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S1. The effect of Helium on plasma chemistry

Practically, helium must be avoided for economic reason. The role of helium is “diluent gas” (or called
“balance gas”) in plasma-assisted DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy)
experiment. The diluent gas is necessary in IR experiment to dilute the reaction gases. Otherwise, the high
concentration of reaction gases will lead an uncontrollable signal saturation of IR spectra [1], which is not
favor for in situ measurement. Another technical reason is that helium can decrease the applied voltage
significantly which minimizes electromagnetic noise during plasma-DRIFTS experiment. There are some

similar plasma-IR studies with diluent gas, e.g., helium [2], and argon [1, 3, 4].

The important gas phase plasma chemistry is the secondary reactions induced by metastable helium.
Because the excitation threshold of metastable helium is high (19.84 ¢V), Penning ionization of CO, (or
CH,), stepwise ionization of metastable helium, and the charge transfer of He* ions with CO, (or CHy)
become significant besides electron impact inelastic collision [5, 6]. Although electron density increases by
metastable helium, it does not produce vibrationally excited species.

Yuan et al performed numerical simulation of atmospheric pressure homogeneous helium discharge
with a trace N, [6]. The largest electric field was formed in the plasma sheath, showing 4 kV/cm which
corresponds to the reduced electric field of 20 Td at 600 Torr and 300 K [6]. The mean electron energy in
the plasma sheath is as high as 3 eV and it would be around 1 eV in the bulk region. In the case of DBD
(dielectric barrier discharge), streamer breakdown occurs which would create larger electric field than
homogeneous glow-like discharge. Ramakers et al studied discharge behavior of helium and argon DBD
with a trace CO, (5 vol%) [7]. The gas breakdown voltage decreases remarkably due to the contribution of
metastable species. Moreover, CO, conversion behavior in Ar and He is essentially unchanged, indicating

that mean electron energy is smaller than 5 eV. In overall, helium would increase electron number density



via metastable species, but mean electron energy and thus electron collision kinetics would not change to a

large extent.

S2. Ex situ CO,-temperature programmed desorption

Ex situ CO,-TPD (temperature programmed desorption) was performed in a quartz tube
reactor, a temperature controllable furnace and a quadruple mass spectrometer (QMS, Prisma-
100; Pfeiffer Vacuum GmbH), which are depicted in Figure S1 [8, 9]. The catalyst pellet of
Ni/Al,O5 or La-Ni/Al,O5 (ca. 11 g) was pretreated by H,/Ar flow (100/1000 mL/min) at 600
°C for 60 min. CO,-TPD was carried out based on two control groups at 500 °C with 500
cm?/min CO; flow: plasma CO, treatment (SE/ = 2.7 eV/molecule) and thermal CO, treatment.
After 60 min of thermal/plasma CO, treatment, a rapid cooling program was carried out with
a rate of ca. 50 °C/min in an argon atmosphere to avoid surface species desorption during rapid
cooling. After the catalyst temperature reached 25 °C, the CO,-TPD started with 1000 cm3/min
Ar at a heating rate of 10 °C/min. Figure S2 shows the CO,-TPD patterns of the Ni/Al,O3
catalyst, where peaks I’ and III” are assigned to carbonate desorption over the interface between
Ni and AlL,Os.
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Figure S1. Experimental setup for CO,-TPD [8, 9].
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Figure S2. CO,-TPD patterns of Ni/Al,O5 after 500 °C treatment: (a) thermally activated
CO,, (b) plasma-activated CO,. CO, flow rate was 500 mL/min at 10 kPa. Heating rate was

10 °C/min.

S3. Summary of DRIFTS peaks

Table S1 Carbonate structure over the La-Ni/Al,O; catalyst and vibration assignments of the

DRIFTS peaks
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Reference [10-12] [10] [13, 14] [14, 15] [12, 13, 16-19]

*M represents the coordination metal, lanthanum in this study




S4. CH4/CO, activation over La-Ni/Al,O; at 200 °C

CH, was introduced with CO; over the carbonate containing La-Ni/Al,Os. In spectrum (a)
in Figure S3, the gas phase CH, was detected as the peaks at 1304 cm! and 3015 cm!. The
product CO (g), the intermediate species CH," (in the range of 2800 to 3000 cm-! [20, 21]) and
CH,O" (1750 cm! [22-24]) were not detected, illustrating that CH4 dehydrogenation did not
occur at 200 °C. In spectrum (b), plasma was employed. The peak at 1560 cm-!' (bidentate
carbonate) was enhanced slightly by plasma. However, the missing CH," (x=1-3), CH,O" and
CO (g) imply that plasma at 200 °C is difficult to induce CH4 chemisorption and
dehydrogenation. Besides, the intensity of bidentate carbonate peak at 1560 cm™! was enhanced
with plasma-on (spectrum (b)) refers to the scale bar (red color), which corresponds with the

results in section 3.1.1.
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Figure S3. DRIFTS spectra for CO,/CH4/He (8.3 vol%, 120 mL/min) activation over La-
Ni/Al,O5 at 200 °C: (a) plasma-off; (b) plasma-on.

S5. Oxidation-reduction behavior of La-Ni/Al,O3

Our previous work confirmed the oxidation-reduction behavior of Ni catalysts by Raman
spectroscopy and optical microscopy [13]. The oxidation-reduction behavior enables a change
in the transparency of dielectric materials. The absorbance spectra are obtained by the
following equation (Beer’s law) based on the transmittance spectra in the background

measurement.
A () =2-log (%T(v))
Here, 4 and %7 represent the absorbance and percent transmittance, respectively. v represents

the wavenumber (cm!). The absorbance spectra of La-Ni/Al,O; (thermal H, reduced sample)
and La-NiO/Al,O; (thermal CO, oxidized sample) are shown in Figure S4 (a) and (b),



respectively. The spectrum (a) of the reduced sample shows an increase in the profile compared
with that of the oxidized sample in the range of 1500~4000 cm!, as well as 600~800 cm!,
indicating that the absorbance of the infrared signal increases in the case of the H,-reduced
sample (i.e., La-Ni/Al,O3). It should be noted that a strong absorbance band is observed in the
range of 800~1500 cm-!, which is subtracted as background.
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Figure S4. Absorbance spectrum of (a) La-Ni/Al,O5 and (b) La-NiO/Al,O5; under He flow
(100 mL/min) at 600 °C.

In Figure S5, the spectrum recorded at 1 min shows carbonate species (1200-1600 cm™').-
Ni nanocrystals were simultaneously oxidized by thermal CO, to NiO. When the H, flowed to
the DRIFTS cell from 5 min to 15 min instead of CO,, the baseline lifted upwards, which was
attributed to NiO reduction by H,. Carbonates (between 1200 and 1600 cm-!') were consumed
at 5 min and gradually disappeared after 10 min. A weak OH" band (3700 cm!") was detected
at 5 min in the inset figure. This indicates that OH" species are the intermediate product when
surface hydrogen reacts with carbonates [25] because the decomposition of H, easily forms
adsorbed H species on Ni [26-28]. The bands of gas phase H,O (1250 to 2000 cm-! and 3500
to 4000 cm™') were not clearly detectable, suggesting that H,O may not be produced via the
reduction of NiO or carbonates. After 15 min, CO, was introduced instead of H,, and then the
baseline “turned back" to oxidized conditions at 30 min with carbonate peaks, which was

similar to the spectrum at 1 min.
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Figure S5. DRIFT spectra of oxidation-reduction behavior on La-Ni/Al,O5 at 600 °C: 1 min:
oxidized catalyst with CO,/He (9 vol.%, 110 mL/min) treatment; 5-15 min: reduced catalyst
with Hy/He (9 vol.%, 110 mL/min) treatment; 30 min: reoxidized catalyst with CO,/He (9

vol.%, 110 mL/min) treatment.
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