Supplementary Information

Charge Transport Properties of Open-Shell Graphene Fragments: A Computational Study of the Phenalenyl Tilings

Wei-Chih Chen^{*ab} and Ito Chao^{*a}

^a Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan

^b Present address: Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan

Email: <a>sinicawcc@gmail.com, <a>ichao@chem.sinica.edu.tw

Malagulag	E	33LYP/6-	31G(d,p)	B3LY	P-D3(E	3J)/6-31G(d,p)				
Molecules -	λ+	λ-	$\langle S^2 \rangle$	λ^+	λ-	ζS²γ				
$C_{13}H_9$	19	35	0.801	19	34	0.801				
Zigzag Odd Alternant Hydrocarbons										
C ₁₉ H ₁₁	34	44	0.805	33	43	0.804				
$C_{25}H_{13}$	52	58	0.813	52	58	0.812				
C31H15(Z)	61	65	0.836	60	65	0.835				
Armchair Odd Alternant Hydrocarbons (Phenalenyl Tilings)										
$C_{23}H_{13}$	16	27	0.811	16	26	0.811				
$C_{33}H_{17}$	16	24	0.824	16	24	0.823				
$C_{43}H_{21}$	16	24	0.838	16	24	0.837				
Disc	cotic C	dd Alterr	ant Hydrocarb	ons (Phena	alenyl 7	Filings)				
C ₃₁ H ₁₅ (T)	13	20	0.808	12	20	0.808				
C ₃₉ H ₁₇	11	17	0.809	11	17	0.808				
C ₄₇ H ₁₉	10	15	0.810	9	15	0.809				
C55H21	9	13	0.810	9	13	0.810				
$C_{61}H_{21}$	9	13	0.805	8	11	0.805				

Table S1. Intramolecular reorganization energies for hole (λ^+ , meV) and electron (λ^- , meV) transfer of the π -radicals calculated at the B3LYP and B3LYP-D3(BJ) levels. The spin contamination for the neutral π -radical calculations, (S²).

Malagulag		PBE/6-3	31G(d,p)	BLYP/6-31G(d,p)						
woiecules	λ^+	λ-	$\langle S^2 \rangle$	λ^+	λ-	$\langle S^2 \rangle$				
$C_{13}H_9$	15	31	0.767	15	32	0.766				
Zigzag Odd Alternant Hydrocarbons										
C ₁₉ H ₁₁	26	37	0.767	26	37	0.765				
$C_{25}H_{13}$	39	46	0.768	39	46	0.766				
C31H15(Z)	46	52	0.772	45	52	0.770				
C ₃₇ H ₁₇	46	52	0.778	46	53	0.781				
Armchair Odd Alternant Hydrocarbons (Phenalenyl Tilings)										
$C_{23}H_{13}$	13	23	0.766	13	23	0.765				
C ₃₃ H ₁₇	12	20	0.766	12	20	0.765				
$C_{43}H_{21}$	12	19	0.766	11	18	0.765				
$C_{53}H_{25}$	12	18	0.766	12	18	0.765				
Dis	cotic O	dd Alter	hant Hydrocarbo	ons (Phena	alenyl 7	īlings)				
C ₃₁ H ₁₅ (T)	10	18	0.764	10	18	0.763				
C ₃₉ H ₁₇	9	15	0.763	9	15	0.762				
$C_{47}H_{19}$	8	13	0.762	8	13	0.761				
C55H21	7	11	0.761	7	11	0.760				
$C_{61}H_{21}$	6	10	0.760	6	10	0.759				

Table S2. Intramolecular reorganization energies for hole (λ^+ , meV) and electron (λ^- , meV) transfer of the π -radicals calculated at the GGA-DFT level. The spin contamination for the neutral π -radical calculations, $\langle S^2 \rangle$.

Table S3. Bond lengths (Å), bond angles (°), bond length variations (Å) and bond angle variations (°) of the $C_{31}H_{15}(Z)$ calculated at the B3LYP/6-31G(d,p) level.

Index	Neutral	Cation	Anion	Δ C-N	Δ A-N
а	1.412	1.406	1.406	-0.006	-0.005
b	1.404	1.410	1.412	0.006	0.008
С	1.413	1.401	1.402	-0.012	-0.011
d	1.417	1.424	1.427	0.007	0.010
е	1.386	1.380	1.383	-0.006	-0.003
f	1.447	1.444	1.452	-0.004	0.005
g	1.435	1.440	1.443	0.005	0.008
h	1.400	1.407	1.404	0.007	0.004
i	1.421	1.414	1.424	-0.006	0.004
j	1.414	1.411	1.420	-0.002	0.007
k	1.425	1.419	1.424	-0.007	-0.001
I	1.426	1.426	1.429	-0.001	0.003
m	1.402	1.400	1.402	-0.002	0.000
n	1.438	1.440	1.442	0.002	0.005
0	1.441	1.443	1.444	0.002	0.003
р	1.441	1.442	1.442	0.000	0.000
q	1.413	1.414	1.411	0.001	-0.002
r	1.389	1.391	1.388	0.002	-0.001
S	1.441	1.440	1.439	0.000	-0.002
t	1.359	1.359	1.360	0.001	0.001
А	122.18	121.47	122.94	-0.72	0.76
В	118.81	119.23	118.58	0.43	-0.23
С	118.86	119.43	117.86	0.57	-1.00
D	122.03	121.45	122.70	-0.57	0.68
Е	119.06	119.06	119.48	0.00	0.42
F	118.61	119.21	117.41	0.60	-1.21
G	120.81	120.36	121.37	-0.45	0.56
Н	120.67	120.34	121.27	-0.33	0.60
I	120.44	120.10	120.51	-0.34	0.07
J	119.88	119.98	119.70	0.10	-0.18
К	119.94	119.76	120.24	-0.19	0.30

L	120.27	119.96	120.53	-0.32	0.26
М	119.84	120.35	119.19	0.50	-0.65
Ν	119.92	119.64	120.25	-0.28	0.33
0	119.21	118.71	119.88	-0.50	0.67
Р	120.78	121.74	119.83	0.96	-0.95
Q	119.78	119.95	119.75	0.17	-0.03
R	120.18	120.26	120.06	0.08	-0.12
S	119.76	119.85	119.56	0.08	-0.21
Т	119.96	120.19	119.92	0.23	-0.05
U	120.24	120.01	120.56	-0.23	0.32
V	118.58	118.92	118.09	0.34	-0.49
W	118.90	118.74	118.97	-0.16	0.07
Х	121.90	121.90	121.96	-0.01	0.06
Y	119.48	119.31	119.71	-0.17	0.23
Z	118.27	118.26	118.15	-0.02	-0.12
AA	121.44	121.34	121.48	-0.09	0.05
AB	121.50	121.28	121.80	-0.23	0.29

Table S4. Intramolecular reorganization energies for hole (λ^+) and electron (λ^-) transfer of the perylene-like and pyrene-like polycyclic aromatic hydrocarbons (PAHs) calculated at the B3LYP/6-31G(d,p) level.

Molecules	λ^+	λ-
Perylen	ie-like PAHs	
Perylene	143	172
Terrylene	129	142
Quaterrylene	122	127
Pentarylene	121	123
Pyrene	e-like PAHs	
Pyrene	155	212
Peropyrene	132	176
Teropyrene	123	158
Quateropyrene	118	147
Pentopyrene	116	141

	$\Delta E_{con} = E_{eclipsed} - E_{staggered} (kcal/mol)$						
	$C_{19}H_{11}$	$C_{25}H_{13}$	$C_{31}H_{15}(Z)$				
B3LYP-D3(BJ)	6.44	3.48	3.33				
M06-2X	7.85	7.05	8.31				
M06-2X-D3	7.72	6.92	8.19				
M05-2X	5.28	5.19	5.95				
<i>ω</i> B97X-D	4.99	5.81	6.98				

Table S5. The energy difference between the staggered and eclipsed stacking configurations (ΔE_{con}) for zigzag odd-alternant hydrocarbons calculated with different DFT functionals.

basis set: 6-31+G(d,p)//6-31G(d,p)

Table S6. Layer distance (R, in Å), spin contamination ($\langle S^2 \rangle$), singlet-triplet energy gap (ΔE_{s-T} , in eV) and binding energy (ΔE_b , in kcal/mol) of the radical π -dimers calculated with different DFT methods.

Molecules	UB3LYP-D3/6-31+G(d,p) //UB3LYP-D3/6-31G(d,p)			UM //UN	UM06-2X/6-31+G(d,p) //UM06-2X/6-31G(d,p)		UM06-2X-D3/6-31+G(d,p) //UM06-2X-D3/6-31G(d,p)		UM05-2X/6-31+G(d,p) //UM05-2X/6-31G(d,p)			U∞B97X-D/6-31+G(d,p) //U∞B97X-D/6-31G(d,p)								
	R	$\langleS^2\rangle$	ΔE_{S-T}	ΔE_{b}	R	$\langle{\bm S}^2\rangle$	ΔE_{S-T}	ΔE_{b}	R	$\langleS^2\rangle$	ΔE_{S-T}	ΔE_{b}	R	$\langleS^2\rangle$	ΔE_{S-T}	ΔE_{b}	R	$\langleS^2\rangle$	ΔE_{S-T}	ΔE_{b}
C ₁₃ H ₉ Dimer	3.039	0.00	-0.88	-19.45	3.007	0.00	-0.91	-16.56	3.009	0.00	-0.90	-18.05	3.081	0.43	-0.64	-9.00	3.191	0.78	-0.39	-14.16
Zigzag Odd Alternant Hydrocarbons																				
$C_{19}H_{11}$ Dimer	3.122	0.00	-0.65	-24.06	3.142	0.33	-0.54	-19.58	3.146	0.31	-0.54	-22.21	3.260	0.80	-0.32	-10.39	3.289	0.98	-0.24	-20.08
$C_{25}H_{13}$ Dimer	3.217	0.53	-0.33	-27.27	3.220	0.77	-0.27	-21.89	3.224	0.77	-0.27	-25.72	3.346	1.06	-0.16	-11.83	3.341	1.18	-0.13	-26.25
C ₃₁ H ₁₅ (Z) Dimer	3.289	0.94	-0.14	-32.62	3.277	1.02	-0.13	-26.08	3.282	1.02	-0.13	-31.13	3.376	1.25	-0.09	-14.13	3.350	1.42	-0.09	-32.91
								PI	nenalenyl	Tilings										
$C_{23}H_{13}$ Dimer	3.146	0.00	-0.78	-31.36	3.135	0.00	-0.77	-26.34	3.138	0.00	-0.76	-29.82	3.174	0.28	-0.61	-14.42	3.236	0.76	-0.40	-26.22
C ₃₁ H ₁₅ (D) Dimer	3.180	0.00	-0.78	-42.20	3.168	0.00	-0.78	-34.69	3.170	0.00	-0.77	-39.92	3.194	0.03	-0.66	-19.31	3.257	0.69	-0.41	-37.04
C ₃₃ H ₁₇ Dimer	3.182	0.00	-0.77	-43.73	3.170	0.00	-0.78	-36.28	3.172	0.00	-0.78	-41.80	3.227	0.21	-0.60	-20.09	3.266	0.83	-0.40	-38.72
C ₃₉ H ₁₇ Dimer	3.198	0.00	-0.79	-53.00	3.185	0.00	-0.80	-42.71	3.186	0.00	-0.80	-49.72	3.232	0.00	-0.66	-24.18	3.262	0.62	-0.45	-47.81
C ₄₃ H ₂₁ Dimer	3.200	0.00	-0.76	-56.14	3.186	0.00	-0.79	-46.06	3.188	0.00	-0.79	-53.63	3.255	0.20	-0.59	-25.68	3.280	0.96	-0.40	-51.26
C ₄₇ H ₁₉ Dimer	3.210	0.00	-0.80	-63.75	3.198	0.00	-0.82	-50.76	3.198	0.00	-0.82	-59.58	3.267	0.00	-0.64	-29.11	3.280	0.61	-0.44	-58.91
C ₆₁ H ₂₁ Dimer	3.228	0.00	-0.81	-83.51	3.214	0.00	-0.85	-64.73	3.215	0.00	-0.85	-76.92	3.304	0.00	-0.64	-37.70	3.301	0.49	-0.47	-79.20

C₄₃H₂₁ Dimer

Table S7. Atomic distances (R, in Å) between the phenalenyl radicals and the armchair odd alternant hydrocarbons calculated with different DFT methods at the 6-31G(d,p) level.

	,			(·/ /			
	B3LYP-D3(BJ)	M06-2X	M06-2X-D3	M05-2X	<i>w</i> В97Х-D			
			C ₁₃ H ₉ Dimer					
α1	3.020	2.988	2.990	3.066	3.185			
C_1	3.102	3.083	3.085	3.127	3.221			
		C ₂₃ H ₁₃ Dimer						
α1	3.135	3.115	3.117	3.136	3.211			
α2	3.127	3.113	3.114	3.148	3.219			
α3	3.150	3.150	3.153	3.195	3.263			
C_1	3.175	3.170	3.172	3.190	3.254			
			C ₃₃ H ₁₇ Dimer					
α1	3.146	3.121	3.121	3.148	3.207			
α2	3.172	3.154	3.155	3.185	3.246			
α3	3.178	3.167	3.169	3.226	3.274			
α4	3.206	3.203	3.206	3.293	3.328			
C_1	3.194	3.183	3.184	3.201	3.262			
C ₂	3.211	3.203	3.205	3.258	3.303			
			$C_{43}H_{21}$ Dimer					
α1	3.190	3.165	3.168	3.194	3.256			
α2	3.173	3.148	3.150	3.188	3.238			
αз	3.198	3.182	3.184	3.240	3.283			
α4	3.206	3.197	3.199	3.283	3.310			
α5	3.236	3.235	3.237	3.390	3.359			
C ₁	3.215	3.199	3.202	3.236	3.288			
C2	3.233	3.225	3.226	3.306	3.335			

Table S8. Atomic distances (R, in Å) between the phenalenyl radicals and the zigzag odd alternant hydrocarbons calculated with different DFT methods at the 6-31G(d,p) level.

	B3LYP-D3(BJ)	M06-2X	M06-2X-D3	M05-2X	<i>@</i> В97Х-D
			C ₁₉ H ₁₁ Dimer		
α1	3.126	3.135	3.137	3.258	3.286
α2	3.165	3.177	3.180	3.283	3.310
α3	3.123	3.145	3.148	3.263	3.293
α4	3.074	3.113	3.119	3.242	3.286
			C ₂₅ H ₁₃ Dimer		
α1	3.207	3.205	3.209	3.327	3.327
α2	3.224	3.227	3.229	3.349	3.357
α3	3.224	3.230	3.234	3.359	3.359
α4	3.205	3.228	3.230	3.366	3.376
C ₁	3.227	3.228	3.229	3.341	3.346
			C ₃₁ H ₁₅ (Z) Dimer		
α1	3.268	3.258	3.261	3.347	3.327
α2	3.286	3.282	3.285	3.366	3.354
α3	3.284	3.272	3.276	3.366	3.343
α4	3.305	3.295	3.300	3.390	3.373
α5	3.315	3.304	3.310	3.407	3.380
α6	3.324	3.318	3.326	3.426	3.403

Table S9. Atomic distances (R, in Å) between the phenalenyl radicals and the discotic odd alternant hydrocarbons calculated with different DFT methods at the 6-31G(d,p) level.

	,			(77
	B3LYP-D3(BJ)	M06-2X	M06-2X-D3	M05-2X	<i>w</i> В97Х-D
			C31H15(D) Dimer		
α1	3.164	3.157	3.158	3.160	3.240
α2	3.163	3.151	3.153	3.162	3.232
αз	3.174	3.163	3.165	3.188	3.261
0.4	3.173	3.163	3.165	3.188	3.255
α5	3.188	3.180	3.182	3.212	3.284
C_1	3.192	3.188	3.189	3.200	3.264
			C ₃₉ H ₁₇ Dimer		
α1	3.181	3.170	3.172	3.195	3.238
α2	3.185	3.172	3.173	3.206	3.241
αз	3.189	3.176	3.178	3.206	3.254
α4	3.199	3.186	3.188	3.247	3.273
α5	3.217	3.205	3.208	3.279	3.306
C_1	3.202	3.195	3.196	3.220	3.256
C_2	3.211	3.202	3.203	3.249	3.274
			C ₄₇ H ₁₉ Dimer		
α1	3.234	3.228	3.227	3.316	3.329
α2	3.216	3.207	3.206	3.292	3.300
αз	3.216	3.205	3.206	3.283	3.297
α4	3.198	3.187	3.187	3.252	3.270
α5	3.209	3.200	3.201	3.268	3.291
α6	3.193	3.181	3.182	3.233	3.257
α7	3.192	3.186	3.186	3.241	3.270

α8	3.208	3.195	3.197	3.258	3.283
α9	3.178	3.164	3.166	3.198	3.225
α10	3.188	3.180	3.179	3.231	3.261
α11	3.198	3.185	3.185	3.239	3.262
a12	3.193	3.181	3.182	3.233	3.257
a13	3.192	3.186	3.186	3.241	3.270
α14	3.208	3.195	3.197	3.258	3.283
A15	3.216	3.205	3.206	3.283	3.297
Q16	3.198	3.187	3.187	3.252	3.270
a17	3.209	3.200	3.201	3.268	3.291
Q18	3.234	3.228	3.227	3.316	3.329
A 19	3.216	3.207	3.206	3.292	3.300
C1	3.221	3.212	3.213	3.283	3.299
C ₂	3.212	3.204	3.205	3.263	3.284
C ₃	3.204	3.199	3.200	3.248	3.272
C ₄	3.212	3.204	3.205	3.263	3.284
C ₅	3.221	3.212	3.213	3.283	3.299
			C ₆₁ H ₂₁ Dimer		
α1	3.202	3.194	3.195	3.275	3.285
α2	3.216	3.201	3.201	3.283	3.279
αз	3.237	3.221	3.223	3.313	3.310
C1	3.203	3.205	3.206	3.283	3.292
C ₂	3.226	3.215	3.216	3.299	3.298

Table S10. The gas-phase disproportionation enthalpies (ΔH_{disp} , in eV) of the π -radicals calculated at the B3LYP/6-31+G(d)//B3LYP/6-31G(d,p) level. The disproportionation potential of the π -radicals (ΔE_{sum} , in V) obtained from the experimental results. The electronic coupling (*t*, in eV) of the radical π -dimers calculated with the PW91PW91/DZP method at the B3LYP-D3(BJ)/6-31G(d,p) optimized structures.

	A 1 1	Decreasing		Decreasing	+	Decreasing	Ratio of	Ratio of		
	∆⊓ _{disp}	ratio of ΔH_{disp}	∆⊏ _{sum}	ratio of ΔE_{sum}	l	ratio of <i>t</i>	$4 t /\Delta H_{disp}$	$4 t /\Delta E_{sum}$		
$C_{13}H_9$	5.02	1.00	1.60	1.00	0.680	1.00	1.00	1.00		
Zigzag Odd Alternant Hydrocarbons										
$C_{19}H_{11}$	4.44	0.88	—	—	0.546	0.80	0.91	—		
$C_{25}H_{13}$	4.13	0.82	—	—	0.382	0.56	0.68	—		
C ₃₁ H ₁₅ (Z)	3.91	0.78	_	—	0.250	0.37	0.47	—		
				Phenalenyl Til	ings					
$C_{23}H_{13}$	4.00	0.80	1.10	0.69	0.553	0.81	1.02	1.18		
C ₃₁ H ₁₅ (D)	3.57	0.71	0.70	0.44	0.517	0.76	1.07	1.74		
$C_{33}H_{17}$	3.40	0.68	_	—	0.508	0.75	1.10	_		
$C_{39}H_{17}$	3.26	0.65	—	—	0.499	0.73	1.13	—		
$C_{43}H_{21}$	3.00	0.60	_	—	0.479	0.70	1.18	—		
C ₄₇ H ₁₉	2.99	0.60	_	—	0.485	0.71	1.20	—		
$C_{61}H_{21}$	2.71	0.54		—	0.470	0.69	1.28	—		

Note: All the ratio values of the extended π -radicals were compared with the phenalenyl radical.

	٤ ₁	٤ ₂	J ₁₂	S ₁₂	t
$C_{13}H_9$	-4.319	-4.319	1.172	-0.116	0.680
$C_{19}H_{11}$	-4.387	-4.387	0.958	-0.095	0.546
$C_{25}H_{13}$	-4.449	-4.449	-0.688	0.069	-0.382
C ₃₁ H ₁₅ (Z)	-4.503	-4.503	0.460	-0.047	0.250
$C_{23}H_{13}$	-4.398	-4.398	-0.975	0.097	-0.553
C ₃₁ H ₁₅ (D)	-4.457	-4.457	0.917	-0.091	0.517
$C_{33}H_{17}$	-4.456	-4.456	-0.904	0.090	-0.508
$C_{39}H_{17}$	-4.506	-4.506	-0.889	0.087	-0.499
$C_{43}H_{21}$	-4.498	-4.498	-0.858	0.085	-0.479
$C_{47}H_{19}$	-4.546	-4.546	-0.867	0.085	-0.485
C ₆₁ H ₂₁	-4.616	-4.616	-0.843	0.081	-0.470

Table S11. Site energies (ε_1 and ε_2 , in eV), charge transfer integral (J_{12} , in eV), spatial overlap (S_{12}) and electronic coupling (t, in eV) of the radical π -dimers calculated with the PW91PW91/DZP method at the B3LYP-D3(BJ)/6-31G(d,p) optimized structures.

Fig. S1 Schematic illustration of intramolecular reorganization energy calculated by the four-point method.

Fig. S2 Binding energy per carbon atom ($-\Delta E_b(n)/n$, in kcal/mol) for the graphene sheet model dimers of the closed-shell systems calculated with different DFT methods. The basis set, except for the B97-D3 functional using the 6-311G(2d,p) level, were calculated at the 6-31+G(d,p)//6-31G(d,p) level. All the nonlinear regression lines fitted from the corresponding nine closed-shell data.

Note: The asymptotic value from the B97-D3/6-311G(2d,p) calculations is 1.17 kcal/mol per carbon atom. This value is in line with the Grimme's paper using B97-D3/TZV(2d,p) level. (S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* **2010**, *132*, 154104)

Fig. S3 Binding energy per carbon atom ($\Delta E_b(n)/n$, in kcal/mol) for the graphene sheet model dimers of the closed- and open-shell systems calculated with different DFT methods at the 6-31+G(d,p)//6-31G(d,p) level. All the nonlinear regression lines fitted from the corresponding nine closed-shell data.

HOMO

Fig. S4 Bond length alternation parameter (Δr , in Å) and frontier orbitals of the perylene-like PAHs calculated at the B3LYP/6-31G(d,p) level.

номо

Fig. S5 Bond length alternation parameter (Δr , in Å) and frontier orbitals of the pyrene-like PAHs calculated at the B3LYP/6-31G(d,p) level.

Fig. S6 Bond length alternation parameter (Δr , in Å) of the phenalenyl radical and the armchair odd alternant hydrocarbons calculated at the B3LYP/6-31G(d,p) level.