Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information:

Triangulenium Dyes: the Comprehensive Photo-Absorption and Emission Story of a Versatile Family of Chromophores

Irina Barsuk, Philippe P. Lainé, François Maurel and Éric Brémond*

^a Université de Paris, ITODYS, CNRS, F-75006 Paris, France.

* E-mail: eric.bremond@u-paris.fr

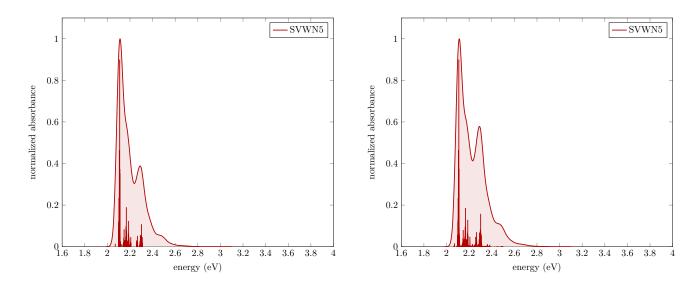
List of Figures

S1	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = $250~\rm cm^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S2	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S3	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S4	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S5	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S6	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S7	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S8	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S9	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ω B97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S10	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

S11	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM =	
S12	250 cm ⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right)	. S18
	Franck-Condon-Herzberg-Teller approximations at PBE/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250	
	cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S19
S13	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S20
S14	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S21
S15	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	
S16	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0-1/3/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	
S17	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S24
S18	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S25
S19	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S26
S20	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ω B97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	C 27
S21	UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM)	. U4/
	= 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S28

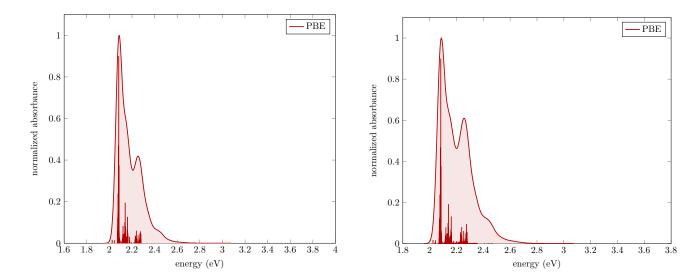
S22	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM =	
	250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S29
S23	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250	
	cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S30
S24	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S31
S25	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S32
S26	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at $M06/6-31+G^*$ level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250	
S27	cm ⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states	
S28	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	
S29	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S36
S30	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ω B97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S37
S31	UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹) of the without transitions (chicks) between the St. and St. electronic states.	cao
S32	= 250 cm ⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm ⁻¹)	. <i>აა</i>
	of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	. S39

S33	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
	Condon-Herzberg-Teller approximations at PBE/6-31+G* level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S34	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
	Condon-Herzberg-Teller approximations at B3LYP/6-31+G* level of theory in acetonitrile sol-
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250
	cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S35	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
	Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S36	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
	Condon-Herzberg-Teller approximations at M06/6-31+G* level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S37	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
007	Condon-Herzberg-Teller approximations at BMK/6-31+G* level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states
538	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
550	Condon-Herzberg-Teller approximations at M06-2X/6-31+G* level of theory in acetonitrile sol-
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1})
	of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S39	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
00)	Condon-Herzberg-Teller approximations at M06-HF/6-31+G* level of theory in acetonitrile sol-
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1})
	of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S40	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
010	Condon-Herzberg-Teller approximations at ω B97XD/6-31+G* level of theory in acetonitrile sol-
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1})
	of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S41	UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-
011	Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+G* level of theory in acetonitrile
	solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250
	cm ⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states
S42	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-
342	Condon-Herzberg-Teller approximations at PBE0/STO-3G level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states
S43	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-
5 10	Condon-Herzberg-Teller approximations at PBE0/6-31G level of theory in acetonitrile solvent.
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states
	danielione (chief) between the sq and sq electronic states.

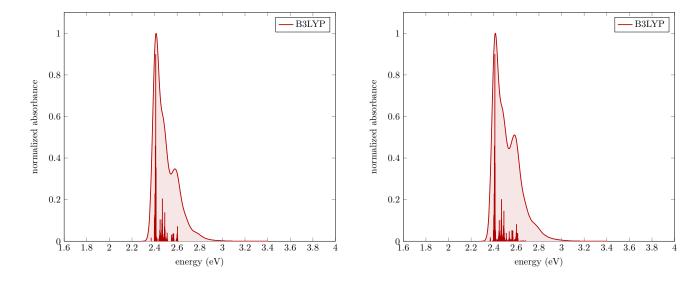

S44	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent.	
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of	
	the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states	1
CVE	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	_
545	Condon-Herzberg-Teller approximations at PBE0/6-31++ G^{**} level of theory in acetonitrile sol-	
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1})	
	of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	2
S46	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-311G level of theory in acetonitrile solvent.	
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of	
	the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states	3
S47	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-311+G* level of theory in acetonitrile sol-	
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250	
	cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	4
S48	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-311++ G^{**} level of theory in acetonitrile sol-	
	vent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1})	
	of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	5
S49	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-311++ $G(3df,3pd)$ level of theory in acetoni-	
	trile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM =	
	250 cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states S50	6
S50	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in gaz solvent. The	
	envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of the	
	vibronic transitions (sticks) betwen the S_0 and S_1 electronic states	7
S51	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in n -octane solvent.	
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of	
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states	8
S52	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in acetonitrile solvent.	
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of	
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states	9
S53	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in 1-hexanol solvent.	
	The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm^{-1}) of	
	the vibronic transitions (sticks) between the S_0 and S_1 electronic states	0
S54	UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-	
	Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in dimethylsulfoxide	
	solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250	
	cm ⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states	1

Part I

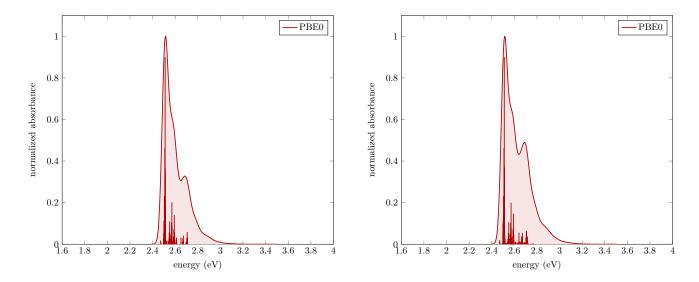
Density-Functional Benchmark


1 TATA

1.1 SVWN5


Fig. S1 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

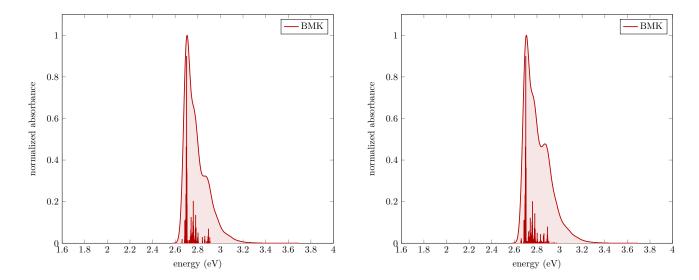
1.2 PBE


Fig. S2 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

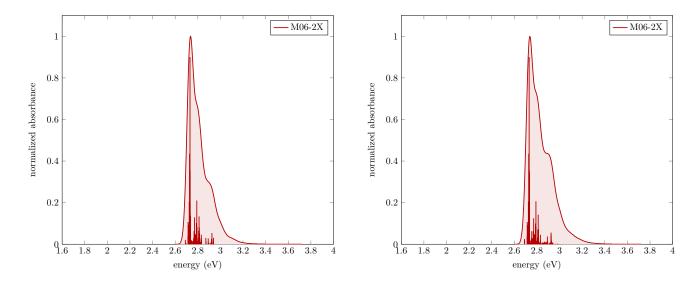
1.3 B3LYP

Fig. S3 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

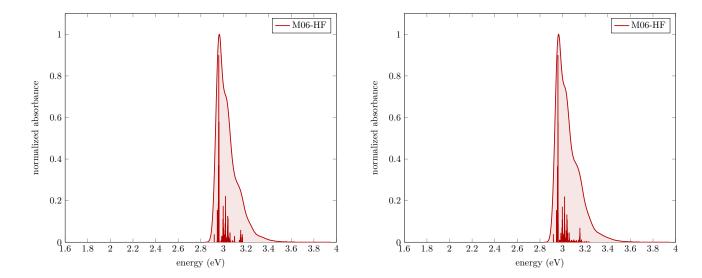
1.4 PBE0


Fig. S4 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

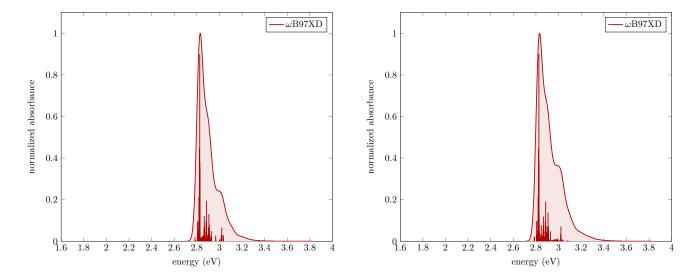
1.5 M06


Fig. S5 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

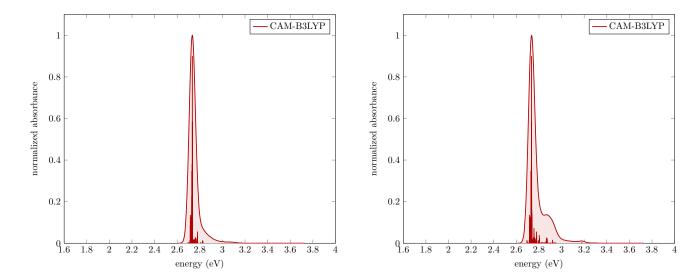
1.6 BMK


Fig. S6 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

1.7 M06-2X


Fig. S7 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

1.8 M06-HF


Fig. S8 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

1.9 ω B97XD

Fig. S9 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ωB97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

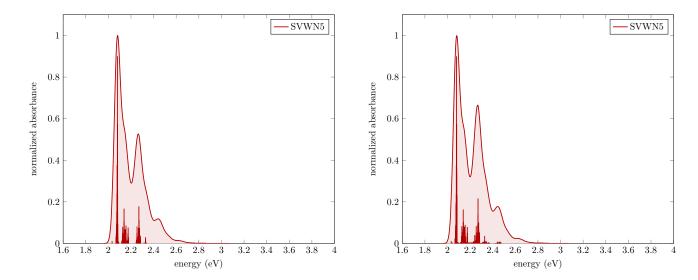
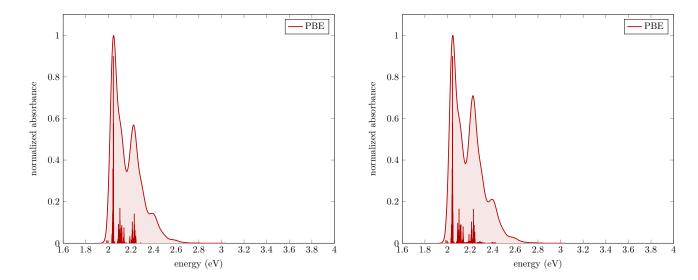
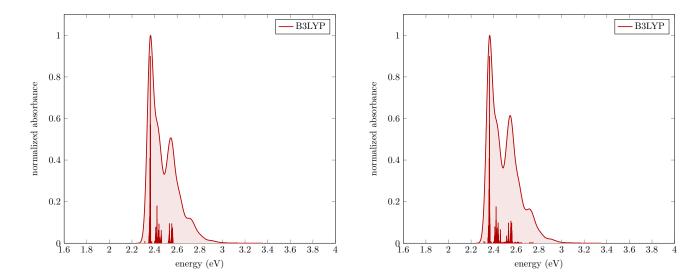

1.10 CAM-B3LYP

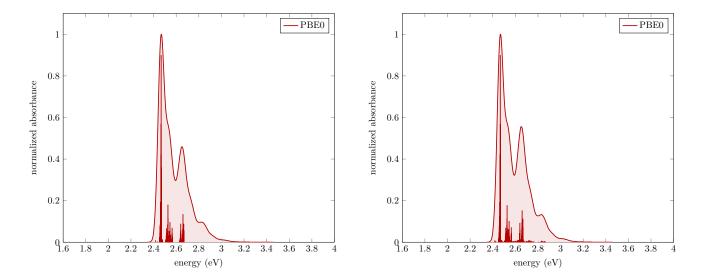
Fig. S10 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.


2 ADOTA

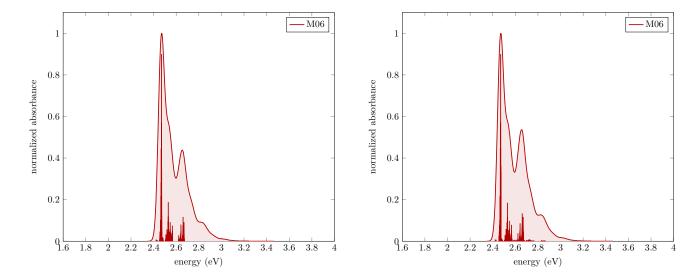
2.1 SVWN5


Fig. S11 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

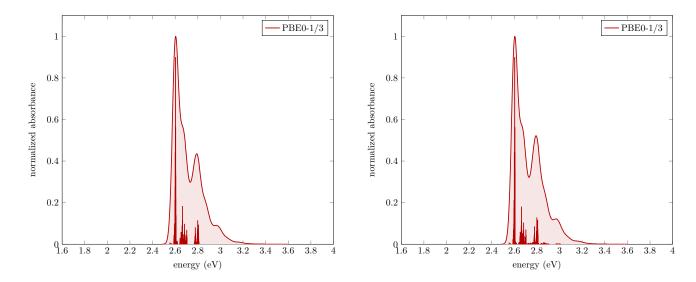
2.2 PBE


Fig. S12 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

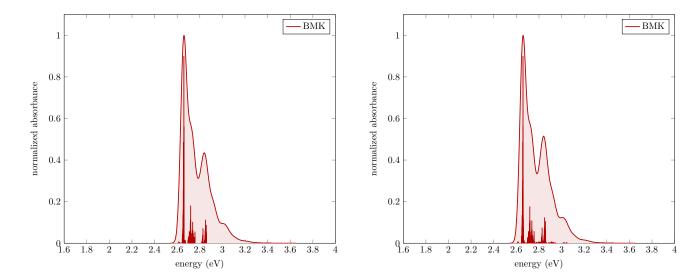
2.3 B3LYP


Fig. S13 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

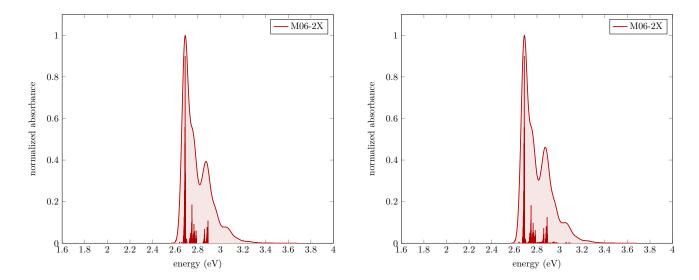
2.4 PBE0


Fig. S14 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

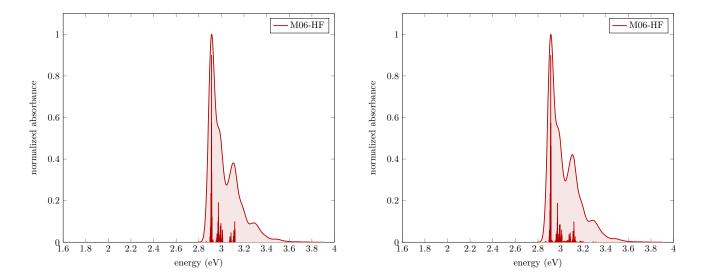
2.5 M06


Fig. S15 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

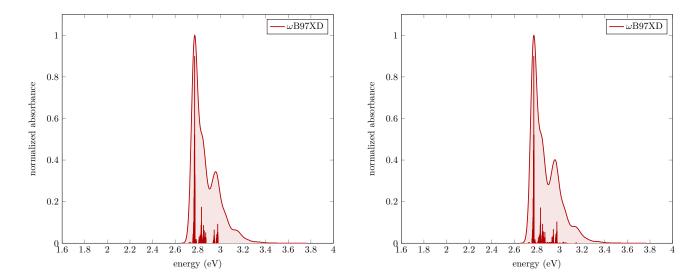
2.6 PBE0-1/3


Fig. S16 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0-1/3/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

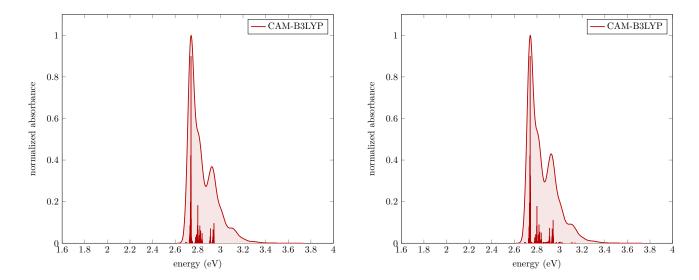
2.7 BMK


Fig. S17 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

2.8 M06-2X


Fig. S18 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

2.9 M06-HF


Fig. S19 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

2.10 ωB97XD

Fig. S20 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ωB97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

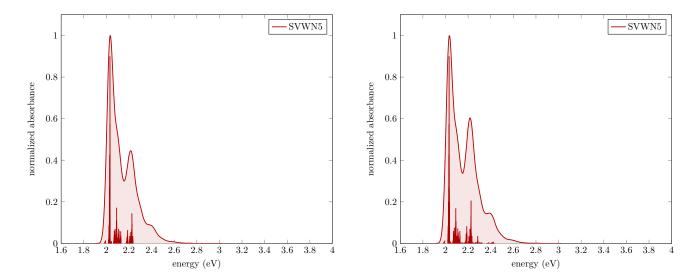
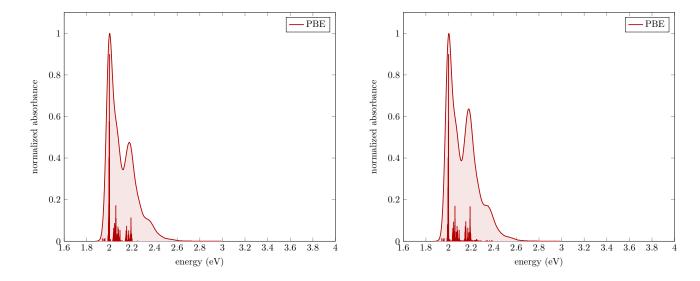
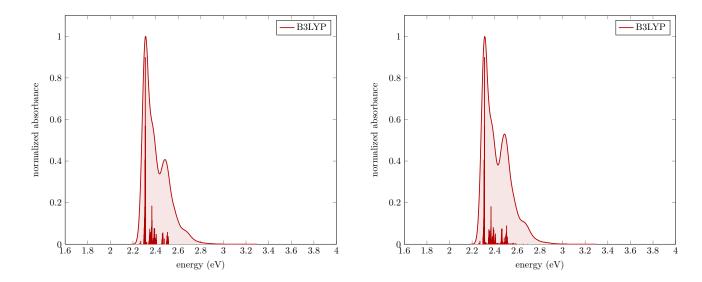

2.11 CAM-B3LYP

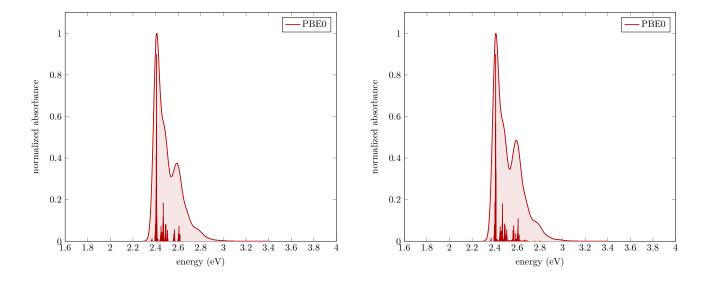
Fig. S21 UV/vis absorption spectra of ADOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.


3 DAOTA

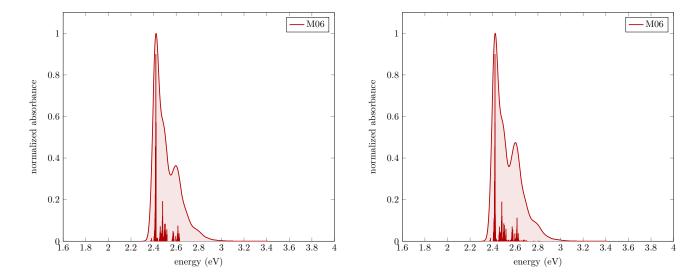
3.1 SVWN5


Fig. S22 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

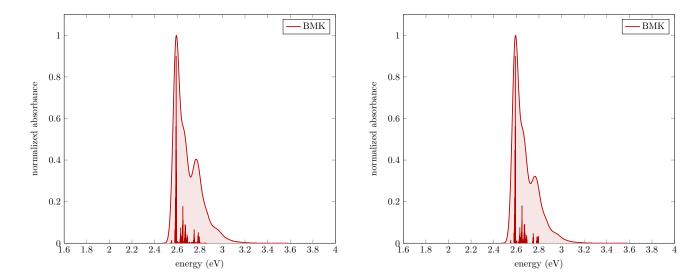
3.2 PBE


Fig. S23 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

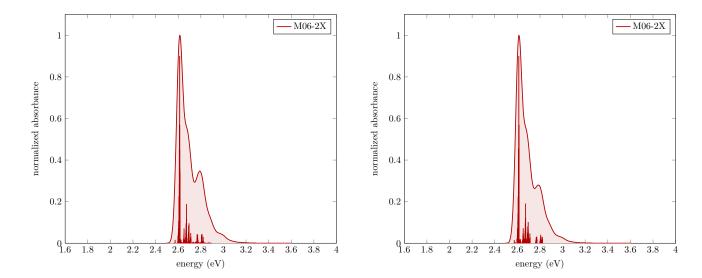
3.3 B3LYP


Fig. S24 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

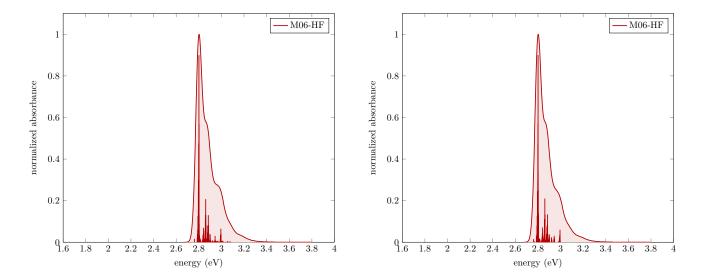
3.4 PBE0


Fig. S25 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

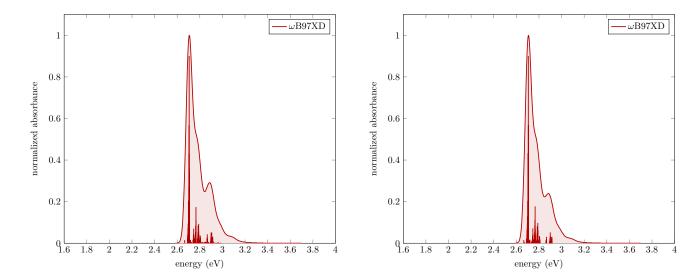
3.5 M06


Fig. S26 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

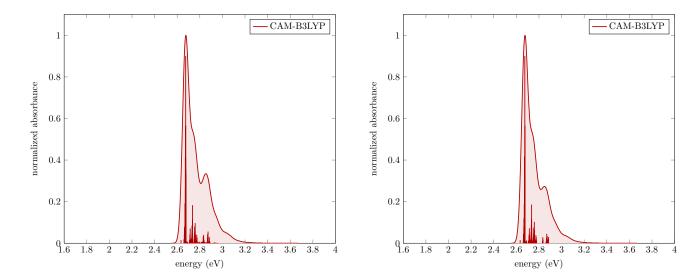
3.6 BMK


Fig. S27 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

3.7 M06-2X


Fig. S28 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

3.8 M06-HF


Fig. S29 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

3.9 ωB97XD

Fig. S30 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ωB97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

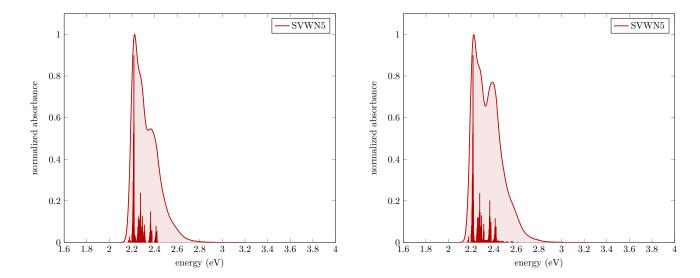
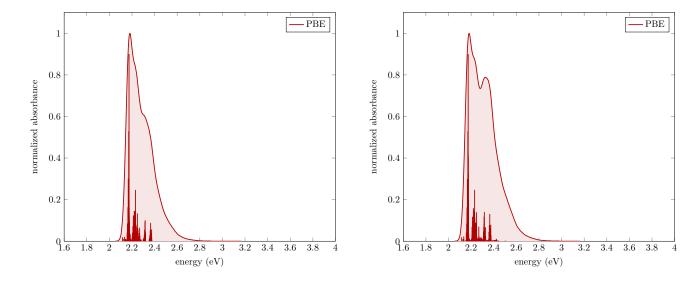
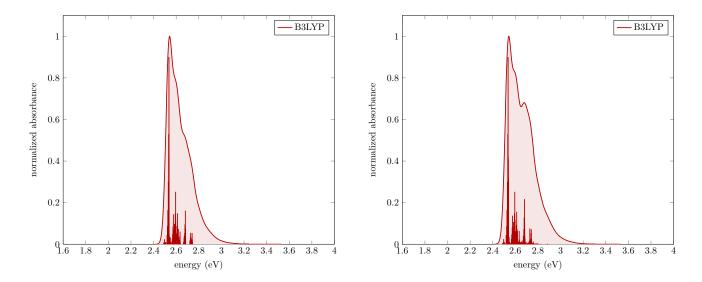

3.10 CAM-B3LYP

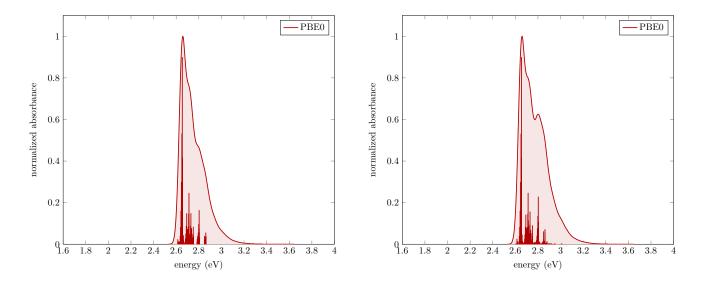
Fig. S31 UV/vis absorption spectra of DAOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.


4 TOTA

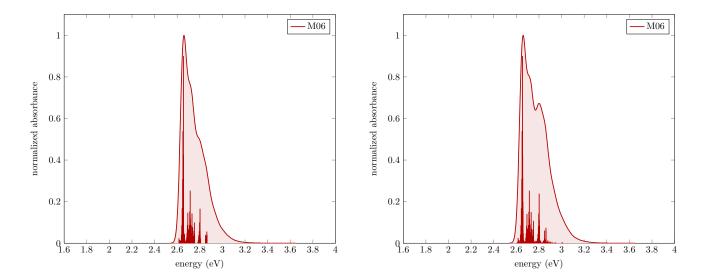
4.1 SVWN5


Fig. S32 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at SVWN5/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

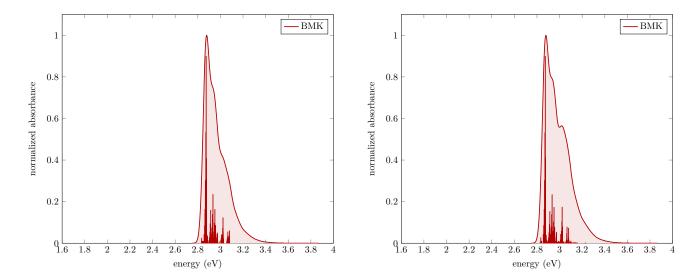
4.2 PBE


Fig. S33 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

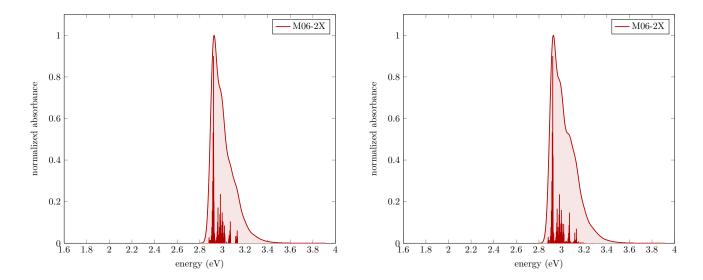
4.3 B3LYP


Fig. S34 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at B3LYP/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

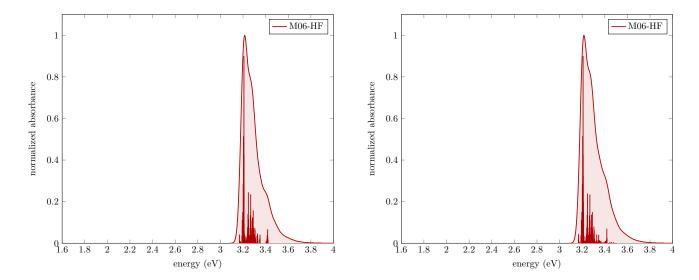
4.4 PBE0


Fig. S35 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

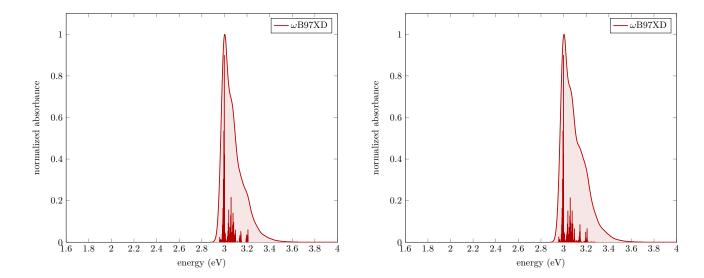
4.5 M06


Fig. S36 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

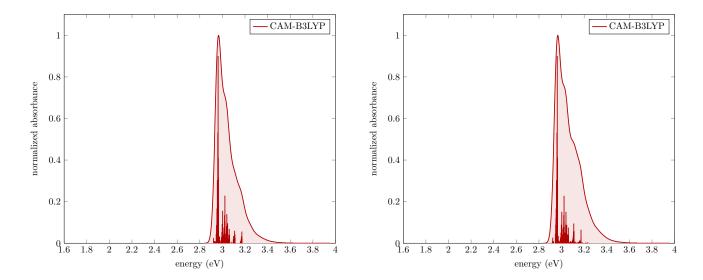
4.6 BMK


Fig. S37 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at BMK/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

4.7 M06-2X


Fig. S38 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-2X/6-31+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

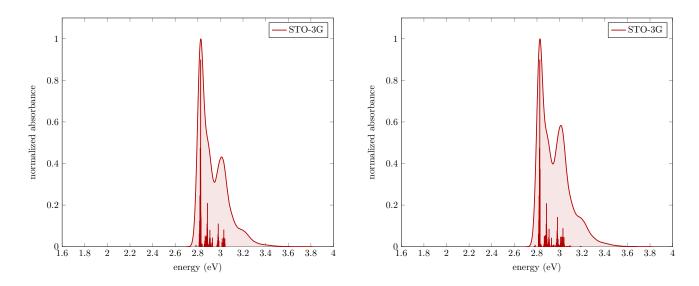
4.8 M06-HF


Fig. S39 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at M06-HF/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

4.9 ωB97XD

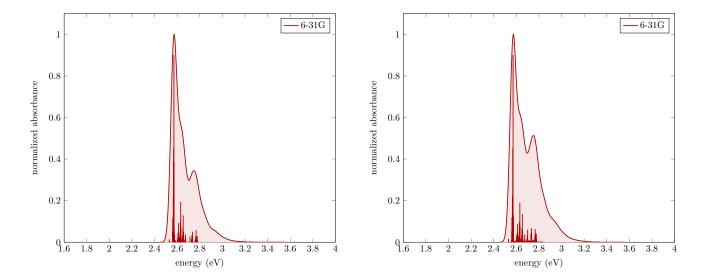
Fig. S40 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at ωB97XD/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

4.10 **CAM-B3LYP**

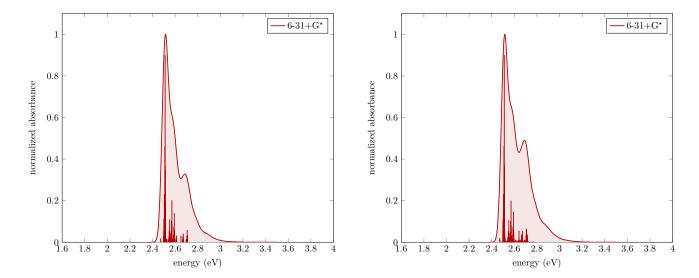

Fig. S41 UV/vis absorption spectra of TOTA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at CAM-B3LYP/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

Part II

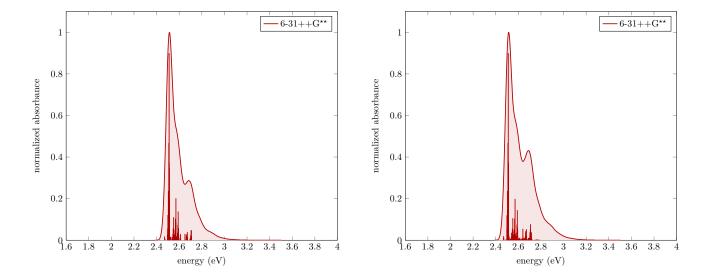
Basis-Set Benchmark


5 TATA

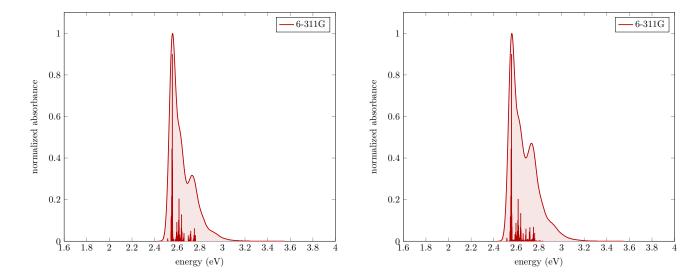
5.1 STO-3G


Fig. S42 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/STO-3G level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

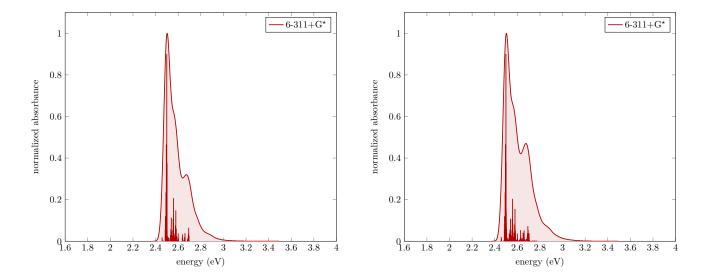
5.2 6-31G


Fig. S43 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31G level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

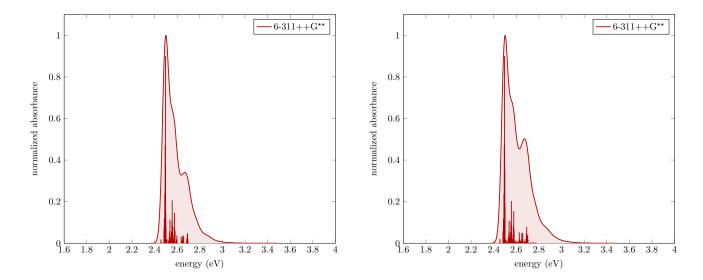
5.3 6-31+G*


Fig. S44 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

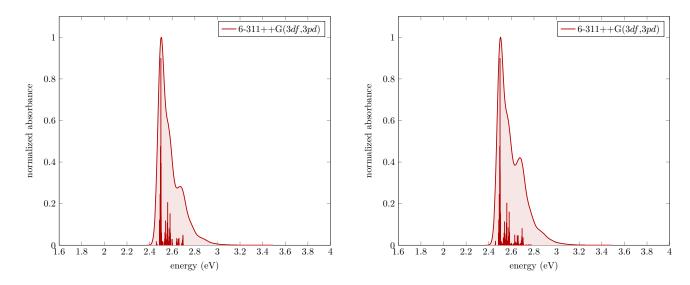
5.4 6-31++ G^{**}


Fig. S45 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31++ G^{**} level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

5.5 6-311G


Fig. S46 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-311G level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

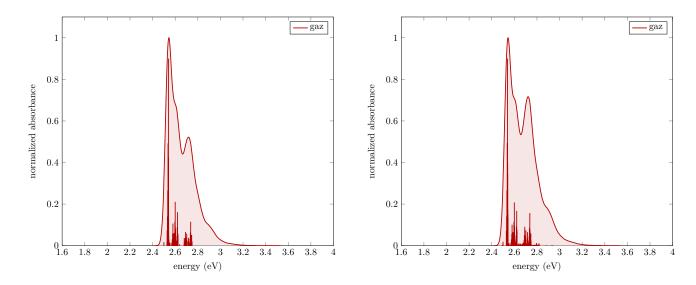
5.6 6-311+G*


Fig. S47 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-311+ G^* level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

5.7 6-311++ G^{**}

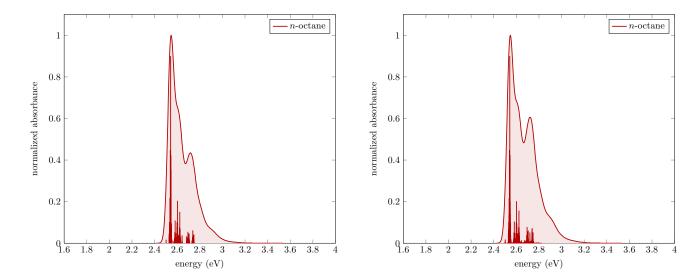
Fig. S48 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-311++ G^{**} level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

5.8 6-311++G(3df,3pd)

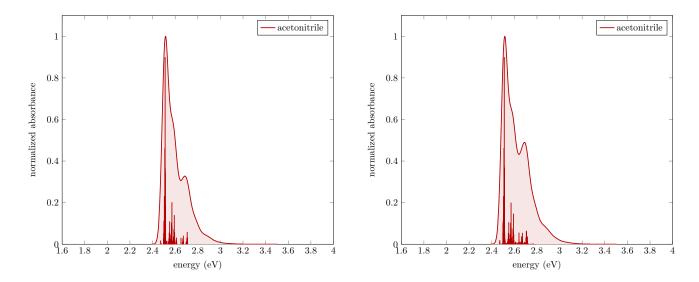

Fig. S49 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-311++G(3df,3pd) level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

Part III

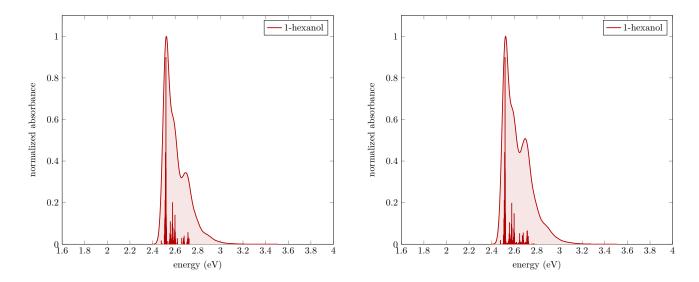
Solvent Benchmark


6 TATA

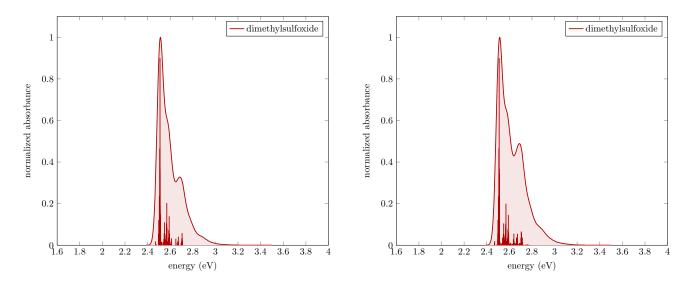
6.1 gaz


Fig. S50 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in gaz solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

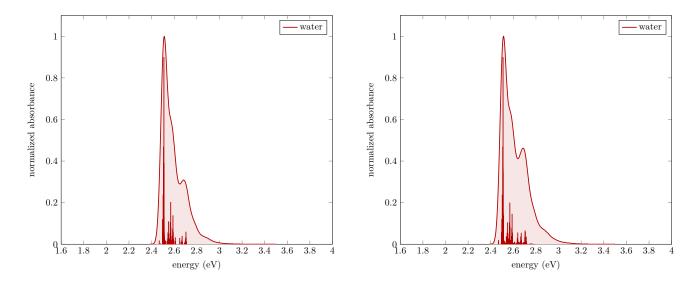
6.2 *n*-octane


Fig. S51 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G * level of theory in *n*-octane solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

6.3 acetonitrile


Fig. S52 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G * level of theory in acetonitrile solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

6.4 1-hexanol


Fig. S53 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+G* level of theory in 1-hexanol solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm $^{-1}$) of the vibronic transitions (sticks) between the S_0 and S_1 electronic states.

6.5 dimethylsulfoxide

Fig. S54 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in dimethylsulfoxide solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.

6.6 water

Fig. S55 UV/vis absorption spectra of TATA computed within the (left) Franck-Condon and (right) Franck-Condon-Herzberg-Teller approximations at PBE0/6-31+ G^* level of theory in water solvent. The envelope of each spectrum is obtained by a Gaussian convolution (FWHM = 250 cm⁻¹) of the vibronic transitions (sticks) betwen the S_0 and S_1 electronic states.