and $S(\Delta E_{\text{I-L}})$ of CO and H ₂ O TMCs	Page S16
Table S16 ΔE_{I-L} for 3 <i>d</i> CO/H ₂ O TMCs	Page S17
Table S17 ΔE_{I-L} for 4 <i>d</i> CO/H ₂ O TMCs	Page S18
Figure S2 $S(\Delta E_{1-L})$ of CO and H ₂ O 3 <i>d</i> /4 <i>d</i> TMCs	Page S19
Table S18 LS vs HS pref. for 239 $3d/4d$ TMCs with $a_{\rm HF}$	Page S19
Table S19 LS/IS/HS pref. for up to 247 $3d/4d$ TMCs with $a_{\rm HF}$	Page S20
Table S20 LS/IS/HS pref. for 155 $3d/4d$ TMCs with $a_{\rm HF}$	Page S21
Figure S3 LS average absolute M–L distance vs. HS average M–L distance	Page S21
Table S21 Covalent radii used for computing relative distances	Page S22
Figure S4 Histogram of relative distances and differences by spin state	Page S22
Table S22 Averaged rel. dist. statistics for HS/IS/LS pairs of 3d/4d TMCs	Page S23
Table S23 Averaged rel. dist. statistics for 92 IS/LS pairs of 3d/4d TMCs	Page S23

Figure S5 3d TMC equatorially average vs axial average rel. dist.	Page S24
Figure S6 4d TMC equatorially average vs. axial average rel. dist.	Page S24
Table S24 Best-fit lines for 3d and 4d TMC sensitivity vs relative distances	Page S25
Figure S7 Difference in rel. dist. vs ΔE_{H-L}	Page S25
Figure S8 3d TMC sensitivity vs. relative distance differences	Page S26
Figure S9 4d TMC sensitivity vs. relative distance differences	Page S26
Table S25 Properties of $M(II)(He)_6$ TMCs (M = Ru or Fe)	Page S27
Table S26 Properties of $M(II)(CO)_6$ TMCs (M = Ru or Fe)	Page S27
Table S27 Total energy sensitivities in 239 3d/4d TMCs	Page S27
References	Page S28

Table S1. Comparison of effects of equilibrium bond length differences from larger basis sets for B3LYP/LACVP* and B3LYP/def2-ZORA-TZVP (i.e., $a_{HF} = 0.2$) structures of Fe(II) or Ru(II)(CO)₆ in HS quintet and LS states. The ratio of the resulting $S(\Delta E_{H-L})$ between the two basis sets evaluated with that basis set are shown as well along with their individual sensitivities in kcal/mol⁺HFX. The change in basis set for energetic evaluation is more significant than the change in structure (which is ca. 0.01-0.02 Å). The effect of exchange correlation functional choice (i.e., PBE vs. B3LYP) used in tuning with the LACVP* basis set is also compared on Fe(II)(CO)₆ and Ru(II)(CO)₆ HS and LS states. Average (avg) metal-ligand bond lengths (M-L dist.) are shown in Å along with the min-max range over all six individual bond lengths unless all bonds are the same in which case the range is indicated as '--'.

	Geometric effects											
	B3L)	/P/LACVP*	B3LYP/ZO	RA-def2-TZVP								
	M-	L dist. (Å)	M-L	M-L dist. (Å)								
TMC	avg	range	avg	range								
LS Ru(II)(CO) ₆	2.057		2.052									
HS Ru(II)(CO) ₆	2.479	2.429-2.505	2.457	2.409-2.540								
LS Fe(II)(CO) ₆	1.942		1.937									
HS Fe(II)(CO) ₆	2.330	2.314-2.361	2.311	2.289-2.322								
3 <i>d</i> :4 <i>d S</i> (∆ <i>E</i> _{H-L}) ratio	1.8 ((-170 / -95)	1.6 (-2	range 2.409-2.540 2.289-2.322 44 / -156) LACVP* -81								
(S in kcal/mol ⁻ HFX)												
		GGA xc effects	6									
TMC	B3L\	/P/LACVP*	PBE	/LACVP*								
$Ru(II)(CO)_6 S(\Delta E_{H-L})$		-95		-81								
kcal/mol ⁻ HFX												
$Fe(II)(CO)_6 S(\Delta E_{H-L})$		-170		-183								
kcal/mol ⁻ HFX												

Table S2. Geometric and electronic criteria adapted from prior work¹ for excluding TMCs from data set with loose geometric cutoffs applied during resubmission indicated in parentheses. The coordination number must be preserved as 6 for all mononuclear octahedral transition metal complexes (i.e., as judged through interatomic distances being within 1.37x the sum of the respective elements' covalent radii). First coordination shell metrics include the mean and maximum (max.) deviation in the angle ($\Delta\theta$) formed with coordinating atoms (C_i or C_j) and the metal from the expected values of 90° or 180° as well as the maximum overall difference between metal-coordinating atom bond lengths over all ligands and specifically in the equatorial (eq.) plane. Ligand distortion metrics include the maximum root mean square deviation (RMSD) of any atom from the starting structure. For ligands that are expected to be linear, additional checks are applied on the deviation of the angle formed by the metal and the first two atoms of the ligand (A, B) from 180°. Tightened checks for homoleptic TMCs are indicated for max(Δd) with a special threshold for singlet states due to our expectation of higher symmetry for these structures.

Geometric criteria												
	Coordina	tion number										
	6	6)										
	First coordination shell											
$mean(\Delta\theta (C_i-M-C_i))$	$mean(\Delta \theta (C_i-M-C_j)) max(\Delta \theta (C_i-M-C_j)) max(\Delta d) max(\Delta d_{eq})$											
12° (16°)	22.5° (27.0°)	1.00 Å (1.25 Å)	0.35 Å (0.45 Å)									
		homoleptic:										
		0.4 Å (0.2 Å for singlets)										
	Ligand dist	ortion metrics										
max(R	MSD)	mean(∆ <i>θ</i> (M-A-B))	$max(\Delta\theta (M-A-B))$									
0.30 Å (0.40 Å)	20° (30°)	28° (40°)									
Electronic criteria												
Metal	spin	1.0 µ	۲B									
	0											
Deviatior	n of <i><s< i="">²></s<></i>	1.0 µ	۲B									

Table S3. Number of 3*d* or 4*d* TMCs eliminated at each sequential filtering step along with how many are retained, and the cumulative total is listed as overall. The filtering steps were: i) convergence (completion, passing loose thresholds upon 5 24 hour job resubmissions), ii) geometry metrics, iii) deviations of $\langle S^2 \rangle$ from the expected value by more than 1 μ_B , and iv) deviations of metal spin of more than 1 μ_B . All calculations were started from converged $a_{HF} = 0.20$ (i.e., B3LYP results), and then subsequent calculations were attempted at up to a total of six either sequentially increasing (i.e., $a_{HF} = 0.25$ and 0.30) or decreasing (i.e., $a_{HF} = 0.15$, 0.10, 0.05, and 0.00) exchange fractions. If the initial B3LYP result did not converge, none of the subsequent calculations were attempted but failed in either direction, it was also abandoned. This procedure refers only to convergence failures of the geometry optimization or failing loose geometry checks during resubmissions (i.e., step i). All points were checked for steps ii-iv at the end, and failure of one data point to pass the criteria in ii, iii, or iv does not mean that other HF exchange fractions would necessarily be affected.

		3d TMCs		4 <i>d</i> TMCs Eliminated at step 357 2,227 320 866	
Check Performed	Retained	Eliminated at step	Retained	Eliminated at step	
Start	26,877		19,100		
Converged	26,326	531	18,743	357	
Geometry	23,813	2,513	16,516	2,227	
< <i>S</i> ² >	22,881	932	16,196	320	
Metal spin	21,699	1,182	15,330	866	
Overall	21,699	5,178	15,330	3,770	

Table S4. Summary of computed sensitivities: all S(3d) or S(4d) results that were obtained ("results") along with those that were eliminated for having fewer than 4 points or due to the inability to eliminate slope changes between two points. All lines were retained regardless of R^2 values, but any points where LOOCV errors for a point were 5 kcal/mol or higher were eliminated. The cases for which R^2 was below 0.99 are indicated in the $R^2 < 0.99$ subset. The retained results after these filtering steps for both 3d and 4d TMCs are shown along with the number of matched-ligand pairs that can be generated by identifying metals in the same oxidation/spin states but different principal quantum numbers. These numbers are generally limited by the smaller size of the 4d TMC set. Specifics of the filtering procedure: we required that at least four of seven points converged and passed data fidelity checks. We then carried out leave one out cross validation (LOOCV) of the linear fit relationship of $a_{\rm HF}$ with the relevant property (e.g., ΔE_{H-L}). Individual points with LOOCV errors greater than 5 kcal/mol were removed along with any points that, upon removal, would increase the R^2 value of the remaining points to above 0.99. If at least four points remained after this first step, the slope was evaluated between each adjacent pair of points, and these slopes were compared for changes in sign as an indication of discontinuous points that had passed the LOOCV check. If the pair of points that changed the sign of the slope included one on the two extrema (i.e., lowest $a_{\rm HF}$ or highest $a_{\rm HF}$ value), they were removed. For any cases that had at least four points after these two filtering steps, a best-fit line and R^2 value was computed on the remaining points. The majority (> 90%) of points after these steps had R^2 values of 0.99 or higher. To ensure fair comparison of properties of 3d and 4d TMCs, sets formed from matching pairs of ligand fields, oxidation states, and electron configurations across 3d and 4d metals were obtained. The size of this final data set was primarily limited by the smaller size of the valid 4d TMC dataset.

			3d TMC	Cs			4d TMCs				
Property	results< 4					results	< 4 pts.	slope sign	retain	<i>R</i> ² < 0.99 subset	pairs
$\Delta E_{\text{H-L}}$	703	101	2	600	15	399	113	2	284	10	239
$\Delta E_{\text{I-L}}$	1,072	80	35	957	152	850	180	25	645	91	488
$\Delta E_{\text{H-I}}$	676	98	4	574	37	361	101	5	255	10	209

ununu													
			3d 18	S-LS/	HS-L		4d 18	S-LS/	HS-L	S			
	Pairs	std.	min.	range	avg.	std.	min.	max.	range				
Cr(II)	11	0.24	0.03	0.20	0.33	0.13	0.36	0.06	0.29	0.48	0.19		
Fe(II)	35	0.38	0.07	0.21	0.50	0.29	0.33	0.09	0.12	0.48	0.36		
Fe(III)	30	0.42	0.06	0.27	0.51	0.24	0.31	0.11	0.10	0.56	0.47		
Mn(II)	36	0.41	0.06	0.28	0.52	0.24	0.38	0.08	0.21	0.72	0.51		
Mn(III)	42	0.37	0.05	0.25	0.58	0.33	0.48	0.09	0.31	0.69	0.38		
Overall	154	0.38	0.07	0.20	0.58	0.39	0.38	0.11	0.10	0.72	0.62		
		÷	3d H	S-IS/	'HS-L	S		4d H	S-IS/	'HS-L	S		
		avg.	std.	min.	max.	range	avg.	std.	min.	max.	range		
Cr(II)	11	0.76	0.04	0.67	0.83	0.17	0.65	0.07	0.52	0.76	0.23		
Fe(II)	35	0.64	0.07	0.52	0.79	0.27	0.67	0.09	0.52	0.86	0.34		
Fe(III)	30	0.59	0.07	0.50	0.82	0.32	0.69	0.09	0.53	0.90	0.38		
Mn(II)	36	0.59	0.10	0.47	1.09	0.62	0.63	0.08	0.46	0.87	0.42		
Mn(III)	42	0.63	0.05	0.45	0.74	0.29	0.53	0.10	0.35	0.81	0.45		
Overall	154	0.62	0.09	0.45	1.09	0.63	0.62	0.11	0.35	0.90	0.55		

Table S5. The ratio of S for ΔE_{I-L} to ΔE_{H-L} or ΔE_{H-L} for 3d and 4d TMCs for all 154 TMCs for which all 3 quantities are available, and all sensitivities are negative. The average, standard deviation, minimum, maximum, and range for each ratio is reported.

Table S6. Summary of sensitivities (in kcal/mol[·]HFX) for pairs of 3*d* and 4*d* TMCs grouped by metal and oxidation state. The total number of 3d/4d pairs is indicated along with the average, standard deviation, minimum, maximum, and range for the 3*d* or 4*d* TMC subsets. A best-fit line for the relationship between the sensitivities and the associated R^2 value are also shown.

							<i>S</i> (∆ <i>E</i> _{H-I})						
				3d					4d			S(4d) =	mS(3d)	+ C
	Pairs	avg.	std.	min.	max.	range	avg.	std.	min.	max.	range	m	С	\mathbf{R}^2
Cr(II)	16	-72.2	22.4	-120.1	-33.4	86.7	-45.2	21.9	-74.6	23.2	97.8	0.55	-5.11	0.32
Mn(III)	51	-73.1	18.1	-134.6	-37.2	97.4	-48.5	13.3	-89.3	-27.5	61.9	0.55	-8.24	0.56
Mn(II)	72	-118.9	31.3	-187.1	-62.2	124.8	-76.6	20.9	-137.9	-40.1	97.8	0.53	-13.96	0.63
Fe(III)	36	-80.6	17.0	-120.5	-53.7	66.9	-42.2	19.5	-75.2	45.3	120.5	0.88	28.67	0.59
Fe(II)	64	-110.4	31.6	-175.2	-37.4	137.7	-62.8	16.2	-95.6	-33.5	62.0	0.41	-17.17	0.65
Overall	239	-97.9	33.2	-187.1	-33.4	153.7	-59.6	22.5	-137.9	45.3	183.2	0.55	-5.63	0.67
							<i>S</i> (∆ <i>E</i> _{H-})						
			-	3d					4d			S(4d) =	mS(3d)	+ C
	Pairs avg. std. min. max. range							std.	min.	max.	range	m	С	R ²
Cr(II)	12	-55.9	13.7	-77.0	-21.5	55.5	-26.7	18.8	-41.4	32.6	74.0	1.13	36.71	0.68
Mn(III)	84	-52.4	15.8	-99.4	-24.2	75.2	-28.7	12.5	-71.1	-12.3	58.8	0.59	2.16	0.55
Mn(II)	38	-68.1	15.1	-110.1	-41.6	68.5	-51.5	15.7	-97.1	-27.6	69.5	0.55	-14.37	0.27
Fe(III)	31	-46.1	7.6	-64.2	-34.4	29.8	-29.4	8.3	-50.0	-15.5	34.5	0.78	6.28	0.50
Fe(II)	44	-73.6	23.1	-157.6	-39.7	117.9	-44.1	15.2	-97.5	-24.6	72.9	0.54	-4.48	0.67
Overall	209	-59.0	19.4	-157.6	-21.5	136.1	-36.1	16.6	-97.5	32.6	130.1	0.65	2.36	0.58
							<i>S</i> (∆ <i>E</i> _{I-L})						
				3d				1	4d			S(4d) =	+ C	
	Pairs	avg.	std.	min.	max.	range	avg.	std.	min.	max.	range	m	С	R⁴
Cr(III)	46	-25.2	11.9	-59.8	-6.7	53.1	-20.8	7.4	-41.5	-9.1	32.4	0.42	-10.14	0.46
Cr(II)	88	-18.9	11.8	-63.7	13.7	77.4	-15.5	10.1	-38.7	17.3	56.0	0.16	-12.46	0.04
Mn(III)	77	-31.1	13.3	-81.8	-14.7	67.2	-26.1	17.0	-142.9	-13.6	129.3	0.21	-19.56	0.03
Mn(II)	43	-47.7	20.4	-88.0	-18.2	69.8	-25.5	17.0	-85.1	-3.8	81.3	0.53	-0.14	0.40
Fe(III)	80	-43.5	19.8	-140.7	-18.6	122.1	-15.2	12.6	-73.3	49.7	123.0	0.27	-3.24	0.18
Fe(II)	52	-39.7	23.0	-98.4	17.3	115.6	-18.4	13.3	-42.6	29.5	72.1	0.18	-11.21	0.10
Co(III)	55	-29.5	16.4	-115.5	-4.5	111.0	7.1	8.8	-16.8	36.8	53.6	0.06	8.86	0.01
Co(II)	47	-63.3	24.8	-100.0	-13.2	86.7	-25.1	20.9	-51.4	46.4	97.8	0.64	15.13	0.57
Overall	488	-36.3	22.0	-140.7	17.3	158.0	-18.6	16.3	-142.9	49.7	192.6	0.28	-8.46	0.14

	4e HS-LS													
3 <i>d</i>	4 <i>d</i>	L ₁	L ₂	symmetry	<i>S</i> (3 <i>d</i>)	<i>R</i> ²	<i>S</i> (4 <i>d</i>)	R^2	S(3d)-S(4d)					
Fe(II)	Ru(II)	NH₃	H ₂ O	trans	-37.4	1.00	-38.0	1.00	0.6					
Mn(II)	Tc(II)	NCCH₃	со	5+1	-136.7	1.00	-137.9	0.99	1.2					
Mn(II)	Tc(II)	NCCH₃	CNCH₃	trans	-114.5	0.99	-118.4	0.97	4.0					
Mn(III)	Tc(III)	F ⁻		homoleptic	-37.2	1.00	-50.6	0.99	13.5					
Cr(II)	Mo(II)	F ⁻		homoleptic	-33.4	0.91	-68.6	0.97	35.3					
		-		2e HS-	IS	-		-						
3 <i>d</i>	4 <i>d</i>	L ₁	L ₂	symmetry	<i>S</i> (3 <i>d</i>)	<i>R</i> ²	<i>S</i> (4 <i>d</i>)	R^2	S(3 <i>d</i>)-S(4 <i>d</i>)					
Mn(II)	Tc(II)	со	H ₂ O	trans	-57.2	0.97	-76.2	0.99	19.0					
Mn(II)	Tc(II)	NCCH₃	H ₂ O	trans	-51.7	1.00	-97.1	0.96	45.5					
				2e IS-I	S									
3 <i>d</i>	4 <i>d</i>	L ₁	L_2	symmetry	<i>S</i> (3 <i>d</i>)	R ²	<i>S</i> (4 <i>d</i>)	R^2	S(3 <i>d</i>)-S(4 <i>d</i>)					
Mn(III)	Tc(III)	H₂S	F ⁻	5+1	-20.2	1.00	-35.7	0.98	15.5					
Fe(II)	Ru(II)	NH₃	CN ⁻	trans	3.9	0.98	-13.0	1.00	16.9					
Cr(II)	Mo(II)	NH₃	H₂S	cis	-2.8	1.00	-20.3	1.00	17.5					
Cr(II)	Mo(II)	NH₃	CNCH₃	cis	-12.7	0.98	-32.9	0.90	20.2					
Cr(II)	Mo(II)	NH₃	со	trans	13.7	1.00	-13.8	1.00	27.5					
Cr(II)	Mo(II)	NH₃		homoleptic	-6.4	1.00	-34.1	0.83	27.6					
Mn(II)	Tc(II)	NCCH₃	CNCH₃	trans	-49.3	0.97	-85.1	0.93	35.8					
Mn(III)	Tc(III)	Cl	NCCH₃	5+1	-24.7	0.99	-63.3	0.93	38.6					
Mn(III)	Tc(III)	Cl	PH₃	5+1	-24.4	1.00	-67.3	0.92	42.9					
Mn(III)	Tc(III)	Cl	CNCH₃	5+1	-31.3	0.99	-77.5	0.95	46.2					
Fe(II)	Ru(II)	F ⁻	CN	trans	17.3	0.96	-37.6	1.00	54.9					
Mn(III)	Tc(III)	CI	NCCH ₃	trans	-34.6	0.99	-142.9	0.82	108.3					

Table S7. Outliers where the S(4d) value exceeds the S(3d) value, both shown in kcal/mol¹HFX. The R^2 value for each sensitivity determination and the difference between the first-row and second-row sensitivity are shown grouped by the type of spin splitting.

Table S8. Outliers where the S(4d) or S(3d) value is positive (both shown in kcal/mol⁺HFX) for 4-electron $\Delta E_{\text{H-L}}$ and 2-electron $\Delta E_{\text{H-I}}$. The R^2 value for each sensitivity determination and the difference between the first-row and second-row exchange sensitivity are shown grouped by the type of spin splitting.

	4e HS-LS												
$3d$ $4d$ L_1 L_2 symmetry $S(3d)R^2$ $S(4d)R^2$ $S(3d)-S(4d)$													
Cr(II)	Mo(II)	NH ₃	Cl	cis	-34.0	1.00	23.2	1.00	-57.2				
Fe(III)	Ru(III)	F ⁻		homoleptic	-56.9	1.00	45.3	1.00	-102.2				
				2e	IS-IS								
$3d$ $4d$ L_1 L_2 symmetry $S(3d)R^2$ $S(4d)R^2$ $S(3d)-S(4d)$													
Cr(II)	Mo(II)	NH₃	CI	cis	-21.5	1.00	32.6	1.00	-54.1				

a	le sn	own.	Omy	the bu	Suom un	ee ca	ises	are	S(3)	(x) > 0, the
	3 <i>d</i>	4 <i>d</i>	L1	L ₂	symmetry	<i>S</i> (3 <i>d</i>)	Ŕ	<i>S</i> (4 <i>d</i>)	<i>R</i> ²	S(3d)-S(4d)
	Co(III)	Rh(III)	NCCH ₃	NH₃	5+1	-21.1	1.00	19.2	0.84	-40.3
	Co(III)	Rh(III)	NCCH ₃	CO	5+1	-37.9	0.93	14.0	0.95	-51.9
	Co(III)	Rh(III)	NCCH₃	CN	5+1	-35.1	1.00	3.1	0.97	-38.2
	Co(III)	Rh(III)	NCCH ₃	H₂O	5+1	-18.3	0.99	7.7	0.91	-26.1
	Co(III)	Rh(III)	NH₃	F [.]	5+1	-18.1	1.00	3.3	0.97	-21.4
	Co(III)	Rh(III)	CNCH₃	CN	5+1	-36.7	1.00	4.6	0.87	-41.3
	Co(III)	Rh(III)	CNCH ₃	F [.]	5+1	-32.4	1.00	5.3	0.99	-37.7
	Co(III)	Rh(III)	H₂O	NCCH ₃	5+1	-13.8	0.99	6.4	0.97	-20.1
	Co(III)	Rh(III)	H₂O	NH₃	5+1	-20.1	0.99	8.9	0.96	-28.9
	Co(III)	Rh(III)	H₂O	CO	5+1	-7.9	0.97	11.7	0.98	-19.6
	Co(III)	Rh(III)	H₂O	CN	5+1	-34.1	1.00	6.7	0.99	-40.8
	Co(III)	Rh(III)	H₂O	F ⁻	5+1	-12.2	0.99	6.2	1.00	-18.5
	Co(III)	Rh(III)	NH₃	NCCH ₃	cis	-24.2	1.00	6.6	0.99	-30.8
	Co(III)	Rh(III)	CNCH₃	NCCH₃	cis	-36.5	1.00	11.8	0.96	-48.3
	Co(III)	Rh(III)	H₂O	NCCH₃	cis	-14.5	0.99	7.5	0.94	-21.9
	Co(III)	Rh(III)	H₂O	NH₃	cis	-23.6	1.00	7.4	0.93	-31.0
	Co(III)	Rh(III)	H₂S	Cl	cis	-115.5	1.00	6.2	1.00	-121.7
	Co(III)	Rh(III)	NH₃	CN	cis	-33.2	1.00	7.7	0.91	-40.9
	Co(III)	Rh(III)	NH₃	F [.]	cis	-19.1	0.99	6.1	0.98	-25.2
	Co(III)	Rh(III)	H₂O	F [.]	cis	-20.5	1.00	4.9	0.99	-25.4
	Co(III)	Rh(III)	NCCH₃	CNCH₃	cis	-27.4	0.99	12.5	0.96	-39.9
	Co(III)	Rh(III)	H₂O		cis	-26.2	1.00	8.2	0.90	-34.4
	Co(II)	Rh(II)	F ⁻		homoleptic	-59.0	1.00	46.4	1.00	-105.4
	Co(III)	Rh(III)	H₂O		homoleptic	-4.5	0.92	5.9	0.89	-10.3
	Fe(II)	Ru(II)	CN ⁻		homoleptic	13.5	0.91	17.3	1.00	-3.8
	Co(III)	Rh(III)	NCCH ₃	Cl	trans	-19.1	0.89	5.8	1.00	-24.9
	Co(III)	Rh(III)		CN ⁻	trans	-28.2	0.96	9.8	1.00	-38.1
	Co(III)	Rh(III)		CNCH ₃	trans	-26.9	1.00	36.8	0.80	-63.7
	Co(III)	Rh(III)	NH ₃		trans	-13.1	0.97	9.3	1.00	-22.4
	Co(III)	Rh(III)	NH ₃	CN	trans	-27.0	1.00	15.1	0.99	-42.1
	Co(III)	Rh(III)	NH ₃	F [.]	trans	-9.3	0.99	3.7	0.99	-13.0
	Co(III)	Rh(III)	NH3	H₂O	trans	-26.8	1.00	6.4	0.96	-33.2
	Co(III)	Rh(III)	co		trans	-31.9	1.00	5.5	1.00	-37.4
	Co(III)	Rh(III)	СО		trans	-22.6	0.93	22.5	0.99	-45.1
	Co(III)	Rh(III)	CI		trans	-41.9	0.94	16.2	0.98	-58.1
	Co(III)	Rh(III)	CI	PH₂	trans	-38.8	0.98	12.1	0.98	-50.9
	Co(III)	Rh(III)	CN	NH₃	trans	-37.9	0.96	9.5	0.94	-47.4
	Co(III)	Rh(III)		F ⁻	trans	-28.9	0.87	13.4	0.97	-42.3
	Co(III)	Rh(III)		PH₃	trans	-44.2	1.00	19.5	0.98	-63.6
	Co(III)	Rh(III)	H₂S	CI	trans	-25.4	0.96	10.5	1.00	-35.9
	Co(III)	Rh(III)	H₂S	CN	trans	-32.2	0.99	12.1	1.00	-44.3
		Bh(III)		CO	trans	-54.2	1 00	14.4	0.98	-68.7
		Rh(III)			trans	-37.8	0.99	81	0.98	-45.9
		Rh(III)			trans	-52.9	0.91	9.8	0.90	-62.7
		Rh(III)	PH ₂		trans	-25.0	0.98	15.9	0.99	-40.9
		Rh(III)	H ₂ O	0	trans	-9.3	0.00	17.3	0.00	-26.6
		Rh(III)	H ₂ O		trans	-21.4	1 00	30	0.00	-25.3
	55(II) Fe(II)	Bu(II)			trans	-44 4	1.00 AP N	20.5	1 00	-74 0
		Bu(II)	F.	CO	trans	-44.4	1 00	29.0	1.00	-74.0
	Fo(II)	Bu(II)	CNCH	CI	trans	-13.0	1.00	10.0	0.00	-20.1
		Bu(III)			trans	-28.6	1.00	40.7	1 00	-78.2
	Fe(II)	Bu(II)	NH2		trans	20.0	0.00	-13.0	1.00	16.0
	Cr(II)		NH _c	CO	trans	127	1 00	-12.0	1 00	0.9 07 5
		Bu(II)	F-		trans	17.2	1.00	-37.6	1.00	54.0
	1 C (II)	(וו)טריו	1		uano	17.3	0.90	-07.0	00.1	54.9

Table S9. Outliers where the S(4d) or S(3d) value is positive (both shown in kcal/mol HFX) for 2-electron ΔE_{1-L} . The R^2 value for each sensitivity determination and the sensitivity difference are shown. Only the bottom three cases are S(3d) > 0, the rest are S(4d) > 0.

Table S10. Adiabatic spin-splitting energies, $\Delta E_{\text{H-L}}$, for the 4-electron difference HS-to-LS energies in kcal/mol for 3*d* TMCs containing CO and H₂O ligands with varied a_{HF} values as indicated in the table alongside the computed sensitivity and the R^2 value from a linear fit. Values in italics have been averaged between neighboring points or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

							$a_{\rm HF}$					
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R^2	S
Cr(II)	6	0	homoleptic	2.0	-5.5	-11.7	-19.9	-28.2	-36.4	-41.2	1.00	-148.7
Cr(II)	5	1	5+1	-0.8	-7.4	-13.6	-19.4	-24.7	-29.6	-34.0	1.00	-110.5
Cr(II)	4	2	trans	-1.2	-7.8	-14.0	-18.1	-23.4	-28.2	-34.0	1.00	-106.0
Cr(II)	2	4	cis	-14.0	-19.9	-25.4	-30.5	-35.1	-39.2	-42.9	0.99	-96.3
Cr(II)	2	4	trans	-12.0	-18.8	-25.1	-31.0	-36.2	-40.8	-44.7	0.99	-109.5
Cr(II)	1	5	5+1	-22.9	-28.5	-33.6	-38.2	-42.2	-45.8	-48.9	0.99	-86.4
Cr(II)	0	6	homoleptic	-43.7	-45.6	-47.4	-49.1	-50.8	-52.5	-54.1	1.00	-34.4
Mn(III)	6	0	homoleptic	-16.1	-19.9	-24.4	-28.5	-32.3	-35.8	-39.1	1.00	-76.6
Mn(III)	5	1	5+1	-9.2	-13.5	-18.5	-23.1	-27.4	-31.3	-35.0	1.00	-86.1
Mn(III)	4	2	trans	-6.6	-11.6	-16.3	-20.8	-24.9	-28.8	-32.5	1.00	-86.1
Mn(III)	2	4	cis	-19.8	-24.6	-28.9	-32.9	-36.6	-40.0	-43.2	0.99	-77.7
Mn(III)	2	4	trans	-18.0	-23.1	-27.6	-31.7	-35.5	-39.0	-42.3	0.99	-80.3
Mn(III)	1	5	5+1	-26.2	-30.3	-34.0	-37.4	-40.7	-43.7	-46.6	1.00	-67.6
Mn(III)	0	6	homoleptic	-32.9	-35.3	-38.0	-40.7	-43.3	-45.8	-48.2	1.00	-51.5
Mn(II)	6	0	homoleptic	29.5	19.7	10.5	1.7	-6.6	-14.3	-21.4	1.00	-169.9
Mn(II)	5	1	5+1	20.7	11.1	2.0	-6.5	-14.3	-21.5	-28.1	1.00	-163.0
Mn(II)	4	2	trans	10.8	2.2	-5.9	-13.4	-20.9	-27.5	-34.6	1.00	-150.3
Mn(II)	2	4	cis	-4.0	-12.2	-19.7	-26.7	-33.0	-38.7	-43.7	0.99	-132.4
Mn(II)	2	4	trans	-7.5	-15.3	-22.6	-29.3	-35.4	-40.6	-45.3	0.99	-126.3
Mn(II)	1	5	5+1	-16.1	-23.1	-29.5	-35.4	-40.7	-45.4	-49.5	0.99	-111.4
Mn(II)	0	6	homoleptic	-36.1	-39.7	-43.0	-46.3	-49.1	-51.8	-54.9	1.00	-62.7
Fe(III)	6	0	homoleptic	43.4	37.2	29.5	23.7	18.1	12.6	7.3	1.00	-120.5
Fe(III)	5	1	5+1	33.8	28.5	22.8	17.4	12.2	7.1	2.0	1.00	-105.7
Fe(III)	4	2	trans	24.0	19.5	14.7	10.1	5.6	1.2	-3.2	1.00	-90.5
Fe(III)	2	4	cis	3.0	-0.8	-4.9	-8.8	-12.6	-16.4	-20.2	1.00	-77.1
Fe(III)	2	4	trans	1.0	-3.0	-6.8	-10.3	-13.9	-17.4	-20.9	1.00	-72.3
Fe(III)	1	5	5+1	-6.9	-10.4	-13.8	-17.0	-20.3	-23.5	-26.8	1.00	-66.1
Fe(III)	0	6	homoleptic	-15.5	-18.0	-20.6	-23.2	-25.9	-28.7	-31.6	1.00	-53.7
Fe(II)	6	0	homoleptic	64.8	57.1	47.9	38.9	30.3	22.2	14.6	1.00	-170.0
Fe(II)	5	1	5+1	49.2	39.8	31.0	22.6	14.7	7.3	0.5	1.00	-162.5
Fe(II)	4	2	trans	30.1	26.4	18.5	12.8	2.7	-3.3	-8.0	0.99	-135.2
Fe(II)	2	4	cis	17.2	9.5	2.4	-4.3	-10.4	-15.8	-20.7	0.99	-126.5
Fe(II)	2	4	trans	2.9	-3.3	-9.0	-14.3	-19.1	-23.5	-27.4	0.99	-101.3
Fe(II)	1	5	5+1	2.3	-3.7	-9.4	-14.6	-19.4	-23.7	-27.6	0.99	-99.5
Fe(II)	0	6	homoleptic	-15.1	-18.1	-21.1	-23.9	-26.6	-28.6	-31.1	1.00	-53.4
Co(III)	0	6	homoleptic	5.2	4.3	3.3	2.3	1.1	0.9	-0.9	0.92	-19.6

Table S11. Adiabatic spin-splitting energies, $\Delta E_{\text{H-L}}$, for the 4-electron difference HS-to-LS energies in kcal/mol for 4*d* TMCs containing CO and H₂O ligands with varied a_{HF} values as indicated in the table alongside the computed sensitivity and the R^2 value from a linear fit. Values in italics have been averaged between neighboring points or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

							$a_{\rm HF}$					
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R^2	S
Mo(II)	4	2	trans	50.0	47.6	44.8	42.0	39.2	36.5	33.8	1.00	-54.5
Tc(III)	4	2	trans	44.1	40.7	37.3	34.0	30.9	27.8	24.9	1.00	-64.0
Tc(III)	2	4	cis	34.7	31.3	28.1	24.9	19.4	16.4	12.7	0.99	-74.5
Tc(III)	2	4	trans	41.3	37.5	33.8	30.2	26.8	23.6	20.4	1.00	-69.6
Tc(III)	1	5	5+1	29.3	26.5	23.7	20.9	18.1	15.4	12.7	1.00	-55.4
Tc(III)	0	6	homoleptic	4.4	2.7	1.0	-0.7	-2.5	-4.2	-5.1	1.00	-32.8
Tc(II)	6	0	homoleptic	106.6	100.8	95.1	88.4	83.1	78.0	73.0	1.00	-113.3
Tc(II)	4	2	trans	88.1	82.7	77.4	72.3	68.5	62.6	58.0	1.00	-99.7
Tc(II)	2	4	cis	70.4	65.3	60.2	55.2	50.5	45.8	41.4	1.00	-97.0
Tc(II)	2	4	trans	67.3	62.4	57.7	53.1	48.7	44.5	40.4	1.00	-89.6
Tc(II)	1	5	5+1	52.9	48.5	44.2	40.0	36.0	32.0	28.5	1.00	-81.7
Tc(II)	0	6	homoleptic	11.9	9.7	7.5	5.3	3.2	1.2	-0.8	1.00	-42.4
Ru(III)	6	0	homoleptic	108.2	104.4	100.7	96.2	91.8	90.1	86.7	0.99	-72.7
Ru(III)	4	2	trans	88.2	85.5	82.7	79.9	77.1	74.4	71.6	1.00	-55.3
Ru(III)	2	4	cis	64.5	62.1	59.6	57.2	54.7	52.3	49.8	1.00	-48.8
Ru(III)	2	4	trans	66.0	63.7	61.5	59.2	57.0	54.7	52.4	1.00	-45.5
Ru(III)	1	5	5+1	52.3	50.3	48.3	46.4	44.4	42.3	40.2	1.00	-40.3
Ru(III)	0	6	homoleptic	32.6	31.5	30.5	29.6	28.7	27.5	26.3	0.99	-21.2
Ru(II)	6	0	homoleptic	135.3	130.5	125.7	120.9	116.2	111.6	107.0	1.00	-94.5
Ru(II)	4	2	trans	94.1	90.1	86.3	82.3	78.2	74.2	70.4	1.00	-79.5
Ru(II)	2	4	cis	81.7	77.8	73.6	69.3	65.1	60.9	56.8	1.00	-83.7
Ru(II)	2	4	trans	61.2	58.0	54.8	51.4	48.0	44.7	41.5	1.00	-65.9
Ru(II)	1	5	5+1	59.2	56.1	52.8	49.4	46.0	42.6	39.3	1.00	-67.0
Ru(II)	0	6	homoleptic	30.0	28.2	26.2	24.3	22.4	20.4	18.5	1.00	-38.4

, and	Compos	Sheron or en	0 00111	
n CO	6-n H₂O	sym.	<i>S</i> (3 <i>d</i>)	<i>S</i> (4 <i>d</i>)
4	2	trans	-106.0	-54.5
4	2	trans	-86.1	-64.0
2	4	cis	-77.7	-74.5
2	4	trans	-80.3	-69.6
1	5	5+1	-67.6	-55.4
0	6	homoleptic	-51.5	-32.8
6	0	homoleptic	-169.9	-113.3
4	2	trans	-150.3	-99.7
2	4	cis	-132.4	-97.0
2	4	trans	-126.3	-89.6
1	5	5+1	-111.4	-81.7
0	6	homoleptic	-62.7	-42.4
6	0	homoleptic	-120.5	-72.7
4	2	trans	-90.5	-55.3
2	4	cis	-77.1	-48.8
2	4	trans	-72.3	-45.5
1	5	5+1	-66.1	-40.3
0	6	homoleptic	-53.7	-21.2
6	0	homoleptic	-170.0	-94.5
4	2	trans	-135.2	-79.5
2	4	cis	-126.5	-83.7
2	4	trans	-101.3	-65.9
1	5	5+1	-99.5	-67.0
0	6	homoleptic	-53.4	-38.4
	n CO 4 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 4 2 2 1 0 6 6 4 2 2 1 0 0 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n CO 6-n H ₂ O sym. 4 2 trans 2 4 cis 1 5 5+1 0 6 homoleptic 4 2 trans 2 4 cis 2 4 cis	n CO 6-n H ₂ O sym. $S(3d)$ 4 2 trans -106.0 4 2 trans -86.1 2 4 cis -77.7 2 4 trans -80.3 1 5 5+1 -67.6 0 6 homoleptic -51.5 6 0 homoleptic -169.9 4 2 trans -150.3 2 4 cis -132.4 2 4 cis -132.4 2 4 cis -132.4 2 4 trans -126.3 1 5 5+1 -111.4 0 6 homoleptic -62.7 6 0 homoleptic -120.5 4 2 trans -90.5 2 4 cis -77.1 2 4 trans -72.3 1 5 5+1 -66.1 0 6 homoleptic -53.7 6 0 homoleptic -170.0 4 2 trans -126.5 2 4 cis -126.5 2 4 cis -126.

Table S12. Sensitivities, *S*, in kcal/mol[·]HFX, for $\Delta E_{\text{H-L}}$ 4-electron difference adiabatic spinsplitting energies computed among pairs of 3*d* and 4*d* TMCs containing CO and H₂O ligands. The symmetry and composition of the complex is indicated in the table.

Table S13. Adiabatic spin-splitting energies, $\Delta E_{\text{H-I}}$, for the 2-electron difference HS-to-IS energies in kcal/mol for 3*d* TMCs containing CO and H₂O ligands with varied a_{HF} values as indicated in the table alongside the computed sensitivity and the R^2 value from a linear fit. Values in italics have been averaged between neighboring points or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

							$a_{\rm HF}$					
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R^2	S
Cr(II)	6	0	homoleptic	21.8	17.8	13.1	8.8	4.7	0.9	-2.7	1.00	-81.7
Cr(II)	5	1	5+1	18.3	13.7	9.2	5.1	1.1	-2.5	-5.9	1.00	-80.9
Cr(II)	4	2	trans	17.2	12.5	8.1	5.5	1.6	-2.1	-6.8	1.00	-77.0
Cr(II)	2	4	cis	7.5	3.2	-0.8	-4.5	-8.0	-11.1	-14.0	1.00	-71.8
Cr(II)	2	4	trans	3.1	-1.0	-4.7	-8.1	-11.2	-14.0	-16.5	0.99	-65.1
Cr(II)	1	5	5+1	-0.9	-4.6	-8.0	-11.2	-14.1	-16.7	-19.1	0.99	-60.8
Cr(II)	0	6	homoleptic	-15.1	-16.5	-17.8	-19.1	-20.4	-21.7	-22.9	1.00	-26.1
Mn(III)	6	0	homoleptic	17.0	13.5	10.1	7.0	4.1	1.4	-1.2	1.00	-60.6
Mn(III)	5	1	5+1	13.1	9.7	6.6	3.7	0.9	-1.7	-4.2	1.00	-57.5
Mn(III)	4	2	trans	11.5	8.4	5.4	2.6	0.0	-2.6	-4.9	1.00	-54.8
Mn(III)	2	4	cis	0.8	-1.9	-4.4	-6.7	-8.8	-10.8	-12.7	1.00	-44.6
Mn(III)	2	4	trans	3.6	1.1	-1.3	-3.5	-5.7	-7.8	-9.8	1.00	-44.7
Mn(III)	1	5	5+1	-1.3	-3.6	-5.8	-7.8	-9.7	-11.5	-13.3	1.00	-39.7
Mn(III)	0	6	homoleptic	-7.6	-9.1	-10.9	-12.7	-14.5	-16.3	-18.0	1.00	-35.1
Mn(II)	5	1	5+1	-2.0	-7.6	-12.8	-17.6	-22.0	-26.1	-29.8	1.00	-92.6
Mn(II)	4	2	trans	-16.6	-20.8	-24.6	-28.1	-28.3	-31.3	-35.1	0.97	-57.2
Mn(II)	2	4	cis	-20.1	-24.2	-27.8	-31.1	-34.1	-36.8	-39.3	0.99	-63.5
Mn(II)	2	4	trans	-17.1	-21.6	-25.7	-29.4	-32.7	-35.7	-38.4	0.99	-70.7
Mn(II)	1	5	5+1	-21.0	-25.2	-28.9	-32.3	-35.3	-38.0	-40.5	0.99	-64.6
Mn(II)	0	6	homoleptic	-31.4	-33.8	-36.1	-38.3	-40.4	-42.4	-44.3	1.00	-42.9
Fe(III)	6	0	homoleptic	13.3	10.1	7.0	4.0	1.1	-1.7	-4.5	1.00	-59.0
Fe(III)	5	1	5+1	5.1	2.4	-0.3	-3.0	-5.6	-8.2	-11.0	1.00	-53.3
Fe(III)	4	2	trans	-1.8	-4.3	-6.8	-9.1	-13.6	-15.8	-16.0	0.92	-50.1
Fe(III)	2	4	cis	-6.8	-9.2	-11.7	-14.0	-16.4	-18.7	-21.1	1.00	-47.4
Fe(III)	2	4	trans	-3.3	-6.2	-8.9	-11.6	-14.1	-16.7	-19.2	1.00	-52.7
Fe(III)	1	5	5+1	-11.1	-13.5	-15.8	-18.0	-20.1	-22.3	-24.5	1.00	-44.4
Fe(III)	0	6	homoleptic	-19.4	-21.1	-22.8	-24.6	-26.3	-28.2	-30.0	1.00	-35.3
Fe(II)	6	0	homoleptic	15.0	11.5	6.6	1.8	-2.7	-6.9	-10.7	1.00	-87.9
Fe(II)	5	1	5+1	13.9	8.2	2.9	-2.1	-6.7	-10.9	-14.7	1.00	-95.4
Fe(II)	4	2	trans	15.2	10.4	4.7	1.2	-3.6	-8.1	-14.1	1.00	-94.9
Fe(II)	2	4	cis	-3.4	-7.1	-11.8	-16.0	-19.6	-22.8	-25.6	0.99	-73.7
Fe(II)	2	4	trans	-0.9	-5.6	-10.1	-14.3	-18.1	-21.6	-24.7	0.99	-79.6
Fe(II)	1	5	5+1	-3.3	-7.8	-12.1	-15.9	-19.5	-22.6	-25.5	0.99	-73.9
Fe(II)	0	6	homoleptic	-17.8	-19.7	-21.5	-23.1	-24.6	-26.0	-27.2	0.99	-31.3
Co(III)	0	6	homoleptic	-7.4	-8.3	-9.1	-10.0	-10.8	-11.7	-12.5	1.00	-16.8

Table S14. Adiabatic spin-splitting energies, $\Delta E_{\text{H-I}}$, for the 2-electron difference HS-to-IS energies in kcal/mol for 4*d* TMCs containing CO and H₂O ligands with varied a_{HF} values as indicated in the table alongside the computed sensitivity and the R^2 value from a linear fit. Values in italics have been averaged between neighboring points or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

					a _{HF}							
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R ²	S
Mo(II)	4	2	trans	53.9	52.8	51.1	49.4	47.8	46.1	44.5	1.00	-32.1
Tc(III)	6	0	homoleptic	49.8	48.1	46.4	44.5	42.8	41.1	39.4	1.00	-34.7
Tc(III)	4	2	trans	48.6	46.4	44.3	42.3	40.4	38.5	36.8	1.00	-39.4
Tc(III)	2	4	cis	35.1	33.1	31.2	29.4	27.6	26.0	24.4	1.00	-35.5
Tc(III)	1	5	5+1	30.2	29.0	27.8	26.6	25.4	24.2	23.0	1.00	-24.0
Tc(III)	0	6	homoleptic	19.1	18.6	18.0	17.4	16.8	16.1	15.4	1.00	-12.3
Tc(II)	4	2	trans	43.2	38.9	34.9	31.1	27.2	22.7	20.9	0.99	-76.2
Tc(II)	2	4	trans	25.7	22.2	18.9	15.8	12.8	10.1	7.5	1.00	-60.8
Ru(III)	4	2	trans	43.8	41.3	38.8	36.3	33.7	31.2	28.8	1.00	-50.0
Ru(III)	2	4	cis	22.1	20.6	19.2	17.7	16.2	14.7	13.3	1.00	-29.3
Ru(III)	2	4	trans	30.7	28.6	26.6	24.4	22.3	20.3	18.3	1.00	-41.2
Ru(III)	1	5	5+1	20.4	18.8	17.3	15.6	14.0	12.4	10.9	1.00	-31.6
Ru(III)	0	6	homoleptic	8.8	8.0	7.4	6.7	6.0	5.1	4.2	0.99	-15.5
Ru(II)	6	0	homoleptic	51.5	48.7	46.0	43.2	40.3	37.5	34.8	1.00	-55.6
Ru(II)	4	2	trans	52.2	48.8	45.3	41.7	38.2	34.9	31.7	1.00	-68.4
Ru(II)	2	4	trans	37.9	35.3	32.5	29.7	26.9	24.2	21.5	1.00	-55.0

Figure S1. S(3d) vs S(4d) for $\Delta E_{\text{H-I}}$ (in kcal/mol[·]HFX) of all TMCs with CO or H₂O ligands in both oxidation states, colored by element (Cr/Mo in gray, Mn/Tc in orange, or Fe/Ru in red) and with symbols corresponding to formal electron configuration (d^4 in triangles, d^5 in circles, and d^6 in squares). All hexa-aqua complexes are outlined in green, all hexa-carbonyl complexes are outlined in black, and the remaining symbols are outlined in dark gray. A dotted parity line is shown for reference.

		$S(\Delta E_{I})$	L)		
M(3d)/M(4d)	n CO	6-n H₂O	sym.	<i>S</i> (3d)	<i>S</i> (4d)
Cr(III)/Mo(III)	4	2	trans	-24.7	-24.7
Cr(III)/Mo(III)	2	4	trans	-22.1	-33.9
Cr(II)/Mo(II)	6	0	homoleptic	-63.7	-12.0
Cr(II)/Mo(II)	4	2	trans	-29.0	-22.4
Cr(II)/Mo(II)	2	4	cis	-26.2	-19.6
Cr(II)/Mo(II)	2	4	trans	-44.6	-29.1
Cr(II)/Mo(II)	1	5	5+1	-25.6	-22.4
Cr(II)/Mo(II)	0	6	homoleptic	-8.3	-9.1
Mn(III)/Tc(III)	4	2	trans	-31.3	-24.7
Mn(III)/Tc(III)	2	4	cis	-33.1	-27.0
Mn(III)/Tc(III)	1	5	5+1	-27.9	-31.3
Mn(III)/Tc(III)	0	6	homoleptic	-16.5	-22.5
Mn(II)/Tc(II)	2	4	trans	-55.6	-28.8
Fe(III)/Ru(III)	2	4	cis	-30.1	-18.5
Fe(III)/Ru(III)	4	2	trans	-19.6	-4.3
Fe(III)/Ru(III)	1	5	5+1	-21.6	-6.5
Fe(III)/Ru(III)	0	6	homoleptic	-18.4	-4.2
Fe(II)/Ru(II)	6	0	homoleptic	-82.1	-37.2
Fe(II)/Ru(II)	4	2	trans	-43.6	-9.7
Fe(II)/Ru(II)	2	4	trans	-21.7	-10.9
Co(III)/Rh(III)	6	0	homoleptic	-48.6	-16.8
Co(III)/Rh(III)	2	4	trans	-9.3	17.3
Co(III)/Rh(III)	1	5	5+1	-7.9	11.7
Co(III)/Rh(III)	0	6	homoleptic	-4.5	5.9
Co(II)/Rh(II)	4	2	trans	-95.4	-50.6
Co(II)/Rh(II)	2	4	trans	-69.9	-36.6
		$S(\Delta E_H)$	-1)		
Cr(II)/Mo(II)	4	2	trans	-77.0	-32.1
Mn(III)/Tc(III)	6	0	homoleptic	-60.6	-34.7
Mn(III)/Tc(III)	4	2	trans	-54.8	-39.4
Mn(III)/Tc(III)	2	4	cis	-44.6	-35.5
Mn(III)/Tc(III)	1	5	5+1	-39.7	-24.0
Mn(III)/Tc(III)	0	6	homoleptic	-35.1	-12.3
Mn(II)/Tc(II)	4	2	trans	-57.2	-76.2
Mn(II)/Tc(II)	2	4	trans	-70.7	-60.8
Fe(III)/Ru(III)	4	2	trans	-50.1	-50.0
Fe(III)/Ru(III)	2	4	cis	-47.4	-29.3
Fe(III)/Ru(III)	2	4	trans	-52.7	-41.2
Fe(III)/Ru(III)	1	5	5+1	-44.4	-31.6
Fe(III)/Ru(III)	0	6	homoleptic	-35.3	-15.5
Fe(II)/Ru(II)	6	0	homoleptic	-87.9	-55.6
Fe(II)/Ru(II)	4	2	trans	-94.9	-68.4
Fe(II)/Ru(II)	2	4	trans	-79.6	-55.0
/					

Table S15. Sensitivities, *S*, in kcal/mol⁺HFX for ΔE_{I-L} and ΔE_{H-I} 2-electron difference adiabatic spin-splitting energies computed among pairs of 3*d* and 4*d* TMCs containing CO and H₂O ligands. The symmetry and composition of the complex is indicated in the table.

Table S16. Adiabatic spin-splitting energies, ΔE_{1-L} , for the 2-electron difference IS-to-LS energies in kcal/mol for 3*d* TMCs containing CO and H₂O ligands with varied $a_{\rm HF}$ values as indicated in the table alongside the computed sensitivity, *S*, and the R^2 value from a linear fit. Values in italics have been averaged or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

							$a_{\rm HF}$					
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R ²	S
Cr(III)	2	4	trans	-19.5	-20.9	-22.2	-23.3	-24.3	-25.3	-26.2	0.99	-22.1
Cr(III)	4	2	trans	-18.1	-19.7	-21.1	-22.4	-23.5	-24.6	-25.5	0.99	-24.7
Cr(III)	5	1	5+1	-19.4	-20.8	-22.0	-23.1	-24.2	-25.2	-26.1	0.99	-22.2
Cr(II)	0	6	homoleptic	-28.7	-29.1	-29.5	-30.0	-30.4	-30.8	-31.2	1.00	-8.3
Cr(II)	1	5	5+1	-22.1	-23.9	-25.5	-26.9	-28.1	-29.0	-29.8	0.98	-25.6
Cr(II)	2	4	cis	-21.5	-23.2	-24.6	-26.0	-27.1	-28.1	-29.4	0.99	-26.2
Cr(II)	2	4	trans	-15.1	-17.8	-20.3	-22.8	-25.0	-26.8	-28.2	0.99	-44.6
Cr(II)	4	2	trans	-18.4	-20.3	-22.1	-23.5	-25.0	-26.1	-27.1	0.99	-29.0
Cr(II)	5	1	5+1	-19.7	-21.1	-22.9	-24.5	-25.8	-27.0	-28.1	0.99	-27.8
Cr(II)	6	0	homoleptic	-21.9	-23.2	-24.8	-34.6	-36.0	-37.3	-38.5	0.90	-63.7
Mn(III)	0	6	homoleptic	-25.3	-26.2	-27.1	-28.0	-28.8	-29.5	-30.2	1.00	-16.5
Mn(III)	1	5	5+1	-24.9	-26.7	-28.3	-29.7	-31.0	-32.2	-33.3	0.99	-27.9
Mn(III)	2	4	cis	-20.6	-22.7	-24.5	-26.2	-27.8	-29.2	-30.5	0.99	-33.1
Mn(III)	2	4	trans	-22.6	-24.2	-26.4	-28.2	-29.8	-31.2	-32.5	0.99	-32.7
Mn(III)	4	2	trans	-18.1	-20.0	-21.8	-23.4	-24.9	-26.3	-27.5	1.00	-31.3
Mn(III)	5	1	5+1	-21.7	-23.2	-25.1	-26.7	-28.2	-29.6	-30.8	0.99	-30.4
Mn(III)	6	0	homoleptic	-32.5	-33.4	-34.5	-35.6	-36.4	-37.2	-37.9	0.99	-17.8
Mn(II)	0	6	homoleptic	-4.7	-5.9	-6.9	-7.8	-8.7	-9.4	-10.3	0.99	-18.6
Mn(II)	1	5	5+1	4.9	2.1	-0.6	-3.1	-5.4	-7.4	-9.0	0.99	-46.8
Mn(II)	2	4	cis	16.1	12.0	8.1	4.4	1.1	-1.9	-4.5	0.99	-68.9
Mn(II)	2	4	trans	9.6	6.3	3.1	0.1	-2.7	-4.9	-6.9	0.99	-55.6
Mn(II)	4	2	trans	27.5	23.0	18.7	14.6	7.5	3.9	0.5	0.99	-93.1
Mn(II)	5	1	5+1	22.8	18.7	14.8	11.1	7.7	4.6	1.7	1.00	-70.4
Fe(III)	0	6	homoleptic	4.0	3.1	2.3	1.4	0.4	-0.6	-1.6	1.00	-18.4
Fe(III)	1	5	5+1	4.3	3.1	2.0	1.0	-0.1	-1.2	-2.3	1.00	-21.6
Fe(III)	2	4	cis	10.0	8.3	6.8	5.2	3.7	2.3	0.9	1.00	-30.1
Fe(III)	2	4	trans	4.3	3.2	2.2	1.2	0.3	-0.7	-1.7	1.00	-19.6
Fe(III)	5	1	5+1	29.3	26.1	23.1	20.4	17.8	15.3	13.0	1.00	-54.1
Fe(III)	6	0	homoleptic	30.1	27.1	22.5	19.7	16.9	14.3	11.8	0.99	-61.5
Fe(II)	0	6	homoleptic	2.8	1.6	0.4	-0.8	-2.0	-2.7	-3.9	1.00	-22.2
Fe(II)	1	5	5+1	5.6	4.1	2.7	1.3	0.1	-1.1	-2.1	1.00	-25.7
Fe(II)	2	4	cis	19.1	16.6	14.2	11.7	9.3	7.0	4.9	1.00	-47.8
Fe(II)	2	4	trans	3.8	2.4	1.1	0.0	-1.0	-1.9	-2.7	0.99	-21.7
Fe(II)	4	2	trans	18.1	15.9	13.7	11.6	9.4	7.2	5.0	1.00	-43.6
Fe(II)	5	1	5+1	35.3	31.6	28.1	24.7	21.3	18.2	15.1	1.00	-67.1
Fe(II)	6	0	homoleptic	49.9	45.6	41.3	37.1	33.0	29.1	25.3	1.00	-82.1
Co(III)	0	6	homoleptic	12.8	12.7	12.5	12.3	11.9	11.7	11.4	0.92	-4.5
Co(III)	1	5	5+1	12.0	11.8	11.5	11.2	10.7	10.2	9.7	0.97	-7.9
Co(III)	2	4	trans	11.8	11.6	11.4	10.9	10.4	9.8	9.1	0.96	-9.3
Co(III)	5	1	5+1	39.6	37.5	35.3	33.1	30.9	28.8	26.7	1.00	-43.1
Co(III)	6	0	homoleptic	47.8	45.1	42.6	40.1	37.7	35.4	33.2	1.00	-48.6
Co(II)	0	6	homoleptic	-13.2	-15.0	-17.0	-18.5	-19.8	-20.7	-21.9	0.98	-28.8
Co(II)	1	5	5+1	-0.7	-5.2	-9.4	-13.5	-16.5	-18.9	-20.8	0.98	-67.8
Co(II)	2	4	trans	1.0	-3.3	-7.4	-11.0	-14.6	-17.4	-19.8	0.99	-69.9
Co(II)	4	2	trans	14.9	9.8	4.8	-0.2	-4.9	-9.4	-13.5	1.00	-95.4
Co(II)	5	1	5+1	22.2	16.5	11.0	5.8	0.8	-3.8	-8.2	1.00	-101.5

Table S17. Adiabatic spin-splitting energies, ΔE_{I-L} , for the 2-electron difference IS-to-LS energies in kcal/mol for 4*d* TMCs containing CO and H₂O ligands with varied a_{HF} values as indicated in the table alongside the computed sensitivity and the R^2 value from a linear fit. Values in italics have been averaged between neighboring points or extrapolated using the linear fit if not between neighboring points. The symmetry and composition of the complex is indicated in the table.

				a _{HF}								
М	CO	H_2O	sym.	0.00	0.05	0.10	0.15	0.20	0.25	0.30	R^2	S
Mo(III)	4	2	trans	-3.2	-4.6	-6.0	-7.2	-8.4	-9.6	-10.6	1.00	-24.7
Mo(III)	2	4	trans	-1.9	-4.0	-5.9	-7.8	-9.4	-10.8	-12.0	0.99	-33.9
Mo(III)	1	5	5+1	-7.2	-9.3	-11.2	-12.8	-14.3	-15.7	-16.9	0.99	-32.0
Mo(III)	0	6	homoleptic	-18.8	-19.4	-20.1	-20.7	-21.3	-21.9	-22.6	1.00	-12.6
Mo(II)	6	0	homoleptic	-15.4	-16.1	-16.7	-17.3	-17.9	-18.5	-19.0	1.00	-12.0
Mo(II)	4	2	trans	-3.9	-5.1	-6.3	-7.5	-8.6	-9.6	-10.6	1.00	-22.4
Mo(II)	2	4	cis	-6.8	-7.9	-8.9	-9.9	-10.8	-11.8	-12.7	1.00	-19.6
Mo(II)	2	4	trans	11.8	10.3	8.8	7.3	5.9	4.5	3.1	1.00	-29.1
Mo(II)	1	5	5+1	1.8	0.6	-0.5	-1.6	-2.7	-3.8	-4.9	1.00	-22.4
Mo(II)	0	6	homoleptic	-17.6	-18.2	-18.7	-19.1	-19.6	-20.0	-20.3	0.99	-9.1
Tc(III)	4	2	trans	-4.5	-5.8	-7.0	-8.3	-9.5	-10.7	-11.9	1.00	-24.7
Tc(III)	2	4	cis	-0.4	-1.8	-3.1	-4.5	-5.8	-7.2	-8.5	1.00	-27.0
Tc(III)	1	5	5+1	-0.9	-2.5	-4.1	-5.7	-7.3	-8.8	-10.3	1.00	-31.3
Tc(III)	0	6	homoleptic	-14.7	-15.9	-17.0	-18.2	-19.2	-20.3	-21.4	1.00	-22.5
Tc(II)	2	4	trans	41.6	40.2	38.8	37.4	35.9	34.4	33.0	1.00	-28.8
Ru(III)	2	4	cis	42.1	41.2	40.4	39.5	38.5	37.5	36.5	1.00	-18.5
Ru(III)	2	4	trans	35.5	35.3	35.1	34.9	34.7	34.4	34.1	0.90	-4.3
Ru(III)	1	5	5+1	31.2	31.2	31.0	30.8	30.4	29.9	29.3	0.91	-6.5
Ru(III)	0	6	homoleptic	23.3	23.1	23.1	22.9	22.7	22.4	22.1	0.96	-4.2
Ru(II)	6	0	homoleptic	83.4	81.5	79.6	77.8	75.9	74.1	72.2	1.00	-37.2
Ru(II)	4	2	trans	41.4	41.3	41.0	40.6	40.0	39.3	38.6	0.96	-9.7
Ru(II)	2	4	trans	23.3	22.8	22.2	21.7	21.1	20.6	20.0	1.00	-10.9
Rh(III)	6	0	homoleptic	79.6	78.8	78.0	77.2	76.3	75.5	74.6	1.00	-16.8
Rh(III)	2	4	cis	34.4	35.8	37.0	38.1	39.1	39.8	40.9	0.99	21.8
Rh(III)	2	4	trans	25.7	26.8	27.8	28.7	29.5	30.3	30.9	0.99	17.3
Rh(III)	1	5	5+1	29.5	30.4	31.1	31.7	32.2	32.7	33.0	0.98	11.7
Rh(III)	0	6	homoleptic	29.3	29.9	30.3	30.7	30.9	31.0	31.0	0.89	5.9
Rh(II)	4	2	trans	55.0	52.4	49.9	47.4	44.8	42.3	39.8	1.00	-50.6
Rh(II)	2	4	trans	32.3	30.9	29.1	27.3	25.4	23.4	21.5	1.00	-36.6

Figure S2. S(3d) vs S(4d) for ΔE_{I-L} (in kcal/mol[·]HFX) of all TMCs with CO or H₂O ligands in both oxidation states, colored by element (Cr/Mo in gray, Mn/Tc in orange, Fe/Ru in red, and Co/Rh in blue) and with symbols corresponding to formal electron configuration (d^3 in right-pointing triangles, d^4 in up-pointing triangles, d^5 in circles, d^6 in squares, and d^7 in diamonds). All hexa-aqua complexes are outlined in green, all hexa-carbonyl complexes are outlined in black, and the remaining symbols are outlined in dark gray. A dotted parity line is shown for reference.

Table S18. Dependence of HS/LS preference based on sign of $\Delta E_{\text{H-L}}$ for all 239 pairs of 3*d* and 4*d* complexes for which $\Delta E_{\text{H-L}}$ was evaluated. This analysis is completed for different a_{HF} fractions labeled at the top of the table. The $a_{\text{HF}} = 0.4$ value is extrapolated from the sensitivity. Each preference is grouped by metal and oxidation state and then summarized at the bottom as overall.

		a _{HF} value					a _{HF} value				
3d	0.0	0.1	0.2	0.3	0.4	4d	0.0	0.1	0.2	0.3	0.4
Cr(II) LS	0	0	0	0	0	Mo(II) LS	13	13	13	11	10
Cr(II) HS	16	16	16	16	16	Mo(II) HS	3	З	3	5	6
Mn(III) LS	2	0	0	0	0	Tc(III) LS	44	40	34	29	18
Mn(III) HS	49	51	51	51	51	Tc(III) HS	7	11	17	22	33
Mn(II) LS	29	17	4	0	0	Tc(II) LS	72	72	72	71	70
Mn(II) HS	43	55	68	72	72	Tc(II) HS	0	0	0	1	2
Fe(III) LS	28	22	16	10	6	Ru(III) LS	36	36	36	36	36
Fe(III) HS	8	14	20	26	30	Ru(III) HS	0	0	0	0	0
Fe(II) LS	52	39	27	15	5	Ru(II) LS	64	64	64	64	64
Fe(II) HS	12	25	37	49	59	Ru(II) HS	0	0	0	0	0
Overall LS	111	78	47	25	11	Overall LS	229	225	219	211	198
Overall HS	128	161	192	214	228	Overall HS	10	14	20	28	41

Table S19. Dependence of GS preference (HS, LS, or IS) for the 247 pairs for which all compatible spin states have been converged. This corresponds to the 155 pairs of 3*d* and 4*d* complexes for which HS/IS/LS states are all converged in addition to the 92 cases of d^3 Cr(III)/Mo(III) or d^7 Co(II)/Rh(II) pairs for which IS/LS states were converged. The variation is shown with $a_{\rm HF}$ fractions, as labeled at the top of the table. The $a_{\rm HF} = 0.4$ value is extrapolated from the sensitivity. The overall LS/IS/HS count is shown at the bottom of the table along with the LS/IS count for the d^3/d^7 cases.

		101					1				
		a	_{IF} va	lue				a_{H}	F val	ue	
3d	0.0	0.1	0.2	0.3	0.4	4d	0.0	0.1	0.2	0.3	0.4
Cr(III) LS	2	1	0	0	0	Mo(III) LS	11	10	9	6	5
Cr(III) IS	43	44	45	45	45	Mo(III) IS	34	35	36	39	40
Cr(II) LS	0	0	0	0	0	Mo(II) LS	0	0	0	0	0
Cr(II) IS	9	8	3	1	0	Mo(II) IS	12	12	12	12	12
Cr(II) HS	3	4	9	11	12	Mo(II) HS	0	0	0	0	0
Mn(III) LS	0	0	0	0	0	Tc(III) LS	0	0	0	0	0
Mn(III) IS	22	10	2	2	1	Tc(III) IS	42	42	42	42	42
Mn(III) HS	20	32	40	40	41	Tc(III) HS	0	0	0	0	0
Mn(II) LS	18	12	2	0	0	Tc(II) LS	36	36	36	36	36
Mn(II) IS	0	0	0	0	0	Tc(II) IS	0	0	0	0	0
Mn(II) HS	18	24	34	36	36	Tc(II) HS	0	0	0	0	0
Fe(III) LS	23	18	12	7	5	Ru(III) LS	30	30	30	30	30
Fe(III) IS	0	0	0	0	0	Ru(III) IS	0	0	0	0	0
Fe(III) HS	7	12	18	23	25	Ru(III) HS	0	0	0	0	0
Fe(II) LS	30	21	16	8	3	Ru(II) LS	35	35	35	35	35
Fe(II) IS	1	0	0	0	0	Ru(II) IS	0	0	0	0	0
Fe(II) HS	4	14	19	27	32	Ru(II) HS	0	0	0	0	0
Co(II) LS	38	27	14	10	1	Rh(II) LS	47	47	47	47	47
Co(II) IS	9	20	33	37	46	Rh(II) IS	0	0	0	0	0
d ³ /d ⁷ LS	11	21	33	37	46	d ³ /d ⁷ LS	11	10	9	6	5
d ³ /d ⁷ IS	54	65	78	82	91	d ³ /d ⁷ IS	45	45	45	45	45
Overall LS	111	79	44	25	9	Overall LS	159	158	157	154	153
Overall IS	84	82	83	85	92	Overall IS	88	89	90	93	94
Overall HS	52	86	120	137	146	Overall HS	0	0	0	0	0

Table S20. Dependence of HS/LS preference based on sign of $\Delta E_{\text{H-L}}$ for the 155 pairs of 3*d* and 4*d* complexes for which HS/IS/LS states are all converged with a_{HF} fractions labeled at the top of the table. The $a_{\text{HF}} = 0.4$ value is extrapolated from the sensitivity. This analysis excludes the existence of the IS state and only compares the HS and LS energies. Each preference is grouped by metal and oxidation state and then summarized at the bottom as overall.

		a _H	_F va	lue			a _{HF} value				
3d	0.0	0.1	0.2	0.3	0.4	4d	0.0	0.1	0.2	0.3	0.4
Cr(II) LS	0	0	0	0	0	Mo(II) LS	11	11	11	10	9
Cr(II) HS	12	12	12	12	12	Mo(II) HS	1	1	1	2	3
Mn(III) LS	2	0	0	0	0	Tc(III) LS	37	34	29	24	15
Mn(III) HS	40	42	42	42	42	Tc(III) HS	5	8	13	18	27
Mn(II) LS	18	12	2	0	0	Tc(II) LS	36	36	36	36	36
Mn(II) HS	18	24	34	36	36	Tc(II) HS	0	0	0	0	0
Fe(III) LS	23	18	12	7	5	Ru(III) LS	30	30	30	30	30
Fe(III) HS	7	12	18	23	25	Ru(III) HS	0	0	0	0	0
Fe(II) LS	31	21	16	8	3	Ru(II) LS	35	35	35	35	35
Fe(II) HS	4	14	19	27	32	Ru(II) HS	0	0	0	0	0
Overall LS	74	51	30	15	8	Overall LS	149	146	141	135	125
Overall HS	81	104	125	140	147	Overall HS	6	9	14	20	30

Figure S3. Absolute LS M–L averaged distance (in Å) vs HS M–L averaged distance (in Å) for 155 pairs of equilibrium structures at $a_{\rm HF} = 0.2$ in the 4-electron LS-to-HS spin state comparison for 3*d* (translucent green circles) and 4*d* (translucent blue squares) TMCs. A black dotted parity line is also shown. All 4*d* TMCs generally have longer bond lengths than 3*d* TMCs due to the larger metal covalent radius.

Table S21. Covalent radii used for 3*d* and 4*d* metals (left) and ligand coordinating elements (right) to obtain relative distances in this work. Recommended covalent radii were obtained from Ref. 2. Where LS and HS covalent radii were provided (e.g., Fe), they were averaged, and where multiple radii based on hybridization (i.e., C) were provided, they were also averaged.

r_{cov} (Å)

Μ

r_{cov} (Å) M r_{cov} (Å) L r_{cov} (Å) L

Figure S4. Normalized histograms for 3*d* TMCs (top) and 4*d* TMCs (bottom) with the same x-axis ranges and values for the d_{rel} (left) and difference in d_{rel} (right) plots. The left plots show the averaged (over all 6 metal–ligand bonds) d_{rel} values grouped in translucent histograms by LS (red), IS (gray), and HS (blue) states for 155 (or 247) pairs for which HS, IS, and LS states are all converged (247 is for IS-LS). The right plots show the difference in average d_{rel} values by

state of the complexes in translucent normalized histograms: 2-electron IS-LS in magenta, 4-electron HS-LS in purple, and 2-electron HS-IS in cyan.

Table S22. Average, minimum, maximum, and standard deviation (std.) of relative distances for all HS, IS, and LS states as well as the statistics for the HS-LS, IS-LS, and HS-IS differences compared for 155 pairs of 3*d* and 4*d* TMCs for which the LS, IS, and HS states are both defined and successfully converged. The relative distances were computed with respect to the covalent radii of the metal and coordinating atoms and they were then averaged over all equatorial and axial bond lengths. The full distances and covalent radii used are provided in the Supporting Information .zip file.

	3 <i>d</i> TMCs									
	LS	HS	HS-LS	IS	IS-LS	HS-IS				
avg	0.93	1.02	0.09	0.97	0.04	0.05				
min	0.89	0.93	0.03	0.89	-0.02	0.02				
max	1.04	1.15	0.20	1.04	0.11	0.22				
std.	0.03	0.05	0.04	0.04	0.03	0.02				
			4 <i>d</i> TM	Cs						
	LS	HS	HS-LS	IS	IS-LS	HS-IS				
avg	0.97	1.09	0.12	1.02	0.05	0.06				
min	0.94	0.99	-0.03	0.83	-0.14	-0.14				
max	1.03	1.20	0.22	1.27	0.29	0.27				
std.	0.02	0.04	0.04	0.08	0.08	0.08				

Table S23. Average, minimum, maximum, and standard deviation (std.) of relative distances for IS and LS states as well as the statistics for the IS-LS differences compared for 92 pairs of 3d and 4d TMCs that have d^3 and d^7 electron configurations and therefore only LS and IS states are defined. The relative distances were computed with respect to the covalent radii of the metal and coordinating atoms and they were then averaged over all equatorial and axial bond lengths. The trends in the averages of these LS and IS sets are roughly comparable to those obtained for LS or IS states in the cases where HS states were also valid. The full distances and covalent radii used are provided in the Supporting Information .zip file.

3 <i>d</i> TMCs										
	LS	IS	IS-LS							
avg	0.99	1.03	0.04							
min	0.94	0.96	0.00							
max	1.06	1.14	0.18							
std.	0.02	0.04	0.03							
	4 <i>d</i> 7	MC s	6							
	LS	IS	IS-LS							
avg	1.00	1.04	0.04							
min	0.93	0.94	-0.05							
max	1.10	1.13	0.08							
std.	0.04	0.06	0.03							

Figure S5. Relative distance averaged over two axial metal-ligand bonds vs. over four equatorial metal-ligand bonds for 3d TMCs: 155 pairs of LS (red translucent circles) or HS (blue translucent circles) as well as 247 pairs of IS (gray translucent circles). A parity line is shown in dotted black, and the plot area is square.

Figure S6. Relative distance averaged over two axial metal-ligand bonds vs. over four equatorial metal-ligand bonds for 4*d* TMCs: 155 pairs of LS (red translucent squares) or HS (blue translucent squares) as well as 247 pairs of IS (gray translucent squares). A parity line is shown in dotted black, and the plot area is square.

Table S24. Best-fit lines (y = mx + b) of the difference in spin state relative bond lengths, Δd_{rel} , vs. sensitivity, $S(\Delta E)$ (in kcal/mol[·]HFX), for 3*d* TMCs and 4*d* TMCs grouped by relative spin states: 155 cases of 4-electron H-L, 155 cases of 2-electron H-I, and 247 cases of 2-electron I-L. The best-fit line for the overall 3*d* or 4*d* TMC set containing 557 points is also shown. The correlation (R^2) for each line is reported. We also report at the bottom of the table the trendlines obtained for the 3*d* or 4*d* S(ΔE_{H-L}) vs. the LS d_{rel} as well as the line obtained by correlating both data sets together.

	m	b	R ²
3 <i>d</i> H-L	-766.22	-25.518	0.86
3 <i>d</i> H-I	-657.19	-23.219	0.61
3 <i>d</i> I-L	-575.25	-21.925	0.55
3 <i>d</i> overall	-772.62	-18.455	0.81
4 <i>d</i> H-L	-444.54	-5.305	0.71
4 <i>d</i> H-I	10.55	-36.818	0.00
4 <i>d</i> I-L	-13.48	-23.038	0.01
4 <i>d</i> overall	-126.92	-27.557	0.18
3d H-L vs. LS d _{rel}	276.07	-351.44	0.08
4d H-L vs. LS d _{rel}	422.87	-468.37	0.16
All H-L vs. LS d _{rel}	532.2	-582.6	0.29

Figure S7. The difference in average relative metal–ligand distance, Δd_{rel} , for the 4-electron HS-LS state comparison vs. ΔE_{H-L} (in kcal/mol) for 155 pairs of HS and LS states at $a_{HF} = 0.2$ for 3*d* (translucent green circles) and 4*d* (translucent blue squares) TMCs. A zero axis shows when spin state ordering changes or the sign of the relative metal–ligand bond length difference changes.

Figure S8. Difference for 3*d* TMCs in average relative distance between relevant spin states, Δd_{rel} , vs the sensitivity of spin state splitting, $S(\Delta E)$, for the same spin states in kcal/mol/HFX grouped by 155 pairs of 4-electron HS-LS (H-L, purple translucent circles), 247 pairs of 2-electron IS-LS (I-L, magenta translucent circles), and 155 pairs of 2-electron HS-IS (H-I, cyan translucent circles). Best-fit lines have been obtained through each spin state definition and shown as dotted solid lines in the same colors. A gray dotted line has been fit through all data.

Figure S9. Difference for 4*d* TMCs in average relative distance between relevant spin states, Δd_{rel} , vs the sensitivity of spin state splitting, $S(\Delta E)$, for the same spin states in kcal/mol/HFX grouped by 155 pairs of 4-electron HS-LS (H-L, purple translucent squares), 247 pairs of 2-electron IS-LS (I-L, magenta translucent squares), and 155 pairs of 2-electron HS-IS (H-I, cyan translucent squares). Best-fit lines have been obtained through each spin state definition and shown as dotted solid lines in the same colors. A gray dotted line has been fit through all data.

Table S25. Properties of Fe(II)(He)₆ and Ru(II)(He)₆ LS and HS complexes: the M–He bond length (in Å) for the LS singlet and HS quintet states, and the relative bond lengths with respect to covalent radii. The sensitivities of the total energies $S(E_{LS})$ or $S(E_{HS})$ of the LS and HS states, respectively, are also shown in units of kcal/mol/HFX for both the energies and spin splitting evaluated at the LS geometry (LS vertical) and HS geometry (HS vertical). The adiabatic $S(\Delta E_{H-L})$ is also shown evaluated from the equilibrium geometry of both spin states. The ΔE_{H-L} for B3LYP (20% exchange) is shown as well in kcal/mol for each of the three geometries.

		Fe(II)(He) ₆				
Property	M-He (Å)	$d_{\rm rel}$	$S(E_{LS})$	$S(E_{HS})$	$\Delta E_{\text{H-L}}$	$S(\Delta E_{\text{H-L}})$
LS vertical	1.84	1.08	25.64	-21.47	-48.3	-47.12
HS vertical	2.11	1.24	16.30	-21.59	-72.8	-37.89
Adiabatic			25.64	-21.59	-63.8	-47.25
		Ru(II)(He) ₆				
Property	M-He (Å)	$d_{\rm rel}$	$S(E_{LS})$	$S(E_{HS})$	$\Delta E_{\text{H-L}}$	$S(\Delta E_{H-L})$
LS vertical	1.93	1.11	-23.12	-63.00	3.4	-39.88
HS vertical	2.35	1.35	-37.96	-66.24	-50.7	-28.28
Adiabatic			-23.12	-66.24	-31.2	-43.28

Table S26. Properties of Fe(II)(CO)₆ and Ru(II)(CO)₆ LS and HS complexes: the M–He bond length (in Å) for the LS singlet and HS quintet states, and the relative bond lengths with respect to covalent radii. The sensitivities of the total energies $S(E_{LS})$ or $S(E_{HS})$ of the LS and HS states, respectively, are also shown in units of kcal/mol HFX for both the energies and spin splitting evaluated at the LS geometry (LS vertical) and HS geometry (HS vertical). The adiabatic $S(\Delta E_{H-L})$ is also shown evaluated from the equilibrium geometry of both spin states. The ΔE_{H-L} for B3LYP (20% exchange) is shown as well in kcal/mol for each of the three geometries.

		Fe(II)(CO) ₆				
Property	M-He (Å)	$d_{\rm rel}$	$S(E_{LS})$	$S(E_{HS})$	$\Delta E_{\text{H-L}}$	$S(\Delta E_{\text{H-L}})$
LS vertical	1.94	0.90	82.1	-31.9	106.6	-114.1
HS vertical	2.34	1.09	-5.6	-91.6	-19.7	-86.0
Adiabatic			86.2	-83.8	30.3	-170.0
		Ru(II)(CO) ₆				
Property	M-He (Å)	$d_{\rm rel}$	$S(E_{LS})$	S(E _{HS})	$\Delta E_{\text{H-L}}$	$S(\Delta E_{H-L})$
LS vertical	2.06	0.94	-34.0	-84.9	213.3	-50.9
HS vertical	2.48	1.13	-64.1	-129.1	37.5	-64.9
Adiabatic			-29.8	-124.3	116.2	-94.5

Table S27. Characteristics of total energy sensitivities for the HS and LS states, $S(E_{HS})$ and $S(E_{LS})$ in kcal/mol[·]HFX of 3*d* and 4*d* TMCs: minimum, maximum, average, and the number that are positive.

Property	3d TMC S(E _{LS})	3 <i>d</i> TMC <i>S</i> (<i>E</i> _{HS})	4 <i>d</i> TMC <i>S</i> (<i>E</i> _{LS})	4 <i>d</i> ТМС <i>S</i> (<i>E</i> _{HS})
minimum	-684.3	-776.4	-764.8	-809.4
maximum	148.8	38.5	44.6	-24.0
average	-222.4	-323.1	-290.9	-354.6
# > 0	26	1	2	0

References

1. Nandy, A.; Duan, C.; Janet, J. P.; Gugler, S.; Kulik, H. J., Strategies and Software for Machine Learning Accelerated Discovery in Transition Metal Chemistry. *Industrial & Engineering Chemistry Research* **2018**, *57*, 13973-13986.

2. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S., Covalent Radii Revisited. *Dalton Trans.* **2008**, 2832-2838.