Supplementary information for:

Microsolvation of Ethyl Carbamate Conformers: Effect of Carrier Gas on the Formation of Complexes.

Pablo Pinacho, ^[a,b] Juan Carlos López, *^[a] Zbigniew Kisiel, ^[c] and Susana Blanco *^[a]

Abstract

Microsolvated complexes of ethyl carbamate with up to three water molecules formed in a supersonic expansion have been characterized by high-resolution microwave spectroscopy. Both chirped-pulse and cavity Fourier transform microwave spectrometers covering the 2-13 GHz frequency range have been used. The structures of the complexes have been characterized and show water molecules closing sequential cycles through hydrogen bonding with the amide group. As happen in the monomer, the ethyl carbamate-water complexes exhibit a conformational equilibrium between two conformers close in energy. The interconversion barrier between both forms has been studied analyzing the spectra obtained using different carrier gas in the expansion. Complexation of ethyl carbamate with water molecules seems apparently not to alter substantially the potential energy function for the interconversion between the two conformations of ethyl carbamate.

List of Figures:

- Figure S1. Conformers predicted for ethyl carbamate I and II complexes with 1 molecule of water.

- Figure S2. Nomenclature of ethyl carbamate-II water complexes.

- Figure S3. Conformers predicted for ethyl carbamate I and II complexes with 2 and 3 molecules of water.

- **Figure S4.** Overlap of potential energy function for the interconversion of ethyl carbamates monomeric forms and water complexes.

- **Figure S5.** Zoom-in into the lower part of the of potential energy function for the interconversion of ethyl carbamate monomeric forms and water complexes.

 [[]a] Dr. P. Pinacho, Prof. S. Blanco, Prof. J. C. López
 Departamento de Química Física y Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, E-47011
 Valladolid, Spain
 E-mail: sblanco@qf.uva.es, jclopez@qf.uva.es

[[]b] Current address Deutsches Elektronen-Synchrotron, Notkestraβe 85, 22607, Hamburg, Germany E-mail: pablo.pinacho@desy.de

 [[]c] Prof. Z. Kisiel
 Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
 E-mail: kisiel@ifpan.edu.pl

List of Tables:

- **Table S1.** Theoretical rotational parameters (B3LYP-GD3/6-311++G(d,p)) for ethyl carbamate I and II complexes with one molecule of water.

- Table S2. Theoretical rotational parameters (B3LYP-GD3/6-311++G(d,p)) for ethyl carbamate I and II with two and three molecules of water.

- **Table S3.** Observed rotational parameters for the ecb-I-w complex for the parent and the observed isotopologue.

- Table S4. Observed rotational parameters for the ecb-I- w_2 complex for the parent and the observed isotopologues.

- Table S5. Observed rotational parameters for the ecb-I-w₃ complex.

- Table S6. Observed rotational parameters for the ecb-II-w complex.

- Table S7. Observed rotational parameters for the ecb-II-w₂ complex.

- Table S8. Observed rotational parameters for the ecb-II-w₃ complex.

- **Table S9.** r_0 structure for the ecb-I-w complex compared to r_e values.

- Table S10. r_0 structure for the ecb-I-w₂ complex compared to r_e values.

- **Table S11.** Experimental and theoretical (B3LYP-GD3/6-311++G(d,p) quadrupole coupling for ethyl carbamate I together with the values of the unbalanced $2p_z$ electronic charge ($(U_p)_z$).

- **Table S12.** Experimental and theoretical (B3LYP-GD3/6-311++G(d,p) quadrupole coupling for ethyl carbamate II together with the values of the unbalanced $2p_z$ electronic charge ($(U_p)_z$).

- **Tables S13-S14.** Observed transition frequencies for the ecb-I-w complex for the parent and the observed isotopologue.

- Tables S15-S17. Observed transition frequencies for the ecb- $1-w_2$ complex for the parent and the observed isotopologue.

- Table S18. Observed transition frequencies for the ecb-I-w₃ complex.

- Table S19. Observed transition frequencies for the ecb-II-w complex.

- Table S20. Observed transition frequencies for the ecb-II-w₂ complex.

- Table S21. Observed transition frequencies for the ecb-II-w₃ complex.

Figure S1. Conformers predicted for ethyl carbamate I (ecb-I) and ethyl carbamate II (ecb-II) complexes with one molecule of water. ΔE is the stabilization energy relative to the most stable complex (ecb-I-w-a) calculated at the B3LYP-GD3/6-311++G(d,p) level of theory including ZPE correction. The corresponding parameters are given in Table S1. Since, only the most stable conformer has been detected, the nomenclature for this complex will be ecb-I-w in the manuscript.

Ecb-II-w-a $\Delta E = 23 \text{ cm}^{-1}$

Ecb-II-w-b $\Delta E = 728 \text{ cm}^{-1}$

Ecb-II-w-c $\Delta E = 825 \text{ cm}^{-1}$

Figure S2. Nomenclature of ethyl carbamate-II water complexes. The projection in which the carbamate disposition present the ethyl chain in the front side and the ethyl chain has and clock angle (ca. 80 degree) the conformers are labeled as G+, if the angle has anti-clock orientation are labelled G-.

Figure S3. Conformers predicted for ethyl carbamate I (ecb-I) and ethyl carbamate II (ecb-II) complexes with two and three molecules of water. ΔE is the stabilization energy relative to the most stable complex (ecb-I-w₂ and ecb-I-w₃) calculated at the B3LYP-GD3/6-311++G(d,p) level of theory including ZPE correction. The corresponding parameters are given in Table S2.

Figure S4. Overlap of Potential Energy function for the interconversion of ethyl carbamate monomeric forms and water complexes at the a) MP2/aug-cc-pVDZ and b) B3LYP-GD3/6-311++G(d,p) levels of theory.

Figure S5. Zoom-in into the lower part of the of potential energy function for the interconversion of ethyl carbamates monomeric forms and water complexes at the a) MP2/aug-cc-pVDZ and b) B3LYP-GD3/6-311++G(d,p) levels of theory.

^a Only values for G+ available ^b Values for G-/G+ separated by slash

7

Parameter ^a	Ecb-I-w-a	Ecb-I-w-b	Ecb-I-w-c	Ecb-II-w-a G-	Ecb-II-w-a G+	Ecb-II-w-b	Ecb-II-w-c
A /MHz	7689.84	2257.73	2338.56	5109.80	5298.30	3052.59	2874.51
<i>B</i> /MHz	1031.44	1922.35	2091.43	1220.31	1203.98	1722.13	1752.29
C /MHz	921.95	1052.07	1123.12	1067.74	1058.60	1210.17	1184.88
₽ _a /uŲ	486.21	259.71	237.76	394.28	400.89	272.76	269.56
₽ _b /uŲ	61.96	220.66	212.22	79.04	76.52	144.85	156.96
₽ _c /uŲ	3.76	3.19	3.89	19.86	18.87	20.70	18.85
μ_a /D	1.56	3.05	1.59	1.16	1.43	3.13	0.62
μ_b /D	0.89	1.04	2.22	1.15	0.66	0.28	2.53
μ_c/D	0.89	0.31	1.07	0.65	1.02	0.29	1.01
14 N χ_{aa} /MHz	1.81	2.77	2.68	1.80	1.74	2.76	2.29
¹⁴ N χ_{bb} /MHz	2.72	2.10	1.91	1.87	2.35	1.70	1.94
¹⁴ N χ_{cc} /MHz	-4.53	-4.88	-4.59	-3.67	-4.10	-4.45	-4.24
<i>∆E</i> /cm ⁻¹	22	863	818	0	0	814	842
ΔE_{ZPE} /cm ⁻¹	0	723	741	23	49	728	825
<i>∆E /</i> kJmol ⁻¹	0.3	10.3	9.8	0.0	0.0	9.7	10.1
⊿E _{zpe} /kJmol ⁻¹	0.0	8.7	8.9	0.3	0.6	8.7	9.9

Table S1. Theoretical rotational parameters calculated at B3LYP-GD3/6-311++G(d,p) level of theory for the ethyl carbamate I (ecb-I) and ethyl carbamate II (ecb-II) complexes with one molecule of water.

^a *A*, *B* and *C* are the rotational constants. P_{α} ($\alpha = a, b$ or *c*) are the planar moments of inertia, these are derived from the moments of inertia I_{α} as for example $P_c = (I_a + I_b - I_c)/2$. μ_{α} ($\alpha = a, b$ or *c*) are the electric dipole moment components, 1 D = 3.33 \cdot 10^{-30} C·m. χ_{aa} , χ_{bb} , and χ_{cc} , are the quadrupole coupling tensor diagonal elements for ¹⁴N atom. ΔE is the energy relative to the most stable conformer. ΔE_{ZPE} is the energy relative to the most stable conformer including zero point energy correction.

Parameter ^a	Ecb-I-w ₂	Ecb-II-w ₂ G-	Ecb-II-w ₂ G+	Ecb-I-w ₃	Ecb-II-w ₃ G-	Ecb-II-w ₃ G+
A /MHz	3793.57	3060.95	3025.03	2260.09	2017.15	1899.24
<i>B</i> /MHz	704.09	802.41	810.67	493.14	543.22	568.28
C/MHz	599.88	676.37	678.06	413.03	452.44	462.15
Ρ /μÅ ²	713 51	605.96	600.84	1012 /0	898.40	858 38
Γ_a/uA	129.06	141.24	144.40	211 10	219.60	225 16
	128.90	141.24	144.49	211.19	210.00	233.10
P_c/UA^2	4.20	23.87	22.57	12.42	31.94	30.93
μ_a/D	1.62	1.42	1.42	1.68	1.60	1.46
μ_b/D	0.47	0.50	0.48	0.08	0.11	0.05
μ_c/D	0.16	0.09	0.20	0.47	0.49	0.43
¹⁴ Ν γ _{αα} /ΜΗτ	1.45	1.42	1.48	1.25	1.09	1.37
¹⁴ Ν γ _{bb} /MHz	2.79	2.68	2.43	2.53	2.62	1.99
$^{14}N \chi_{cc}/MHz$	-4.24	-4.10	-3.92	-3.78	-3.71	-3.36
<i>∆E</i> /cm ⁻¹	20	0	10	15	12	0
ΔE_{ZPE} /cm ⁻¹	0	10	42	0	26	0
⊿E /kJmol ⁻¹	0.2	0.0	0.1	0.2	0.1	0.0
∠ <i>IE</i> _{ZPE} /kJmol ⁻¹	0.0	0.1	0.5	0.0	26	0.0

Table S2. Theoretical rotational parameters calculated at B3LYP-GD3/6-311++G(d,p) level of theory for the ethyl carbamate I (ecb-I) and ethyl carbamate II (ecb-II) complexes with two and three molecules of water.

Fitted Parameters ^a	ecb-I-w	ecb-I-w ¹⁸ O _w	theoretical
A /MHz	7659.94791(44) ^b	7632.97(37)	7689.84
<i>B</i> /MHz	1034.10646(11)	986.93854(11)	1031.44
C/MHz	923.276293(93)	885.14275(12)	921.95
<i>∆</i> _J /kHz	0.1124(13)	[0.1124] ^c	0.098
<i>∆_{JK}</i> /kHz	0.088(13)	[0.088]	-0.193
<i>∆</i> _K /kHz	[0.]	[0.]	22.061
δ_J/kHz	0.01594(58)	[0.01594]	0.011
$\delta_{\kappa}/ ext{kHz}$	[0.]	[0.]	0.321
¹⁴ N 3/2(<i>χ_{aa}</i>) /MHz	2.4588(18)	[2.4588]	2.72
¹⁴ Ν ¼(<i>χ_{bb}-χ_{cc}</i>) /MHz	1.60147(59)	[1.60147]	1.81
n	138/37	25/9	
$\sigma/{ m kHz}$	2.4	1.6	
Derived Parameters			
$P_a / u Å^2$	485.05484(52)	508.4074(32)	486.21
₽ _b /uŲ	62.32085(52)	62.5501(32)	61.96
₽ _c /uŲ	3.65596(52)	3.6598(32)	3.76
¹⁴ N <i>χ_{aa}</i> /MHz	1.6392(12)	[1.6392]	1.81
¹⁴ N χ_{bb} /MHz	2.3833(18)	[2.3833]	2.72
¹⁴ N <i>χ_{cc}</i> /MHz	-4.0225(18)	[-4.0225]	-4.53

Table S3. Observed rotational parameters obtained for the ecb-I-w complex for the parent and the ${}^{18}O_w$ isotopologue compared to B3LYP-GD3/6-311++G(d,p) values.

^a *A*, *B* and *C* are the rotational constants. Δ_J , Δ_{JK} , Δ_K , δ_J and δ_K are the quartic centrifugal distortion constants. χ_{aa} , χ_{bb} and χ_{cc} are the quadrupole coupling tensor diagonal elements for ¹⁴N atom. *n* is the number of quadrupole hyperfine components/rotational transitions fitted. σ is the rms deviation of the fit. P_{α} ($\alpha = a$, *b* or *c*) are the planar moments of inertia, these are derived from the moments of inertia I_{α} as for example $P_c = (I_a + I_b - I_c)/2$. ^b Standard errors are given in parentheses in units of the last digits. ^c Parameters in square brackets were kept fixed to those given for the parent species in the fit.

ecb-I-w ₂	ecb-I-w ₂ ¹⁸ O _{w1}	ecb-I-w ₂ ¹⁸ O _{w2}	theoretical
3734.1586(72)	3599.386(31)	3675.093(47)	3793.57
701.90967(10)	686.889435(79)	680.60559(11)	704.09
597.04077(10)	582.706572(84)	580.11263(11)	599.88
0.05569(31)	[0.05569]	[0.05569]	0.042
0.2351(29)	[0.2351]	[0.2351]	0.161
[0.]	[0.]	[0.]	4.566
0.01043(24)	[0.01043]	[0.01043]	0.007
0.291(33)	[0.291]	[0.291]	0.264
2.0278(58)	[2.0278]	[2.0278]	2.18
1.5582(57)	[1.5582]	[1.5582]	1.76
153/53	25/9	25/9	
1.4	1.5	2.1	
715.56974(31)	731.3195(23)	738.1010(18)	713.51
130.90344(31)	135.9763(23)	133.0728(18)	128.96
4.43601(31)	4.4306(23)	4.4417(18)	4.26
1.3519(39)	[1.3519]	[1.3519]	1.45
2.440(13)	[2.440]	[2.440]	2.79
-3.792(13)	[-3.792]	[-3.792]	-4.24
	ecb-l-w2 $3734.1586(72)$ $701.90967(10)$ $597.04077(10)$ $0.05569(31)$ $0.2351(29)$ $[0.]$ $0.01043(24)$ $0.291(33)$ $2.0278(58)$ $1.5582(57)$ $153/53$ 1.4 $715.56974(31)$ $130.90344(31)$ $4.43601(31)$ $1.3519(39)$ $2.440(13)$ $-3.792(13)$	ecb-l-w2ecb-l-w2 $^{18}O_{w1}$ 3734.1586(72)3599.386(31)701.90967(10)686.889435(79)597.04077(10)582.706572(84)0.05569(31)[0.05569]0.2351(29)[0.2351][0.][0.]0.01043(24)[0.01043]0.291(33)[0.291]2.0278(58)[2.0278]1.5582(57)[1.5582]153/5325/91.41.5715.56974(31)731.3195(23)130.90344(31)135.9763(23)4.43601(31)4.4306(23)1.3519(39)[1.3519]2.440(13)[2.440]-3.792(13)[-3.792]	ecb-l-w2ecb-l-w2 $^{18}O_{w1}$ ecb-l-w2 $^{18}O_{w2}$ 3734.1586(72)3599.386(31)3675.093(47)701.90967(10)686.889435(79)680.60559(11)597.04077(10)582.706572(84)580.11263(11)0.05569(31)[0.05569][0.05569]0.2351(29)[0.2351][0.2351][0.][0.][0.]0.01043(24)[0.01043][0.01043]0.291(33)[0.291][0.291]2.0278(58)[2.0278][1.5582]1.5582(57)[1.5582][1.5582]153/5325/925/91.41.52.1715.56974(31)731.3195(23)738.1010(18)130.90344(31)135.9763(23)133.0728(18)4.43601(31)4.4306(23)4.4417(18)1.3519(39)[1.3519][1.3519]2.440(13)[2.440][2.440]-3.792(13)[-3.792][-3.792]

Table S4. Observed rotational parameters obtained for the ecb-I-w₂ complex for the parent the ${\rm ^{18}O_{w1}}$ and the ${\rm ^{18}O_{w2}}$ isotopologues compared to B3LYP-GD3/6-311++G(d,p) values.

Fitted Parameters ^a	ecb-	I-w ₃	theoretical
	v=0	v=1	
A /MHz	2254.4370(61)	2254.4248(61)	2260.09
<i>B</i> /MHz	486.842445(98)	486.843300(98)	493.14
C /MHz	410.026213(87)	410.027428(87)	413.03
⊿,/kHz	0.0)8650(18)	0.062
Δ_{JK}/kHz	-1	.104(10)	-0.595
<i>∆</i> _K /kHz		[0.]	6.594
δ_{I}/kHz	0.0)1445(21)	0.010
$\delta_{\kappa}/ ext{kHz}$		[0.]	0.217
¹⁴ N 3/2(<i>χ_{aa}</i>) /MHz	1	.734(36)	1.79
¹⁴ N ¼(<i>χ_{bb}−χ_{cc}</i>) /MHz	1.	4378(63)	1.38
n	180	0/30/30	
σ /kHz	2.0	0/1.7/2.2	
Derived Parameters			
<i>P</i> _{a0} ∕uŲ	1023.22858(69)	1023.22523(69)	1012.40
<i>P_{b0}</i> /uŲ	209.32433(69)	209.32402(69)	211.19
P _{c0} /uŲ	14.84648(69)	14.84801(69)	12.42
¹⁴ N <i>χ_{aa}/</i> MHz	1	.156(24)	1.19
¹⁴ N χ_{bb} /MHz	2	.298(25)	2.17
¹⁴ N χ_{cc} /MHz	-3	.454(25)	-3.36

Table S5. Observed rotational parameters obtained for the ecb-l-w $_3$ complex compared to B3LYP-GD3/6-311++G(d,p) values.

5 11 B 3	1 11		
Fitted Parameters ^a	ecd-ll-w	theoretical – G-	theoretical – G+
A /MHz	5196.3808(28)	5109.80	5298.30
<i>B</i> /MHz	1212.1730(10)	1220.31	1203.98
<i>C</i> /MHz	1063.34957(89)	1067.74	1058.60
⊿,/kHz	0.471(34)	0.392	0.337
<i>∆_{JK}</i> /kHz	-2.35(14)	-3.545	-2.120
Δ_{κ}/kHz	[0.]	33.579	25.081
δ_j/kHz	0.076(13)	0.082	0.074
δ_{κ}/kHz	[0.]	0.149	0.427
¹⁴ N 3/2(<i>χ_{aa}</i>) /MHz	2.3891(81)	2.70	2.62
¹⁴ Ν ¼(<i>χ_{bb}-χ_{cc}</i>) /MHz	1.2977(28)	1.38	1.61
Ν	54/16		
$\sigma/ ext{kHz}$	6.6		
Derived Parameters			
$P_a / u Å^2$	397.46735(26)	394.28	400.89
₽ _b /uŲ	77.80345(26)	79.04	76.52
₽ _c /uŲ	19.45251(26)	19.86	18.87
¹⁴ N <i>χ_{aa}</i> /MHz	1.5927(54)	1.80	1.74
¹⁴ N <i>χ_{bb}</i> /MHz	1.799(16)	1.87	2.35
¹⁴ N <i>χ_{cc}</i> /MHz	-3.392(16)	-3.67	-4.10

Table S6. Observed rotational parameters obtained for the ecb-II-w complex compared to B3LYP-GD3/6-311++G(d,p) values.

Fitted Parameters ^a	ecb-II-w ₂	theoretical – G-	theoretical – G+
A /MHz	3023.593(94)	3060.95	3025.03
<i>B</i> /MHz	797.6169(12)	802.41	810.67
C/MHz	672.6464(11)	676.37	678.06
<i>∆</i> ,/kHz	0.168(11)	0.132	0.136
<i>∆_{JK}</i> /kHz	-0.942(62)	-0.561	-0.590
Δ_{κ}/kHz	[0.]	6.122	5.664
δ_J/kHz	0.064(16)	0.028	0.031
$\delta_{\kappa}/ ext{kHz}$	[0.]	0.219	0.253
¹⁴ N 3/2(<i>χ_{aa}</i>) /MHz	2.001(12)	2.13	2.23
¹⁴ Ν ¼(<i>χ_{bb}-χ_{cc}</i>) /MHz	1.503(13)	1.69	1.59
Ν	51/18		
σ /kHz	5.5		
Derived Parameters			
₽ _a /uŲ	608.8977(27)	605.96	600.84
₽ _b /uŲ	142.4317(27)	141.24	144.49
₽ _c /uŲ	24.7135(27)	23.87	22.57
¹⁴ N χ_{aa} /MHz	1.3340(80)	1.42	1.48
¹⁴ N χ_{bb} /MHz	2.339(30)	2.68	2.43
¹⁴ N χ_{cc} /MHz	-3.673(30)	-4.10	-3.92

Table S7. Observed rotational parameters obtained for the ecb-II- w_2 complex compared to B3LYP-GD3/6-311++G(d,p) values.

Fitted Parameters ^a	ecb-II-w ₃	theoretical – G-	theoretical – G+
A /MHz	1885.263(24)	2017.15	1899.24
<i>B</i> /MHz	557.96382(68)	543.22	568.28
C/MHz	458.15647(59)	452.44	462.15
<i>∆</i> _J /kHz	0.2207(32)	0.080	0.184
<i>∆_{JK}</i> /kHz	-1.619(33)	-0.342	-1.146
<i>∆</i> _K /kHz	[0.]	3.816	5.477
δ_J/kHz	0.0392(37)	0.016	0.042
$\delta_{\kappa}/ ext{kHz}$	[0.]	0.180	0.305
¹⁴ N 3/2(<i>χ_{aa}</i>) /MHz	1.900(50)	1.64	2.05
¹⁴ Ν ¼(<i>χ_{bb}-χ_{cc}</i>) /MHz	1.281(22)	1.58	1.34
Ν	76/27		
$\sigma/ ext{kHz}$	6.0		
Derived Parameters			
$P_a / u Å^2$	870.3792(19)	898.41	858.38
₽ _b /uŲ	232.6915(19)	218.60	235.16
$P_c / u Å^2$	35.3766(19)	31.95	30.93
¹⁴ N <i>χ_{aa}</i> /MHz	1.267(33)	1.09	1.37
¹⁴ N χ_{bb} /MHz	1.929(61)	2.62	1.99
¹⁴ N <i>χ_{cc}</i> /MHz	-3.195(61)	-3.71	-3.36

Table S8. Observed rotational parameters obtained for the ecb-II- w_3 complex compared to B3LYP-GD3/6-311++G(d,p) values.

Table S9. r_0 structure obtained by the fitting of the rotational constants for all the available isotopologues for the ecb-l-w complex and comparison with the r_e (B3LYP-GD3/6-311++G(d,p)) structure. Four parameters of ecb-l-w were fitted to six rotational constants (three from the parent and three from the ¹⁸O_{w1} species) achieving a final deviation of the fit of 0.012 uÅ². Geometrical parameters for water fixed to the r_0 values [R. L. Cook, F. C. DeLucia, P. Helminger, *J. Mol. Spectrosc.* **1974**, *53*, 62-76]. The rest of the parameters were fixed to the r_e values, the uncertainties given in parenthesis were obtained from the coordinates uncertainties resulting from the r_0 fitting.

<i>r</i> ₀	r _e	Derived parameter	<i>r</i> ₀	r _e
2.0958(6)	2.079	r(O _{w1} -H _{w1-1})/Å	1.02(1)	0.975
1.83(1)	1.913	∠(O ₁ –C ₁ –N) /°	125.100(8)	125.1
137.66(3)	138.2	∠(H ₁ …O _{w1} −H _{w1-1}) /°	80.3(4)	81.5
-181.5(1)	-175.2	∠(O _{w1} −H _{w1-1} …O ₁) /°	148.4(4)	148.5
	r ₀ 2.0958(6) 1.83(1) 137.66(3) -181.5(1)	r ₀ r _e 2.0958(6) 2.079 1.83(1) 1.913 137.66(3) 138.2 -181.5(1) -175.2	r_0 r_e Derived parameter2.0958(6)2.079 $r(O_{w1}-H_{w1-1})/Å$ 1.83(1)1.913 $\angle(O_1-C_1-N)/^\circ$ 137.66(3)138.2 $\angle(H_1\cdots O_{w1}-H_{w1-1})/^\circ$ -181.5(1)-175.2 $\angle(O_w-H_{w1-1}\cdots O_1)/^\circ$	r_0 r_e Derived parameter r_0 2.0958(6)2.079 $r(O_{w1}-H_{w1-1})/Å$ 1.02(1)1.83(1)1.913 $\angle (O_1-C_1-N)/^\circ$ 125.100(8)137.66(3)138.2 $\angle (H_1\cdots O_{w1}-H_{w1-1})/^\circ$ 80.3(4)-181.5(1)-175.2 $\angle (O_{w1}-H_{w1-1}\cdots O_1)/^\circ$ 148.4(4)

Fixed parameter	<i>r</i> ₀	r _e	Fixed parameter	<i>r</i> ₀	r _e	
<i>r</i> (O ₁ –C ₁) /Å	[1.224]	1.224	$\angle (0_1 - C_1 - O_2 - C_2) /^{\circ}$	[0.0]	0.0	
<i>r</i> (N−C ₁) /Å	[1.352]	1.352	$\angle (C_1 - O_2 - C_2 - C_3) /^{\circ}$	[180.0]	179.8	
<i>r</i> (O₂−C₁) /Å	[1.351]	1.351	\angle (N-C ₁ -O ₂ -C ₂) /°	[180.0]	179.4	
<i>r</i> (O₂−C₂) /Å	[1.448]	1.448	\angle (H ₁ –N–C ₁ –O ₂) /°	[180.0]	175.7	
<i>r</i> (C₂−C₃) /Å	[1.515]	1.515	\angle (H ₂ –N–C ₁ –O ₂) /°	[0.0]	5.7	
<i>r</i> (N−H₁) /Å	[1.013]	1.013	$\angle (C_1 - O_2 - C_2 - H_3) /^{\circ}$	[60.0]	58.4	
<i>r</i> (N−H₂) /Å	[1.005]	1.005	\angle (C ₁ -O ₂ -C ₂ -H ₄) /°	[-60.0]	-58.8	
<i>r</i> (O _{w1} −H _{w1-2}) /Å	[0.965]	0.965	\angle (0 ₂ –C ₂ –C ₃ –H ₅) /°	[60.0]	60.3	
<i>r</i> (C₂−H₃) /Å	[1.092]	1.092	$\angle (O_2 - C_2 - C_3 - H_6) /^{\circ}$	[-60.0]	-60.3	
<i>r</i> (C₂−H₄) /Å	[1.092]	1.092	$\angle (0_2 - C_2 - C_3 - H_7) /^{\circ}$	[180.0]	180.0	
<i>r</i> (C₃−H₅) /Å	[1.092]	1.092	∠(O _{w1} …H ₁ –N–C ₁) /°	[0.0]	-0.8	
<i>r</i> (C₃−H ₆) /Å	[1.092]	1.092				
<i>r</i> (C₃−H ₇) /Å	[1.093]	1.093				
∠(O ₁ −C ₁ −O ₂) /°	[123.4]	123.4	H _{w1-2}			
\angle (O ₂ –C ₁ –N) /°	[111.5]	111.5	O 6 Hw.			
\angle (C ₁ –O ₂ –C ₂) /°	[116.1]	116.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		
\angle (C ₁ –N–H ₁) /°	[117.8]	117.8		0		
∠(C ₁ –N–H ₂) /°	[120.1]	120.1	H ₁ ္က် 🧯	O_1		
\angle (O ₂ –C ₂ –C ₃) /°	[107.1]	107.1	N			
\angle (O ₂ –C ₂ –H ₃) /°	[108.8]	108.8		΄ ¹ Η ₃		
\angle (O ₂ –C ₂ –H ₄) /°	[108.8]	108.8	H_2	H ₄		
\angle (C ₂ –C ₃ –H ₅) /°	[110.9]	110.9	O ₂			
\angle (C ₂ –C ₃ –H ₆) /°	[110.9]	110.9		H	H ₇	
∠(C ₂ –C ₃ –H ₇) /°	[109.7]	109.7		15		
\angle (H _{w1-2} –O _{w1} –H _{w1-1})/°	[104.8]	106.4		$H_6 \cup U_3$		

108.5

 $\angle (H_{w1-1} \cdots O_1 - C_1) /^{\circ}$

[108.5]

Table S10. r_0 structure obtained by the fitting of the rotational constants for all the available isotopologues for the ecb-I-w₂ complex and comparison with the r_e (B3LYP-GD3/6-311++G(d,p)) structure. Five parameters of ecb-I-w₂ were fitted to nine rotational constants (three from the parent, three from the ¹⁸O_{w1} and three from the ¹⁸O_{w2} species) achieving a final deviation of the fit of 0.025 uÅ². Geometrical parameters for water fixed to the r_0 values [R. L. Cook, F. C. DeLucia, P. Helminger, *J. Mol. Spectrosc.* **1974**, *53*, 62-76]. The rest of the parameters were fixed to the r_e values, the uncertainties given in parenthesis were obtained from the coordinates uncertainties resulting from the r_0 fitting.

Fitted parameter	<i>r</i> ₀	r _e	Derived parameter	<i>r</i> ₀	r _e
<i>r</i> (O _{w2} …H ₁) /Å	1.887(7)	1.876	<i>r</i> (H _{w1-1} …O _{w1}) /Å	1.836(5)	1.775
<i>r</i> (H _{w1-1} …O₁) /Å	1.778(1)	1.767	<i>r</i> (O _{w2} …O _{w1}) /Å	2.763(5)	2.722
∠(O _{w2} …H ₁ –N) /°	175.0(6)	174.1	∠(O _{w2} –H _{w1-1} …O _{w1}) /°	160.3(5)	161.0
∠(H _{w1-1} …O ₁ −C ₁) /°	129.5(3)	129.4	∠(H _{w1-1} …O _{w1} –H _{w1-1}) /°	98.6(2)	98.9
\angle (H _{w1-1} ···O ₁ –C ₁ –O ₂) /°	174.0(2)	176.5			
Fixed parameter	<i>r</i> ₀	<i>r</i> e	Fixed parameter	<i>r</i> ₀	r _e
<i>r</i> (O₁−C₁) /Å	[1.227]	1.227	$\angle (0_1 - C_1 - O_2 - C_2) /^{\circ}$	[0.0]	0.2
<i>r</i> (N−C₁) /Å	[1.345]	1.345	\angle (N-C ₁ -O ₂ -C ₂)/°	[-180.0]	-179.6
<i>r</i> (O₂−C₁) /Å	[1.352]	1.352	\angle (C ₁ –O ₂ –C ₂ –C ₃) /°	[180.0]	179.5
<i>r</i> (O₂−C₂) /Å	[1.447]	1.447	\angle (H ₁ -N-C ₁ -O ₂) /°	[-180.0]	-178.0
<i>r</i> (C₂−C₃) /Å	[1.515]	1.515	\angle (H ₂ –N–C ₁ –O ₂) /°	[0.0]	-2.8
<i>r</i> (N−H₁) /Å	[1.021]	1.021	\angle (C ₁ –O ₂ –C ₂ –H ₃) /°	[60.0]	58.2
<i>r</i> (N−H₂) /Å	[1.006]	1.006	\angle (C ₁ –O ₂ –C ₂ –H ₄) /°	[-60.0]	-59.1
<i>r</i> (C₂−H₃) /Å	[1.092]	1.092	\angle (O ₂ -C ₂ -C ₃ -H ₅) /°	[-60.0]	-60.4
<i>r</i> (C₂−H₄) /Å	[1.092]	1.092	\angle (O ₂ -C ₂ -C ₃ -H ₆) /°	[60.0]	60.2
<i>r</i> (C₃−H₅) /Å	[1.092]	1.092	\angle (O ₂ -C ₂ -C ₃ -H ₇) /°	[180.0]	179.9
<i>r</i> (C₃−H ₆) /Å	[1.092]	1.092	∠(O _{w2} …H ₁ –N–C ₁) /°	[16.0]	16.0
<i>r</i> (C₃−H ₇) /Å	[1.093]	1.093	∠(H _{w2-1} −O _{w2} …H ₁ −N) /°	[[-14.5]	-14.5
<i>r</i> (O _{w2} −H _{w2-1}) /Å	[0.965]	0.982	∠(H _{w2-2} –O _{w2} –H _{w2-1} …N) /°	[130.0]	130.0
<i>r</i> (O _{w2} −H _{w2-2}) /Å	[0.965]	0.961	$\angle (O_{w1} - H_{w1-1} - O_1 - C_1) /^{\circ}$	[-10.2]	-10.2
<i>r</i> (O _{w1} −H _{w1-1}) /Å	[0.965]	0.982	\angle (H _{w1-2} –O _{w1} –H _{w1-1} ···O ₁)/°	[-117.7]	-117.7
<i>r</i> (O _{w1} −H _{w1-2}) /Å	[0.965]	0.961			
∠(O ₁ –C ₁ –O ₂) /°	[122.5]	122.5	0		
\angle (O ₂ –C ₁ –N) /°	[111.6]	111.6	$H_{w_{2}}$ $H_{w_{2}}$ $H_{w_{2}}$	W1 2	
\angle (C ₁ –O ₂ –C ₂) /°	[116.3]	116.3	·····	1-2	
\angle (0 ₂ –C ₂ –C ₃) /°	[107.1]	107.1		н_{w1-1}	
\angle (C ₁ –N–H ₁) /°	[120.5]	120.5	U _{w2} ',		
∠(C ₁ –N–H ₂) /°	[119.1]	119.1	🛛 👝 H1 🧰	01	
\angle (O ₂ –C ₂ –H ₃) /°	[108.5]	108.5			
∠(O ₂ –C ₂ –H ₄) /°	[108.5]	108.5		^{'1} H ₃	
\angle (C ₂ –C ₃ –H ₅)/°	[110.8]	110.8	H ₂ \checkmark	H_4	
\angle (C ₂ –C ₃ –H ₆) /°	[110.8]	110.8		$-C_2$	
\angle (C ₂ –C ₃ –H ₇)/°	[109.7]	109.7			
∠(H _{w2-1} –O _{w2} …H ₁) /°	[99.2]	99.2			
\angle (H _{w2-2} –O _{w2} –H _{w2-1}) /°	[104.8]	105.9		$H_6 \subset C_3$	
∠(O _{w1} −H _{w1-1} …O ₁) /°	[170.3]	170.3			
\angle (H _{w1-2} –O _{w1} –H _{w1-1}) /°	[104.8]	106.2			

Table S11. Experimental and theoretical (B3LYP-GD3/6-311++G(d,p)) nuclear quadrupole coupling constants for the ¹⁴N atom of the observed complexes with up to three water molecules for the rotamer ecb-I and values reported for the monomer [reference 11], together with the values of the unbalanced $2p_z$ electronic charge $((U_p)_z)$ both calculated from χ_{cc} and from the natural atomic orbital populations obtained by a Natural Bond Orbital Analysis [reference 47]. The plots represent the correlations between a) experimental values of χ_{cc}/eQq_{210} vs. $-(U_p)_z$. b) Theoretical values of χ_{cc}/eQq_{210} vs. $-(U_p)_z$. c) Theoretical r(C-N) vs. experimental χ_{cc}/eQq_{210} .

The electric field gradient giving rise to nuclear quadrupole coupling of most molecules has been attributed primarily to the unequal filling of the p orbitals of the valence shell of the coupling atoms. According to this, the ¹⁴N χ_{zz} constants can be related to the unbalanced $2p_z$ electronic charge $(U_p)_z = [(n_x + n_y)/2 - n_z]$ by: $\chi_{zz}/eQq_{210} = -(U_p)_z$ (1)

Where n_{α} are the p_{α} orbital occupation numbers and q_{210} the electric field gradient associated to a 2p electron in an isolated atom ($eQq_{210}\approx$ -10 MHz for N). This definition of $(U_{\rho})_z$ is such that its positive or negative values correspond respectively to electron deficit or excess along the *z* reference axis (W. Gordy, R. L. Cook, *Microwave Molecular Spectra*, Wiley, New York, **1984**).

Experimental	Ecb-I	Ecb-I-w	Ecb-I-w ₂	Ecb-I-w ₃
χ_{aa} /MHz	2.1151(14)	1.6392(12)	1.3519(39)	1.156(24)
$\chi_{ m bb}$ /MHz	2.1667(15)	2.3833(18)	2.440(13)	2.298(25)
$\chi_{ m cc}$ /MHz	-4.2818(15)	-4.0225(18)	-3.792(13)	-3.454(25)
$\chi_{\rm cc}/eQq_{210}$	0.42818	0.40225	0.3792	0.3454
Theoretical	Ecb-I	Ecb-I-w	Ecb-I-w ₂	Ecb-I-w ₃
χ_{aa} /MHz	2.39	1.81	1.45	1.25
$\chi_{ m bb}$ /MHz	2.47	2.72	2.79	2.53
$\chi_{ m cc}$ /MHz	-4.86	-4.53	-4.24	-3.78
χ_{ab} /MHz	0.30	0.37	0.36	0.43
$\chi_{\sf ac}$ /MHz	0.44	-0.07	0.12	0.62
$\chi_{ m bc}$ /MHz	0.56	0.43	-0.40	-1.41
χ _{xx} /MHz	2.13	1.69	1.37	1.29
χ_{yy} /MHz	2.80	2.87	2.90	2.88
χ_{zz} /MHz	-4.93	-4.56	-4.27	-4.17
χ_{zz}/eQq_{210}	0.49	0.46	0.43	0.42
-(<i>U</i> _p) _z NBO	0.43	0.39	0.36	0.32

Table S12. Experimental and theoretical (B3LYP-GD3/6-311++G(d,p)) nuclear quadrupole coupling constants for the ¹⁴N atom of the observed complexes with up to three water molecules for the rotamer ecb-II and values reported for the monomer [reference 11], together with the values of the unbalanced $2p_z$ electronic charge (- $(U_p)_z$) both calculated from χ_{cc} and from the natural atomic orbital populations obtained by a Natural Bond Orbital Analysis [reference 47]. The plots represent the correlations between a) experimental values of χ_{cc}/eQq_{210} vs. - $(U_p)_z$. b) Theoretical values of χ_{cc}/eQq_{210} vs. - $(U_p)_z$.

The electric field gradient giving rise to nuclear quadrupole coupling of most molecules has been attributed primarily to the unequal filling of the p orbitals of the valence shell of the coupling atoms. According to this, the ¹⁴N χ_{zz} constants can be related to the unbalanced $2p_z$ electronic charge $(U_p)_z = [(n_x + n_y)/2 - n_z]$ by:

 $\chi_{zz} / eQq_{210} = -(U_p)_z \quad (1)$

Where n_{α} are the p_{α} orbital occupation numbers and q_{210} the electric field gradient associated to a 2p electron in an isolated atom ($eQq_{210}\approx$ -10 MHz for N). This definition of $(U_p)_z$ is such that its positive or negative values correspond respectively to electron deficit or excess along the *z* reference axis (W. Gordy, R. L. Cook, *Microwave Molecular Spectra*, Wiley, New York, **1984**).

Experimental	Ecb-II	Ecb-II-w	Ecb-II-w ₂	Ecb-II-w ₃
χ_{aa} /MHz	1.8923(11)	1.5927(54)	1.3340(80)	1.267(33)
$\chi_{ m bb}$ /MHz	1.8918(11)	1.799(16)	2.339(30)	1.929(61)
$\chi_{\rm cc}$ /MHz	-3.7841(11)	-3.392(16)	-3.673(30)	-3.195(61)
χ_{cc}/eQq_{210}	0.37841	0.3392	0.3673	0.3195

Theoretical		Ecb-II-w	Ecb-II-w	Ecb-II-w ₂	Ecb-II-w ₂	Ecb-II-w ₃	Ecb-II-w ₃
meoretical	ECD-II	G-	G+	G-	G+	G-	G+
χ_{aa} /MHz	2.37	1.80	1.74	1.42	1.48	1.09	1.37
$\chi_{ m bb}$ /MHz	2.26	1.86	2.35	2.67	2.43	2.61	1.99
$\chi_{\rm cc}$ /MHz	-4.62	-3.66	-4.10	-4.09	-3.92	-3.70	-3.36
χ_{ab} /MHz	-0.21	-0.16	-0.28	-0.42	-0.36	0.58	-0.47
$\chi_{\rm ac}$ /MHz	-1.35	-0.96	-1.09	-0.82	0.60	-1.17	-0.14
$\chi_{ m bc}$ /MHz	0.41	2.20	1.31	0.48	-1.36	0.96	-2.16
χ _{xx} /MHz	2.11	1.69	1.66	1.36	1.36	1.28	1.28
χ_{yy} /MHz	2.77	2.86	2.84	2.87	2.87	2.86	2.86
χ_{zz} /MHz	-4.89	-4.55	-4.52	-4.23	-4.25	-4.14	-4.14
χ_{zz}/eQq_{210}	0.49	0.46	0.45	0.42	0.45	0.41	0.41
-(U _p) _z NBO	0.40	0.31	0.34	0.35	0.33	0.32	0.28

$JK_{-1}K_{+1}$	$J^{''}K_{-1}^{''}K_{+1}^{''}$	ŕ	F″	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}^{''}K_{+1}^{''}$	F	F″	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F″	Obs.	Res.
2 _{1,2}	1 _{1,1}	1	1	3802.3333	0.0023			3	2	5878.0376	0.0000			5	4	9503.8966	-0.0007
		3	2	3803.7650	0.0012	3 _{1,2}	2 _{1,1}	3	3	6036.8519	-0.0007			4	3	9503.9061	0.0008
		3	2	3803.7679	0.0041			2	1	6037.3084	0.0011			5	5	9505.4761	-0.0020
		1	0	3804.1166	-0.0013			4	3	6037.5042	-0.0005	5 _{0,5}	4 _{0,4}	4	4	9758.5413	-0.0022
		2	1	3804.3415	-0.0005			3	2	6037.6177	-0.0008			6	5	9759.3250	0.0000
		2	2	3805.0564	-0.0002			2	2	6038.5035	0.0040			4	3	9759.3491	0.0011
2 _{0,2}	1 _{0,1}	1	1	3912.5532	0.0028	4 _{1,4}	3 _{1,3}	3	3	7603.1792	-0.0003			5	4	9759.3802	-0.0002
		3	2	3913.3455	0.0012			5	4	7605.0696	0.0007			5	5	9760.0151	-0.0052
		1	0	3913.7768	-0.0029			4	3	7605.1672	0.0002	5 _{2,4}	4 _{2,3}	4	3	9783.7370	-0.0033
		2	2	3913.8908	0.0026			3	2	7605.1837	0.0023			6	5	9783.7546	0.0011
2 _{1,1}	1 _{1,0}	1	0	4024.1759	-0.0003	4 _{0,4}	3 _{0,3}	3	3	7814.9492	-0.0004			5	4	9783.8771	0.0000
		2	2	4024.7951	0.0006			5	4	7815.7057	0.0010	5 _{2,3}	4 _{2,2}	4	3	9811.2663	-0.0026
		3	2	4025.5631	0.0027			3	2	7815.7452	-0.0015			6	5	9811.2780	0.0011
		2	1	4025.9963	-0.0047			4	3	7815.7545	0.0004			5	4	9811.3535	-0.0002
3 _{1,3}	2 _{1,2}	2	2	5703.1407	0.0002			4	4	7816.3482	0.0036	5 _{1,4}	4 _{1,3}	4	3	10057.7367	-0.0017
		4	3	5704.9527	0.0004	4 _{2,3}	3 _{2,2}	3	2	7828.3103	0.0025			6	5	10057.7772	0.0002
		3	2	5705.1417	-0.0005			5	4	7828.3684	0.0020			5	4	10057.8047	-0.0029
		3	3	5706.4341	-0.0010			4	3	7828.5951	0.0010	6 _{1,6}	5 _{1,5}	7	6	11400.9629	0.0003
3 _{0,3}	2 _{0,2}	2	2	5865.8462	0.0009	4 _{2,2}	3 _{2,1}	3	2	7842.0987	0.0004			5	4	11401.0115	-0.0003
		4	3	5866.5970	0.0012			5	4	7842.1520	0.0005			6	5	11401.0115	0.0012
		3	2	5866.6425	0.0001			4	3	7842.3427	0.0004	6 _{0,6}	5 _{0,5}	7	6	11696.1573	0.0011
		2	1	5866.6896	-0.0015	4 _{1,3}	3 _{1,2}	4	4	8047.7605	-0.0026			5	4	11696.1704	0.0005
		3	3	5867.1804	-0.0058			3	2	8048.2898	-0.0022			6	5	11696.2198	0.0010
3 _{2,2}	2 _{2,1}	2	1	5871.7186	-0.0056			5	4	8048.3646	-0.0008	6 _{2,5}	5 _{2,4}	5	4	11737.9656	-0.0001
		4	3	5872.0251	0.0080			4	3	8048.4152	0.0000			7	6	11737.9656	-0.0010
		3	2	5872.5435	-0.0004			3	3	8049.1730	0.0002			6	5	11738.0467	0.0018
3 _{2,1}	2 _{2,0}	2	1	5877.2441	-0.0069	5 _{1,5}	4 _{1,4}	4	4	9501.9174	-0.0005	6 _{2,4}	5 _{2,3}	7	6	11786.0006	-0.0003
		4	3	5877.5437	0.0058			6	5	9503.8341	0.0003			5	4	11786.0070	0.0018

Table S13. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-I-w complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

Table S13. Continued.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	FŰ	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.
		6	5	11786.0217	-0.0013	2 _{1,1}	2 _{0,2}	2	2	6847.8602	0.0005
61,5	5 _{1,4}	5	4	12065.3149	-0.0011			3	2	6848.6264	0.0002
		7	6	12065.3397	-0.0005			2	1	6848.7075	0.0008
		6	5	12065.3648	0.0000			1	2	6849.0505	0.0023
5 _{0,5}	4 _{1,4}	6	5	3615.3815	0.0007			3	3	6849.1659	0.0046
		5	4	3614.4999	0.0048	3 _{1,2}	3 _{0,3}	3	3	7018.8366	0.0003
		4	3	3615.6521	0.0065			3	2	7019.6376	0.0035
6 _{0,6}	5 _{1,5}	6	5	5806.8166	0.0001			2	3	7019.7153	0.0025
		7	6	5807.7022	-0.0008			4	4	7020.0793	0.0003
		5	4	5807.9098	-0.0002			2	2	7020.5131	0.0017
7 _{0,7}	61,6	7	6	8030.8655	0.0027	4 _{1,3}	4 _{0,4}	4	4	7251.4967	0.0014
		8	7	8031.7255	-0.0016			5	5	7252.7394	0.0011
		6	5	8031.8938	0.0005			3	3	7253.0624	0.0022
1 _{1,1}	O _{0,0}	0	1	8582.0311	-0.0010	5 _{1,4}	5 _{0,5}	5	5	7549.9246	0.0007
		2	1	8583.1034	-0.0010			6	6	7551.1927	0.0003
		1	1	8583.8154	-0.0037			4	4	7551.4503	0.0003
2 _{1,2}	1 _{0,1}	1	1	10428.3625	0.0045	61,5	6 _{0,6}	6	6	7919.0695	0.0019
		3	2	10429.5686	0.0006			7	7	7920.3780	0.0014
		2	1	10430.3705	0.0014			5	5	7920.5957	0.0013
		2	2	10430.8616	0.0008	7 _{1,6}	7 _{0,7}	7	7	8364.6679	0.0032
3 _{1,3}	2 _{0,2}	2	1	12220.9587	-0.0003			8	8	8366.0198	0.0031
		4	3	12221.1769	0.0009			6	6	8366.2107	0.0011
		3	2	12222.1135	-0.0013	81,7	80,8	8	8	8893.0279	0.0047
1 _{1,0}	1 _{0,1}	1	1	6735.2560	0.0000			9	9	8894.4365	0.0015
		1	2	6735.7494	0.0015			7	7	8894.6194	0.0043
		2	1	6736.4614	-0.0012						
		1	0	6736.4872	0.0018						
		2	2	6736.9621	0.0076						
		0	1	6738.2750	0.0020						

$JK_{-1}K_{+1}$	$J''K_{-1}K_{+1}$	ŕ	FŰ	Obs.	Res.
3 _{1,3}	2 _{1,2}	4	3	5462.7346	-0.0002
		3	2	5462.9225	-0.0018
3 _{0,3}	2 _{0,2}	4	3	5611.5641	-0.0007
		3	2	5611.6109	0.0016
3 _{1,2}	2 _{1,1}	4	3	5768.1891	0.0023
		3	2	5768.2966	-0.0033
		2	1	5767.9907	0.0014
4 _{1,4}	3 _{1,3}	5	4	7282.3609	-0.0004
		4	3	7282.4586	0.0000
		3	2	7282.4774	0.0034
40,4	3 _{0,3}	5	4	7476.6779	-0.0012
		4	3	7476.7259	0.0003
		3	2	7476.7259	0.0041
4 _{1,3}	3 _{1,2}	3	2	7689.4615	-0.0003
		5	4	7689.5353	0.0001
		4	3	7689.5844	0.0002
5 _{1,5}	4 _{1,4}	6	5	9100.8424	0.0000
		5	4	9100.9014	-0.0035
		4	3	9100.9159	0.0019
5 _{0,5}	4 _{0,4}	6	5	9337.1655	-0.0010
		4	3	9337.1898	-0.0001
		5	4	9337.2189	0.0008
5 _{1,4}	4 _{1,3}	4	3	9609.6272	0.0003
		6	5	9609.6653	0.0001
		5	4	9609.6937	-0.0011

Table S14. Observed rotational frequencies and residuals (all the values in MHz) for the ¹⁸O_w species of the ecb-I-w complex for $J^{'}K_{-1}K_{+1}F^{'} \leftarrow J^{''}K_{-1}K_{+1}F^{''}$ transitions.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}^{''}K_{+1}^{''}$	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}^{''}K_{+1}^{''}$	F	F	Obs.	Res.
2 _{1,2}	1 _{1,1}	3	2	2492.8792	-0.0027			5	4	6221.3337	-0.0013			6	5	7781.6729	0.0000
		2	1	2493.3695	0.0004			4	3	6221.3337	0.0001	6 _{3,4}	5 _{3,3}	5	4	7807.1168	0.0026
2 _{0,2}	1 _{0,1}	3	2	2595.1920	0.0025	50,5	4 _{0,4}	6	5	6441.7459	-0.0003			7	6	7807.1314	-0.0009
2 _{1,1}	1 _{1,0}	3	2	2702.7495	-0.0007			4	3	6441.7585	-0.0007			6	5	7807.2413	0.0006
3 _{1,3}	2 _{1,2}	4	3	3737.8195	0.0019			5	4	6441.8434	-0.0010	6 _{3,3}	5 _{3,2}	5	4	7809.4936	-0.0018
		3	2	3737.9842	-0.0020	5 _{2,4}	4 _{2,3}	4	3	6488.7288	-0.0024			7	6	7809.5118	-0.0010
3 _{0,3}	2 _{0,2}	4	3	3886.1355	0.0017			6	5	6488.7433	0.0000			6	5	7809.6151	-0.0002
		3	2	3886.2050	0.0014			5	4	6488.8538	0.0005	6 _{2,4}	5 _{2,3}	6	5	7873.2717	-0.0013
		2	1	3886.2050	-0.0004	5 _{3,3}	4 _{3,2}	4	3	6503.3554	0.0046			7	6	7873.3039	-0.0014
3 _{1,2}	2 _{1,1}	2	1	4052.2538	-0.0014			6	5	6503.4025	0.0022			5	4	7873.3133	0.0007
		4	3	4052.4502	0.0001			5	4	6503.5973	0.0033	61,5	5 _{1,4}	5	4	8085.6172	0.0001
		3	2	4052.5465	0.0017	5 _{3,2}	4 _{3,2}	4	3	6504.2457	0.0001			7	6	8085.6435	-0.0009
4 _{1,4}	3 _{1,3}	5	4	4980.7878	0.0035			6	5	6504.2927	-0.0019			6	5	8085.6814	0.0000
		4	3	4980.8800	0.0017			5	4	6504.4836	-0.0017	7 _{1,7}	6 _{1,6}	8	7	8693.0521	0.0007
		3	2	4980.8800	-0.0089	5 _{2,3}	4 _{2,2}	6	5	6541.7089	-0.0009			6	5	8693.0831	-0.0005
4 _{0,4}	3 _{0,3}	5	4	5169.1287	-0.0003			4	3	6541.7089	0.0012			7	6	8693.1008	-0.0004
		3	2	5169.1587	0.0011			5	4	6541.7293	0.0006	7 _{0,7}	6 _{0,6}	8	7	8948.2324	0.0013
		4	3	5169.2117	-0.0006	5 _{1,4}	4 _{1,3}	4	3	6744.6914	-0.0011			6	5	8948.2324	-0.0011
4 _{2,3}	3 _{2,2}	3	2	5193.6018	0.0019			6	5	6744.7336	-0.0009			7	6	8948.3550	0.0000
		5	4	5193.6486	-0.0008			5	4	6744.7721	0.0001	7 _{2,6}	6 _{2,5}	6	5	9071.7807	-0.0011
		4	3	5193.8436	0.0013	6 _{1,6}	5 _{1,5}	7	6	7458.8127	0.0000			8	7	9071.7807	-0.0002
4 _{2,2}	3 _{2,1}	3	2	5220.2625	0.0043			5	4	7458.8539	-0.0033			7	6	9071.8391	0.0000
		5	4	5220.2965	-0.0004			6	5	7458.8685	0.0004	7 _{3,5}	6 _{3,4}	6	5	9112.1299	-0.0024
		4	3	5220.4180	0.0012	6 _{0,6}	5 _{0,5}	7	6	7701.9213	-0.0005			8	7	9112.1394	0.0005
4 _{1,3}	3 _{1,2}	3	2	5399.9646	0.0000			5	4	7701.9294	0.0012			7	6	9112.2030	-0.0001
		5	4	5400.0405	-0.0006			6	5	7702.0339	-0.0002	7 _{3,4}	6 _{3,3}	6	5	9117.4715	-0.0026
		4	3	5400.0886	-0.0007	6 _{2,5}	5 _{2,4}	7	6	7781.5970	-0.0011			8	7	9117.4797	0.0000
5 _{1,5}	4 _{1,4}	6	5	6221.2680	0.0000			5	4	7781.5970	0.0009			7	6	9117.5337	-0.0009

Table S15. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-I-w₂ complex for $J K_{-1} K_{+1} F \leftarrow J K_{-1} K_{+1} F$ transitions.

Table S15. Continued	ł.
----------------------	----

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	FŰ	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	F	F	Obs.	Res.
7 _{2,5}	6 _{2,4}	7	6	9215.9928	-0.0005			8	7	11150.6857	-0.0013			10	9	12922.1243	-0.0012
		8	7	9216.0547	-0.0002			9	8	11150.7153	0.0015	10 _{3,8}	9 _{3,7}	9	8	13033.5654	0.0001
		6	5	9216.0660	0.0017	9 _{0,9}	80,8	10	9	11398.3373	0.0003			11	10	13033.5654	0.0013
7 _{1,6}	6 _{1,5}	6	5	9421.7534	-0.0006			8	7	11398.3373	0.0001			10	9	13033.5805	0.0000
		8	7	9421.7740	0.0000			9	8	11398.4710	-0.0002	10 _{3,7}	9 _{3,6}	10	9	13066.4950	-0.0007
		7	6	9421.8134	-0.0014	9 _{2,8}	82,7	10	9	11642.4313	0.0006			11	10	13066.5102	0.0031
81,8	7 _{1,7}	9	8	9923.7200	-0.0007			8	7	11642.4313	-0.0005			9	8	13066.5102	-0.0001
		7	6	9923.7458	0.0006			9	8	11642.4776	0.0005	10 _{2,8}	9 _{2,7}	10	9	13305.9092	0.0001
		8	7	9923.7682	0.0002	9 _{3,7}	83,6	10	9	11725.5909	-0.0006			11	10	13305.9915	-0.0016
80,8	7 _{0,7}	7	6	10180.1704	0.0000			8	7	11725.5909	-0.0009			9	8	13306.0004	0.0011
		9	8	10180.1704	0.0008			9	8	11725.6165	-0.0002	101,9	9 _{1,8}	9	8	13389.4862	-0.0006
		8	7	10180.3011	0.0000	9 _{3,6}	83,5	10	9	11744.9736	0.0000			11	10	13389.4971	-0.0006
82,7	7 _{2,6}	7	6	10358.8643	-0.0009			8	7	11744.9736	-0.0020			10	9	13389.5607	0.0002
		9	8	10358.8643	0.0006			9	8	11744.9796	0.0011						
		8	7	10358.9186	0.0047	9 _{2,7}	82,6	9	8	11933.9528	-0.0003						
83,6	7 _{3,5}	7	6	10418.3499	-0.0005			10	9	11934.0363	-0.0016						
		9	8	10418.3499	-0.0023			8	7	11934.0469	0.0011						
		8	7	10418.3936	0.0016	9 _{1,8}	81,7	8	7	12075.0301	0.0013						
8 _{3,5}	7 _{3,4}	7	6	10428.9876	-0.0010			10	9	12075.0432	0.0015						
		9	8	10428.9876	-0.0012			9	8	12075.0953	-0.0006						
		8	7	10429.0138	-0.0006	101,10	9 _{1,9}	11	10	12373.8510	0.0005						
82,6	7 _{2,5}	8	7	10569.9180	0.0010			9	8	12373.8644	-0.0013						
		9	8	10569.9947	-0.0002			10	9	12373.8953	0.0000						
		7	6	10570.0056	0.0016	10 _{0,10}	9 _{0,9}	9	8	12604.4093	0.0003						
81,7	7 _{1,6}	7	6	10751.9801	-0.0005			11	10	12604.4093	0.0001						
		9	8	10751.9971	0.0008			10	9	12604.5408	0.0000						
		8	7	10752.0441	0.0010	10 _{2,9}	9 _{2,8}	11	10	12922.0819	0.0006						
9 _{1,9}	81,8	10	9	11150.6694	0.0013			9	8	12922.0819	-0.0023						

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F″	Obs.	Res.
5 _{1,5}	41,4	6	5	6075.9230	0.0003
		5	4	6075.9885	-0.0018
		4	3	6075.9885	0.0004
5 _{0,5}	4 _{0,4}	6	5	6293.5834	-0.0001
		4	3	6293.5951	-0.0012
		5	4	6293.6845	-0.0001
5 _{1,4}	4 _{1,3}	4	3	6595.8623	0.0003
		6	5	6595.9021	-0.0019
		5	4	6595.9412	-0.0010
6 _{1,6}	5 _{1,5}	7	6	7284.2396	0.0006
		5	4	7284.2826	-0.0009
		6	5	7284.2940	-0.0011
6 _{0,6}	5 _{0,5}	7	6	7523.4512	-0.0008
		5	4	7523.4512	-0.0068
61,5	5 _{1,4}	5	4	7906.7799	-0.0011
		7	6	7906.8082	-0.0003
		6	5	7906.8473	0.0005
7 _{1,7}	6 _{1,6}	8	7	8489.1857	0.0018
		7	6	8489.2354	0.0008
7 _{0,7}	6 _{0,6}	8	7	8739.2213	0.0016
		6	5	8739.2213	-0.0007
		7	6	8739.3483	0.0015
7 _{1,6}	61,5	6	5	9212.7619	0.0042
		8	7	9212.7777	0.0000
		7	6	9212.8197	-0.0002

Table S16. Observed rotational frequencies and residuals (all the values in MHz) for the ¹⁸O_{w1} species of the ecb-I-w₂ complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F″	Obs.	Res.
5 _{1.5}	4 _{1.4}	5	4	6041.8857	0.0000
		4	3	6041.8857	0.0009
5 _{0.5}	4 _{0.4}	6	5	6254.2467	0.0002
		4	3	6254.2593	-0.0005
		5	4	6254.3413	-0.0008
5 _{1.4}	4 _{1.3}	4	3	6543.4492	-0.0015
		6	5	6543.4898	-0.0027
		5	4	6543.5274	-0.0018
6 _{1.6}	5 _{1.5}	7	6	7243.9250	0.0002
		5	4	7243.9679	-0.0015
		6	5	7243.9796	0.0001
6 _{0.6}	5 _{0.5}	7	6	7478.8206	0.0005
		5	4	7478.8206	-0.0059
		6	5	7478.9293	-0.0003
6 _{1.5}	5 _{1.4}	7	6	7844.7338	0.0028
		6	5	7844.7743	0.0072
7 _{1.7}	6 _{1.6}	8	7	8442.9348	-0.0008
		6	5	8442.9688	0.0008
		7	6	8442.9861	0.0012
7 _{0.7}	6 _{0.6}	8	7	8690.3887	0.0026
		6	5	8690.3887	0.0000
		7	6	8690.5080	0.0008
7 _{1.6}	6 _{1.5}	6	5	9141.5214	-0.0009
		8	7	9141.5405	-0.0016
		7	6	9141.5806	-0.0011

Table S17. Observed rotational frequencies and residuals (all the values in MHz) for the ¹⁸O_{w2} species of the ecb-I-w₂ complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

Table S18. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-I-w₃ complex in the v = 0 and v = 1 vibrational states for $JK_{-1}K_{+1}vF \leftarrow JK_{-1}K_{+1}vF$ transitions.

$JK_{-1}K_{+1}$	$J''K_{-1}K_{+1}$	v	ŕ	FŰ	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	v	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	v	F	F	Obs.	Res.
6 _{1,6}	5 _{1,5}	0	7	6	5132.4223	0.0008			1	7	6	5590.6039	0.0019			0	7	6	6511.5623	-0.0026
		0	5	4	5132.4673	0.0058			1	6	5	5590.6424	-0.0005			1	6	5	6511.5190	0.0076
		0	6	5	5132.4761	-0.0003	7 _{1,7}	61,6	0	8	7	5979.9326	0.0000			1	8	7	6511.5324	0.0011
		1	7	6	5132.4350	0.0000			0	6	5	5979.9615	0.0002			1	7	6	6511.5772	-0.0010
		1	5	4	5132.4761	0.0011			0	7	6	5979.9861	0.0030	8 _{1,8}	7 _{1,7}	0	9	8	6824.4004	0.0015
		1	6	5	5132.4917	0.0017			1	8	7	5979.9470	-0.0013			0	7	6	6824.4184	-0.0021
6 _{0,6}	5 _{0,5}	0	7	6	5297.9925	-0.0008			1	6	5	5979.9705	-0.0065			0	8	7	6824.4487	0.0014
		0	5	4	5297.9925	-0.0037			1	7	6	5980.0002	0.0013			1	9	8	6824.4184	0.0014
		0	6	5	5298.1181	0.0005	7 _{0,7}	6 _{0,6}	0	8	7	6148.2422	-0.0008			1	7	6	6824.4372	-0.0014
		1	7	6	5298.0066	0.0006			0	6	5	6148.2422	-0.0013			1	8	7	6824.4666	0.0012
		1	5	4	5298.0066	-0.0022			0	7	6	6148.3776	0.0002	80,8	7 _{0,7}	0	9	8	6987.0686	-0.0014
		1	6	5	5298.1304	0.0002			1	8	7	6148.2574	-0.0004			0	7	6	6987.0686	-0.0009
6 _{2,5}	5 _{2,4}	0	5	4	5370.1514	-0.0001			1	6	5	6148.2574	-0.0009			0	8	7	6987.2067	-0.0014
		0	7	6	5370.1514	-0.0027			1	7	6	6148.3912	-0.0009			1	9	8	6987.0856	-0.0015
		0	6	5	5370.2223	-0.0010	7 _{2,6}	6 _{2,5}	0	6	5	6258.9883	-0.0008			1	7	6	6987.0856	-0.0009
		1	5	4	5370.1645	0.0004			0	8	7	6258.9883	-0.0010			1	8	7	6987.2268	0.0016
		1	7	6	5370.1645	-0.0020			0	7	6	6259.0437	-0.0018	82,7	7 _{2,6}	0	9	8	7144.9923	0.0014
		1	6	5	5370.2352	-0.0005			1	6	5	6259.0031	-0.0006			0	7	6	7144.9923	-0.0014
6 _{2,4}	5 _{2,3}	0	6	5	5453.2147	0.0008			1	8	7	6259.0031	-0.0008			0	8	7	7145.0406	0.0005
		0	7	6	5453.2607	-0.0037			1	7	6	6259.0590	-0.0011			1	9	8	7145.0073	-0.0001
		0	5	4	5453.2729	0.0007	7 _{2,5}	6 _{2,4}	0	7	6	6388.5315	-0.0016			1	7	6	7145.0073	-0.0030
		1	6	5	5453.2323	0.0061			0	8	7	6388.6058	-0.0019			1	8	7	7145.0553	-0.0014
		1	7	6	5453.2813	0.0046			0	6	5	6388.6168	0.0001	82,6	7 _{2,5}	0	8	7	7332.3411	-0.0005
		1	5	4	5453.2874	0.0030			1	7	6	6388.5456	-0.0017			0	9	8	7332.4272	0.0006
6 _{1,5}	5 _{1,4}	0	5	4	5590.5654	0.0017			1	8	7	6388.6191	-0.0028			0	7	6	7332.4373	0.0027
		0	7	6	5590.5918	0.0011			1	6	5	6388.6311	0.0001			1	8	7	7332.3552	-0.0026
		0	6	5	5590.6293	-0.0022	7 _{1,6}	61,5	0	6	5	6511.4976	-0.0004			1	9	8	7332.4455	0.0027
		1	5	4	5590.5773	0.0022			0	8	7	6511.5190	0.0010			1	7	6	7332.4507	0.0000

Table S18. Continued.

$JK_{-1}K_{+1}$	$J'K_{-1}K_{+1}$	v	ŕ	F	Obs.	Res.	$\int K_{-1} K_{+1}$	$J^{''}K_{-1}K_{+1}$	v	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	v	F	FŰ	Obs.	Res.
81,7	7 _{1,6}	0	7	6	7426.7362	0.0000			1	10	9	8282.8414	-0.0044			0	9	8	9237.0562	-0.0009
		0	9	8	7426.7515	-0.0003			1	8	7	8282.8511	-0.0008			1	10	9	9236.9988	0.0022
		0	8	7	7426.8072	0.0001	9 _{1,8}	81,7	0	8	7	8334.9995	-0.0003			1	11	10	9237.0719	-0.0010
		1	7	6	7426.7515	0.0000			0	10	9	8335.0154	0.0020			1	9	8	9237.0778	0.0008
		1	9	8	7426.7671	0.0000			0	9	8	8335.0799	0.0016	10 _{1,9}	9 _{1,8}	0	9	8	9234.8897	0.0029
		1	8	7	7426.8216	-0.0006			1	8	7	8335.0154	-0.0016			0	11	10	9234.8973	-0.0012
9 _{1,9}	8 _{1,8}	0	10	9	7665.7711	0.0011			1	10	9	8335.0284	-0.0021			0	10	9	9234.9760	0.0017
		0	8	7	7665.7848	-0.0020			1	9	8	8335.0952	-0.0001			1	9	8	9234.9089	0.0030
		0	9	8	7665.8185	0.0015	101,10	9 _{1,9}	0	11	10	8504.1014	-0.0007			1	11	10	9234.9159	-0.0017
		1	10	9	7665.7923	0.0019			0	9	8	8504.1164	0.0004			1	10	9	9234.9943	0.0009
		1	8	7	7665.8052	-0.0020			0	10	9	8504.1508	0.0028	11 _{1,11}	10 _{1,10}	0	12	11	9339.5438	-0.0010
		1	9	8	7665.8395	0.0021			1	11	10	8504.1285	0.0036			0	10	9	9339.5571	0.0012
9 _{0,9}	8 _{0,8}	0	10	9	7815.8974	-0.0010			1	9	8	8504.1361	-0.0025			0	11	10	9339.5904	0.0010
		0	8	7	7815.8974	-0.0041			1	10	9	8504.1716	0.0009			1	12	11	9339.5701	0.0002
		0	9	8	7816.0356	-0.0007	10 _{0,10}	9 _{0,9}	0	11	10	8636.9773	-0.0016			1	10	9	9339.5831	0.0022
		1	10	9	7815.9161	-0.0016			0	9	8	8636.9773	-0.0009			1	11	10	9339.6165	0.0021
		1	8	7	7815.9161	-0.0047			0	10	9	8637.1052	-0.0002	11 _{0,11}	10 _{0,10}	0	12	11	9452.8708	-0.0028
		1	9	8	7816.0551	-0.0005			1	11	10	8636.9996	-0.0010			0	10	9	9452.8708	-0.0045
9 _{2,8}	82,7	0	10	9	8027.8006	0.0010			1	9	8	8636.9996	-0.0002			0	11	10	9452.9855	-0.0037
		0	8	7	8027.8006	0.0013			1	10	9	8637.1264	-0.0007			1	12	11	9452.8965	-0.0012
		0	9	8	8027.8499	0.0020	10 _{2,9}	9 _{2,8}	0	11	10	8907.0669	0.0019			1	10	9	9452.8965	-0.0028
		1	10	9	8027.8180	-0.0002			0	9	8	8907.0669	0.0013			1	11	10	9453.0127	-0.0005
		1	8	7	8027.8180	0.0000			0	10	9	8907.1136	0.0012	11 _{2,10}	10 _{2,9}	0	12	11	9782.4917	0.0038
		1	9	8	8027.8669	0.0003			1	11	10	8907.0876	0.0018			0	10	9	9782.4917	0.0033
9 _{2,7}	82,6	0	9	8	8282.7422	-0.0009			1	9	8	8907.0876	0.0012			0	11	10	9782.5347	-0.0011
		0	10	9	8282.8250	-0.0028			1	10	9	8907.1344	0.0012			1	12	11	9782.5139	0.0030
		0	8	7	8282.8331	-0.0008	10 _{2,8}	9 _{2,7}	0	10	9	9236.9771	0.0004			1	10	9	9782.5139	0.0025
		1	9	8	8282.7565	-0.0046			0	11	10	9237.0517	-0.0013			1	11	10	9782.5556	-0.0031

Table S18. Continued.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	v	ŕ	FŰ	Obs.	Res.
11 _{2,9}	10 _{2,8}	0	11	10	10191.9160	-0.0005
		0	12	11	10191.9798	0.0006
		0	10	9	10191.9798	-0.0014
		1	11	10	10191.9399	0.0017
		1	12	11	10191.9988	-0.0020
		1	10	9	10191.9988	-0.0041
11 _{1,10}	10 _{1,9}	0	10	9	10124.9342	0.0013
		0	12	11	10124.9442	0.0007
		0	11	10	10125.0316	0.0007
		1	10	9	10124.9556	0.0017
		1	12	11	10124.9639	-0.0006
		1	11	10	10125.0516	-0.0002

$JK_{-1}K_{+1}$	$J'K_{-1}K_{+1}$	ŕ	FŰ	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.
1 _{0,1}	0 _{0,0}	0	1	2274.7162	-0.0081	3 _{1,2}	2 _{1,1}	2	1	7046.9842	-0.0044
		2	1	2275.4418	0.0007			4	3	7047.1497	-0.0004
		1	1	2275.9202	0.0013			3	2	7047.2693	-0.0021
2 _{1,2}	1 _{1,1}	3	2	4402.0643	-0.0018	3 _{0,3}	2 _{1,2}	2	2	2969.4752	0.0105
		1	0	4402.2719	0.0018			3	2	2970.2884	0.0011
		2	1	4402.6252	0.0083			4	3	2970.7689	0.0008
		2	2	4403.1645	0.0082			2	1	2971.1647	0.0043
2 _{0,2}	1 _{0,1}	1	1	4546.1221	0.0036			3	3	2971.3706	-0.0068
		3	2	4546.8944	-0.0031	4 _{0,4}	3 _{1,3}	4	3	5430.6961	0.0086
		2	1	4546.9538	-0.0080			5	4	5431.2809	0.0071
		1	0	4547.3124	-0.0005			3	2	5431.5264	-0.0161
		2	2	4547.4337	-0.0060	1 _{1,0}	1 _{0,1}	1	2	4132.2702	0.0027
2 _{1,1}	1 _{1,0}	1	0	4698.6173	0.0026			1	0	4132.9751	-0.0090
		3	2	4699.8205	0.0012			2	2	4133.2929	0.0080
		2	1	4700.2554	-0.0032			0	1	4134.3325	-0.0009
		1	1	4701.1592	0.0007	2 _{1,1}	2 _{0,2}	2	2	4285.0857	-0.0006
3 _{1,3}	2 _{1,2}	4	3	6600.7096	0.0044			3	3	4286.2095	0.0027
		2	1	6600.8481	-0.0170			1	1	4286.8369	0.0073
		3	2	6600.9004	0.0125	4 _{1,3}	4 _{0,4}	4	4	4852.1304	-0.0026
3 _{0,3}	2 _{0,2}	4	3	6810.1419	0.0025			5	5	4853.2172	0.0004
		3	2	6810.2021	-0.0042			3	3	4853.4934	-0.0022
3 _{2,2}	2 _{2,1}	2	1	6826.1683	-0.0067	3 _{1,2}	3 _{0,3}	3	3	4522.1508	-0.0006
		4	3	6826.4673	0.0078			4	4	4523.2179	0.0002
		3	2	6826.9866	0.0151			2	2	4523.5927	0.0017
3 _{2,1}	2 _{2,0}	2	1	6842.5486	0.0044	5 _{1,4}	5 _{0,5}	5	5	5286.4076	0.0002
		4	3	6842.7994	-0.0185			6	6	5287.5396	0.0018
		3	2	6843.2785	-0.0034			4	4	5287.7685	0.0003

Table S19. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-II-w complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

Table S20. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-II-w₂ complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	$F^{''}$	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	$F^{''}$	Obs.	Res.
2 _{1,2}	1 _{1,1}	3	2	2815.4147	0.0035	4 _{2,3}	3 _{2,2}	3	2	5876.9458	-0.0122
		1	0	2815.8066	-0.0014			5	4	5877.0026	-0.0057
		2	1	2815.8873	-0.0030			4	3	5877.1982	-0.0050
2 _{0,2}	1 _{0,1}	3	2	2935.3681	0.0024	4 _{3,2}	3 _{3,1}	3	2	5890.6978	0.0099
		2	1	2935.4486	0.0021			5	4	5890.8419	0.0052
		1	0	2935.6898	-0.0088			4	3	5891.2132	0.0050
2 _{1,1}	1 _{1,0}	3	2	3065.4751	-0.0017	4 _{2,2}	3 _{2,1}	5	4	5927.6798	0.0019
		2	1	3065.8301	0.0031			4	3	5927.7573	-0.0045
3 _{1,3}	2 _{1,2}	4	3	4220.1222	0.0033	4 _{1,3}	3 _{1,2}	3	2	6120.2303	0.0017
		3	2	4220.2974	0.0071			5	4	6120.3095	0.0052
		2	1	4220.2974	-0.0041			4	3	6120.3670	0.0040
3 _{0,3}	2 _{0,2}	4	3	4390.3320	0.0023	5 _{1,5}	4 _{1,4}	6	5	7017.7618	-0.0058
		3	2	4390.4276	-0.0006			4	3	7017.8462	0.0164
3 _{2,2}	2 _{2,1}	2	1	4410.4490	-0.0118			5	4	7017.8462	0.0022
		4	3	4410.6933	-0.0057	5 _{0,5}	4 _{0,4}	6	5	7251.3879	0.0000
		3	2	4411.1322	0.0043			4	3	7251.3879	-0.0084
3 _{2,1}	2 _{2,0}	2	1	4430.9087	0.0036			5	4	7251.5342	0.0044
		4	3	4431.1210	-0.0041	5 _{2,4}	4 _{2,3}	6	5	7339.8609	-0.0105
		3	2	4431.4684	-0.0029			4	3	7339.8609	0.0030
3 _{1,2}	2 _{1,1}	2	1	4594.7673	0.0006			5	4	7339.9759	-0.0116
		4	3	4594.9567	-0.0001	5 _{2,3}	4 _{2,2}	6	5	7439.6854	-0.0009
		3	2	4595.0571	-0.0004			5	4	7439.6854	0.0179
4 _{1,4}	3 _{1,3}	5	4	5621.1989	0.0034			4	3	7439.6854	-0.0020
		3	2	5621.2964	0.0014						
		4	3	5621.2964	0.0001						
4 _{0,4}	3 _{0,3}	5	4	5830.3222	-0.0054						
		3	2	5830.3623	0.0119						
		4	3	5830.4501	0.0015						

Table S21. Observed rotational frequencies and residuals (all the values in MHz) for the parent species of the ecb-II-w₃ complex for $JK_{-1}K_{+1}F \leftarrow JK_{-1}K_{+1}F$ transitions.

$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	ŕ	F	Obs.	Res.	$JK_{-1}K_{+1}$	$J^{''}K_{-1}K_{+1}$	F	F	Obs.	Res.
3 _{1,3}	2 _{1,2}	4	3	2895.2719	0.0005	5 _{2,3}	4 _{2,2}	5	4	5172.2936	-0.0159	7 _{0,7}	6 _{0,6}	8	7	6850.4824	0.0044
		3	2	2895.4329	-0.0003			4	3	5172.3452	0.0034			6	5	6850.4824	0.0028
		2	1	2895.4329	0.0072			6	5	5172.3452	0.0050			7	6	6850.6327	-0.0018
3 _{0,3}	2 _{0,2}	4	3	3026.7290	0.0030	5 _{1,4}	4 _{1,3}	4	3	5304.2547	-0.0071	7 _{2,6}	6 _{2,5}	6	5	7070.6842	0.0032
		3	2	3026.8270	-0.0064			6	5	5304.3040	0.0057			8	7	7070.6842	0.0023
3 _{1,2}	2 _{1,1}	2	1	3194.3978	0.0000			5	4	5304.3602	0.0025			7	6	7070.7539	0.0009
		4	3	3194.5675	0.0062	6 _{1,6}	5 _{1,5}	7	6	5758.6793	0.0029	7 _{3,5}	6 _{3,4}	8	7	7146.9228	-0.0090
		3	2	3194.6643	0.0007			6	5	5758.7482	0.0062			6	5	7146.9228	-0.0025
4 _{1,4}	3 _{1,3}	5	4	3854.4749	-0.0059	6 _{0,6}	5 _{0,5}	7	6	5922.2588	0.0011	7 _{3,4}	6 _{3,3}	6	5	7169.5455	-0.0080
		3	2	3854.5731	0.0068			5	4	5922.2588	-0.0031			6	7	7169.5455	-0.0026
		4	3	3854.5731	-0.0051			6	5	5922.4146	-0.0041			7	6	7169.5899	0.0094
4 _{0,4}	3 _{0,3}	3	2	4011.1289	-0.0180	6 _{2,5}	5 _{2,4}	7	6	6072.2460	-0.0048	7 _{2,5}	6 _{2,4}	7	6	7332.0412	0.0016
		5	4	4011.1289	0.0012			5	4	6072.2460	-0.0006			6	5	7332.1190	-0.0082
		4	3	4011.2535	-0.0058			6	5	6072.3368	0.0016			8	7	7332.1190	-0.0012
4 _{2,3}	3 _{2,2}	3	2	4060.1557	-0.0047	6 _{3,4}	5 _{3,3}	5	4	6121.5727	0.0185	7 _{1,6}	6 _{1,5}	8	7	7378.8746	-0.0011
		5	4	4060.2139	0.0050			7	6	6121.5727	0.0015			6	5	7378.8746	0.0183
4 _{1,3}	3 _{1,2}	3	2	4252.5545	-0.0054			6	5	6121.6624	-0.0040			7	6	7378.9481	-0.0063
		5	4	4252.6289	0.0044	6 _{3,3}	5 _{3,2}	5	4	6131.7295	-0.0111	80,8	7 _{0,7}	9	8	7766.0969	0.0082
		4	3	4252.6931	0.0050			7	6	6131.7623	0.0075			7	6	7766.0969	0.0048
5 _{1,5}	4 _{1,4}	6	5	4809.1184	-0.0041			6	5	6131.8277	-0.0019			8	7	7766.2247	-0.0070
		4	3	4809.2011	0.0252	6 _{2,4}	5 _{2,3}	6	5	6246.2693	0.0076						
		5	4	4809.2011	0.0034			7	6	6246.3340	0.0015						
5 _{0,5}	4 _{0,4}	4	3	4976.5887	-0.0042			5	4	6246.3340	-0.0063						
		6	5	4976.5887	0.0023	6 _{1,5}	5 _{1,4}	5	4	6347.2507	-0.0117						
		5	4	4976.7378	0.0004			7	6	6347.2964	0.0089						
5 _{2,4}	4 _{2,3}	6	5	5068.4788	-0.0039			6	5	6347.3562	0.0023						
		4	3	5068.4788	0.0083	7 _{1,7}	61,6	8	7	6702.9396	-0.0088						
		5	4	5068.5976	0.0017			7	6	6703.0117	0.0026						