Supporting Information Part 2/2 (SI2/2) for

Accessing Distributions of Exchange and Dipolar Couplings in Stiff Molecular Rulers with Cu(II) centres

K. Keller,^a I. Ritsch,H. Hintz,^b M. Hülsmann,^b M. Qi,^b F. Breitgoff,^a D. Klose,^a Y. Polyhach,^{a,*} M. Yulikov,^{a,*} A. Godt,^{b,*} G. Jeschke^a

^aLaboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland. ^bFaculty of Chemistry and Center for Molecular Materials (CM₂), Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany

NMR spectra

Figure S5. ¹H NMR spectrum of I-P-NO• 7. *CH₂Cl₂, **water, ***Et₂O.

Figure S6. ¹H NMR spectrum of TMS-(EP)₄-NO• 9. *H₂O, **HDO.

Figure S7. ¹³C NMR spectrum of TMS-(EP)₄-NO• 9.

Figure S8. DEPT 135 NMR spectrum of TMS-(EP)4-NO• 9.

Figure S9. HMQC NMR spectrum of TMS-(EP)₄-NO• 9.

Figure S10. HMBC NMR spectrum of TMS-(EP)₄-NO• 9.

Figure S11. ¹H NMR spectrum of H-(EP)₄-NO• 10. *H₂O, **HDO.

Figure S12. ¹³C NMR spectrum of H-(EP)₄-NO• 10.

Figure S13. DEPT-135 NMR spectrum of H-(EP)₄-NO• 10.

Figure S14. HMQC NMR spectrum of H-(EP)₄-NO• 10.

Figure S15. HMBC NMR spectrum of H-(EP)₄-NO• 10.

Figure S16. ¹H NMR spectrum of PyMTAester-(EP)₄-NO• **12**. *Signals of a compound containing the PyMTA ethyl ester moiety (about 5 mol%), possibly 4-chloro-PyMTA ethyl ester; **water.

Figure S17. ¹H NMR spectrum of PyMTAester-(EP)₄-NO• **12**. *Signals of a compound containing the PyMTA ethyl ester moiety, possibly 4-chloro-PyMTA ethyl ester.

Figure S18. DEPT-135 NMR spectrum of PyMTAester-(EP)₄-NO• 12.

Figure S19. HMQC NMR spectrum of PyMTAester-(EP)₄-NO• 12.

Figure S20. HMBC NMR spectrum of PyMTAester-(EP)4-NO• 12.

Figure S21. ¹H NMR spectrum of desilylated PyMTAester-(EP)₄-NO• **13**. *Signals of a compound containing the PyMTA ethyl ester, possibly 4-chloro-PyMTA ethyl ester. **water

Figure S22. ¹H NMR spectrum of PEGylated PyMTAester-(EP)₄-NO• 15. *H₂O, **HDO.

Figure S23. ¹³C NMR spectrum of PEGylated PyMTAester-(EP)₄-NO• 15.

Figure S24. DEPT-135 NMR spectrum of PEGylated PyMTAester-(EP)₄-NO• 15.

Figure S25. HMQC NMR spectrum of PEGylated PyMTAester-(EP)4-NO• 15.

Figure S26. HMBC NMR spectrum of PEGylated PyMTAester-(EP)₄-NO• 15.

Figure S27. ¹H NMR spectrum of H₂Na₂[PyMTA-(EP)₄-NO•] 16.

Figure S28. ¹H NMR spectrum of TAHAester-EPE-TMS 18. *Ph₃P=O

Figure S29. ¹³C NMR spectrum of TAHAester-EPE-TMS 18. *Ph₃P=O

Figure S30. DEPT-135 NMR spectrum of TAHAester-EPE-TMS 18.

Figure S31. HMQC NMR spectrum of TAHAester-EPE-TMS 18.

Figure S32. HMBC NMR spectrum of TAHAester-EPE-TMS 18.

Figure S33. ¹H NMR spectrum of TAHAester-EPE-H 19.

Figure S34. ¹³C NMR spectrum of TAHAester-EPE-H 19.

Figure S35. DEPT-135 NMR spectrum of TAHAester-EPE-H 19.

Figure S36. HMQC NMR spectrum of TAHAester-EPE-H 19.

Figure S37. HMBC NMR spectrum of TAHAester-EPE-H 19.

Figure S38. ¹H NMR spectrum of TAHAester-EPBPE-TAHAester 20.

Figure S39. ¹³C NMR spectrum of TAHAester-EPBPE-TAHAester 20.

Figure S40. DEPT-135 NMR spectrum of TAHAester-EPBPE-TAHAester 20.

Figure S41. HMQC NMR spectrum of TAHAester-EPBPE-TAHAester 20.

Figure S42. HMBC NMR spectrum of TAHAester-EPBPE-TAHAester 20.

Figure S43. ¹H NMR spectrum of desilylated TAHAester-EPBPE-TAHAester 21. *THF, **water, ***Bu₄N-salt, ****TIPS-OH and/or TIPS-F.

Figure S44. ¹H NMR spectrum of PEGylated TAHAester-EPBPE-TAHAester 22. *grease.

Figure S45. ¹³C NMR spectrum of PEGylated TAHAester-EPBPE-TAHAester 22. *grease.

Figure S46. DEPT-135 NMR spectrum of PEGylated TAHAester-EPBPE-TAHAester 22. *grease.

Figure S47. HMQC NMR spectrum of PEGylated TAHAester-EPBPE-TAHAester 22.

Figure S48. HMBC NMR spectrum of PEGylated TAHAester-EPBPE-TAHAester 22.

Figure S49. Cutout of ¹H NMR spectrum (10 ppm – 5 ppm) of H_xNa_{12-x}[TAHA-EPBPE-TAHA] **23** at pD 1.6 (top), pD 5.0 middle, and pD 1.3 (bottom).

Figure S50. Cutout of ¹H NMR spectrum (5 ppm – 0 ppm) of H_xNa_{12-x}[TAHA-EPBPE-TAHA] **23** at pD 1.6 (top), pD 5.0 middle, and pD 1.3 (bottom).

Figure S51. ¹H NMR spectrum of H_xNa_{12-x}[TAHA-EPBPE-TAHA] **23** at pD 1.6. *Signal of unidentified component which was only found in the spectra of solutions with pH 1.3 and 1.6, but not in the spectrum of a solution with pH 5.0.