Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting information for Control the ion transport in a C_2N -based nanochannel with tunable interlayer spacing

You-sheng Yu^{a,d}, Rong-ri Tan^{*c}, and Hong-ming $Ding^{\dagger b}$

 ^aSchool of Science, East China University of Technology, Nanchang 330013, China.
 ^bCenter for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, China.
 ^cDepartment of Physics, Jiangxi Science & Technology Normal University, Nanchang 330013, China.
 ^dSchool of Science, Kaili University, Kaili 556011, China.

Contents

1	The details of simulation systems	2
2	The force field parameters	3
3	The dehydration free energy	3
4	The number of water molecules, anion and nitrogen atom in the first coordination shell of cation	4
5	The concentration of ions outside the nanochannel	5

^{*}rogertanr@hotmail.com

[†]dinghm@suda.edu.cn

1 The details of simulation systems

d/nm	Concentration	Water molecules	Cation $(K^+, Na^+ \text{ or } Li^+)$	Anion (Cl^{-})
0.6	0.5	3485	53	53
0.7	0.5	3625	54	54
0.8	0.5	3738	55	55
1.0	0.5	3917	57	57
1.2	0.5	4117	59	59
1.4	0.5	4322	61	61
1.6	0.5	4575	63	63
0.7	0.1	3711	11	11
0.7	0.3	3669	32	32
0.7	0.7	3581	76	76
0.7	1.0	3517	108	108
1.0	0.1	4009	11	11
1.0	0.3	3963	34	34
1.0	0.7	3871	80	80
1.0	1.0	3803	114	114
1.4	0.1	4420	12	12
1.4	0.3	4370	37	37
1.4	0.7	4272	86	86
1.4	1.0	4200	122	122

Table S1: The number of atom in the simulation systems.

2 The force field parameters

Atom	σ/nm	$\varepsilon/k.I \text{ mol}^{-1}$	a/e	Bef		
Li ⁺	0.202590	$\frac{67 \text{ for mol}}{7.65672 \times 10^{-2}}$		[1]		
Na ⁺	0.332840	1.15897×10^{-2}	1.0	[1]		
K ⁺	0.472302	1.37235×10^{-3}	1.0	[1]		
Cl-	0440104	4.18400×10^{-1}	-1.0	[1]		
O _w	0.315061	6.36386×10^{-1}	-0.834	[2]		
U W Han	0	0	0.417	[2]		
C_{ara}	0.339967	3.59824×10^{-1}	0	[3]		
C_{con}	0.339967	3.59824×10^{-1}	0.24	[4]		
N_{c_2n}	0.325000	7.11280×10^{-1}	-0.48	[4]		
Bond type			length/nm			
$\overline{\mathrm{C}_{c_2n}-\mathrm{C}_{c_2n}(\mathrm{i})}$	nvolved in pyrazine)		0.143			
C_{c_2n} - C_{c_2n} (p	presented in benzene	rings)	0.147			
C_{c_2n} -N $_{c_2n}$		- ,	0.134			
C_{gra} - C_{gra}			0.142			
Angle typ	be	angle/degre	e			
C_{c_2n} - C_{c_2n}	\mathbb{C}_{c_2n}	120				
C_{c_2n} - N_{c_2n} - C	\mathbb{C}_{c_2n}	120				
N_{c_2n} - C_{c_2n} - C	\mathbb{C}_{c_2n}	120				
C_{gra} - C_{g	Σ_{gra}	120				

Table S2: The Lennard Jones and force field parameters adopted in this work.

3 The dehydration free energy

Table S3: The dehydration free energy of alkali ion in the bulk solution, the water model is TIP3P.

	${ m Li^+/kCal\ mol^{-1}}$	$Na^+/kCal mol^{-1}$	$\rm K^+/kCal\ mol^{-1}$
This work	109.1	83.9	66.5
Joung's work[5]	113.7	88.7	70.7
Åqvist's work[6]	109.5	84.2	67.0

4 The number of water molecules, anion and nitrogen atom in the first coordination shell of cation

Figure S1: The radial distribution function of water molecules around K^+ , Na⁺ and Li⁺ ions at d=0.7 nm (a), 1.0 nm (b) and 1.4 nm (c). The solid and dashed lines represent the case of the alkali ion in the bulk and the nanochannel, respectively. The first peak position from the center of K^+ , Na⁺ and Li⁺ ions are in good agreement with the previous work.[7, 8]

The hydration diameter could be defined as [9]

$$D_{hd}^{3} = \frac{6}{\pi} v_w h + D_{eff}^{3}$$
 (1)

where D_{hd} is the hydration diameter, $v_w (v_w=2.991\times 10^{-29} \text{ m}^3)$ is the volume of a water molecule, h is the hydration factor and D_{eff} is the effective ionic diameter defined as the double difference between the peak position of radial distribution function and the effective radius of a water molecule (0.138 nm). The results is shown in the Table S4, which is good agreement with that of the previous work.

	Li ⁺ /nm	Na^+/nm	K ⁺ /nm
This work	0.79	0.72	0.63
Previous work[10]	0.76	0.72	0.66

Table S4: The hydration diameter of cations

Table S5: The number of oxygen in water, Cl^- and nitrogen in the C_2N membrane within the first coordination shell of alkali ions in the bulk and in the nanochannel, respectively. The radius of the first coordination shell was defined at first minima in the radial distribution function.

d/nm	ı Ion	In the bulk		In the nanochannel		
u/ mm		$Ion-O_w$	Ion-Cl ⁻	$Ion-O_w$	Ion-Cl ⁻	Ion-N
	Li^+	4.3	0.2	3.8	0.2	0.6
0.7	Na^+	5.5	0.2	3.5	0.2	1.2
	K^+	6.5	0.3	2.8	0.1	4.7
	Li^+	4.3	0.2	3.9	0.2	0.2
1.0	Na^+	5.5	0.2	4.4	0.6	0.6
	K^+	6.5	0.3	3.5	0.1	3.8
	Li^+	4.3	0.2	4.3	0.2	0.2
1.4	Na^+	5.5	0.2	5.4	0.2	0.2
	K^+	6.5	0.3	4.9	0.1	3.3

5 The concentration of ions outside the nanochannel

Figure S2: The concentration of ions outside the nanochannel as a function of simulated time at d=1.4 nm.

References

- Alan A Chen and Rohit V Pappu. Parameters of monovalent ions in the amber-99 forcefield: Assessment of inaccuracies and proposed improvements. J. Phys. Chem. B, 111(41):11884–11887, 2007.
- [2] Christopher I. Bayly Ian R. Gould Kenneth M. Merz David M. Ferguson

David C. Spellmeyer Thomas Fox James W. Caldwell Wendy D. Cornell, Piotr Cieplak and Peter A. Kollman. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc., 117(19):5179–5197, 1995.

- [3] M Dahanayaka, B. Liu, Z. Hu, Q. X. Pei, Z. Chen, A. W. Law, and K. Zhou. Graphene membranes with nanoslits for seawater desalination via forward osmosis. *Phys. Chem. Chem. Phys.*, 19(45):30551–30561, 2017.
- [4] Baoyu Li, Weifeng Li, Jose Manuel Perez-Aguilar, and Ruhong Zhou. Mild binding of protein to c2n monolayer reveals its suitable biocompatibility. *Small*, 13(12):1603685, 2017. 1603685.
- [5] In Suk Joung and Thomas E. Cheatham. Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. J. Phys. Chem. B, 112:9020–9041, 2008.
- [6] Johan Aqvist. Ion-water interaction potentials derived from free energy perturbation simulations. J. Phys. Chem., 94:8021–8024, 1990.
- [7] Xiang Liu Xuejiao Hu Bo Chen, Haifeng Jiang. Molecular insight into water desalination across multilayer graphene oxide membranes. ACS Appl. Mater. Interfaces, 9:22826–22836, 2017.
- [8] Yumeng Zhang Qingwei Gao Xiaohua Lu Yang Ruan, Yudan Zhu and Linghong Lu. Molecular dynamics study of mg2+/li+ separation via biomimetic graphene-based nanopores: The role of dehydration in second shell. Langmuir, 32:13778–13786, 2016.
- [9] Yanru Wang Jun Shi Jian Zhou, Xiaohua Lu. Molecular dynamics study on ionic hydration. *Fluid Phase Equilib.*, 194(4):257–270, 2002.
- [10] H. Zhang, J. Hou, Y. Hu, P. Wang, R. Ou, L. Jiang, J. Z. Liu, B. D. Freeman, A. J. Hill, and H. Wang. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. *Sci. Adv.*, 4(2):eaaq0066, 2018.