New insight into the interaction between divacancy and H/He impurity in Ti₃AlC₂ by first-principles studies

Zhaocang Meng^{a,b,c}, Canglong Wang^{*a,c}, Jitao Liu^{a,c}, Yinlong Wang^e, Xiaolu Zhu^d, LeiYang^{*a,c}, and Liang Huang^b

^a Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China. clwang@impcas.ac.cn, lyang@impcas.ac.cn

^b School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China

^c School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

^d College of Electrical Engineering, Longdong University, qingyang 745000, China ^e School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China

Fig. S1 Atomic configurations for different numbers of H atoms trapped in the $2V_{Al-Al}$ divacancy. Blue spheres, pink spheres, and red spheres denote Ti atoms, Al atoms and H atoms, respectively. The black squares denote Al vacancies.

Fig. S2 Atomic configurations for different numbers of H atoms trapped in the $2V_{Al-C}$ divacancy. Blue spheres, pink spheres, gray spheres, and red spheres denote Ti atoms, Al atoms, C atoms and H atoms, respectively. The black square and gray square denote Al vacancy and C vacancy, respectively.

Fig. S3 Trapping energy for H atom as a function of the number of H atoms trapped by divacancy and He-2V complex in Ti_3AlC_2 .

Table S1

Summary of solution energies, lattice parameters and volume changes with increasing number of trapped H atoms in divacancies and He-2V complex.

Configuration	$E_s(ev)$	a(Å)	c(Å)	$V(Å^3)$	∆a/a(%)	$\Delta c/c(\%)$	$\Delta V/V(\%)$
Ti ₃ AlC ₂	-	3.0820	18.6374	1380.20	-	-	-
$2V_{Al-Al}$	-	3.0870	18.5271	1378.33	0.1622	-0.5918	-0.1355
$1H-2V_{Al-Al}$	-0.81	3.0888	18.5599	1379.28	0.2206	-0.4158	-0.0667
$2H-2V_{Al-Al}$	-1.77	3.0871	18.5818	1379.41	0.1655	-0.2983	-0.0572
$3H-2V_{Al-Al}$	-2.04	3.0879	18.5523	1378.09	0.1914	-0.4566	-0.1529
$4H-2V_{Al-Al}$	-2.82	3.0857	18.5829	1378.95	0.1201	-0.2924	-0.0906
$5H-2V_{Al-Al}$	-3.16	3.0862	18.5486	1376.90	0.1363	-0.4765	-0.2391
$6H-2V_{Al-Al}$	-3.55	3.0868	18.5269	1376.01	0.1557	-0.5929	-0.3036
$7H-2V_{Al-Al}$	-3.87	3.0867	18.5051	1374.72	0.1525	-0.7097	-0.3970
$2V_{Al-C}$		3.0830	18.6025	1378.43	0.0324	-0.1873	-0.1282
$1\text{H-}2\text{V}_{Al-C}$	-0.93	3.0825	18.6060	1378.67	0.0162	-0.0017	-0.1109
$2H-2V_{Al-C}$	-1.75	3.0809	18.6346	1379.33	-0.0357	-0.0150	-0.0630
$3H-2V_{Al-C}$	-2.54	3.0802	18.6506	1379.17	-0.0584	0.0708	-0.0746
$4H-2V_{Al-C}$	-2.82	3.0814	18.6228	1377.66	-0.0195	-0.0783	-0.1840
$5H-2V_{Al-C}$	-3.14	3.0819	18.6014	1377.01	-0.0032	-0.1932	-0.2311
$6H-2V_{Al-C}$	-3.43	3.0827	18.5743	1375.94	0.0227	-0.3386	-0.3087
He- $2V_{Al-Al}$	-	3.0883	18.5537	1381.20	0.2044	-0.4491	0.0725
1H-He- $2V_{Al-Al}$	-0.30	3.0878	18.5693	1381.07	0.1882	-0.3654	0.0630
2 H-He- $2V_{Al-Al}$	-1.14	3.0871	18.6031	1382.20	0.1655	-0.1840	0.1449
$3H-He-2V_{Al-Al}$	-1.41	3.0880	18.5641	1380.07	0.1947	-0.3933	-0.0094
4 H-He- $2V_{Al-Al}$	-2.24	3.0866	18.5808	1379.65	0.1493	-0.3037	-0.0398