Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

PCCP

ARTICLE TYPE cite this: DOI: 00.0000/xxxxxxxx Theoretical investigation of

Theoretical investigation of protonated thiophene and two of its nitrile substituted derivatives (2-Cyanothiophene and 3-Cyanothiophene †

René Simbizi,^{*a,b*} Godefroid Gahungu,^{*c,b* \ddagger} and Minh Tho Nguyen^{*d* \ddagger}

Received Date Accepted Date

DOI:00.0000/xxxxxxxxx

Supplementary Information (SI)

^a Département de Physique, Faculté des Sciences Université du Burundi, B.P. 2700 Bujumbura, Burundi

^b Centre de Recherche en Sciences Naturelles et de l'Environnement (CRSNE)

^c Département de Chimie, Faculté des Sciences Université du Burundi, B.P. 2700 Bujumbura, Burundi, E-mail: godefroid.gahungu@ub.edu.bi

^d Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium, E-mail: minh.nguyen@kuleuven.be

[†] Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here].

[‡] Corresponding author.

Table S1: Proton Affinity (PA in kJ/mol) of thiophene at different sites, for different levels of theory and at T = 298.15 K and T = 10.00 K. Sites of protonation^a

		T = 298.15 K			T = 10.00 K					
Level of theory	S	α –position	β -position	,	S	α –position	β -position			
M06-2X/6-31G(d,p)	622.83	818.70	782.21		617.42	813.60	777.32			
M06-2X/aug-cc-pVTZ	627.86	803.24	769.96		622.41	798.20	765.08			
G2MP2	739.84	816.66	785.64		734.51	811.61	780.66			
G3MP2	739.47	812.98	782.59		734.11	807.90	777.61			
G4MP2	637.59	811.94	783.09		632.14	806.80	778.08			
G3B3	634.09	813.96	783.90		628.79	808.77	778.84			
CBS-OB3	690.93	808.24	777.56		624.82	802.96	772.49			
NIST				815 ^b						

^{*a*}The site with higher PA is the position with higher susceptibility of proton attack.

^b NIST value (Hunter and Lias (1998)).

Table S2: G2(MP2) and G3B3 Proton Affinity (PA in kJ/mol) at different sites of 2CNT and 3CNT for T = 298.15 K and T = 150.00 K.

						Protonat	tion sites					
	-	1	2	2	:	3	4	1		5		5
T (K)	298.15	150.00	298.15	150.00	298.15	150.00	298.15	150.00	298.15	150.00	298.15	150.00
						G21	MP2					
2CNT	676.65	677.62	732.32	732.87	723.51	724.44	726.48	727.31	752.89	753.70	812.23	812.24
3CNT	673.84	671.74	758.97	756.58	697.68	695.16	728.30	726.06	752.89	751.06	813.01	810.83
						G3	B3					
2CNT	674.93	676.09	727.75	728.30	721.24	722.40	724.53	725.36	750.15	750.84	809.03	810.23
3CNT	672.67	670.70	756.24	753.75	694.00	675.23	726.20	723.91	750.30	747.88	812.84	811.27

1= Sulfur atom; 2= α -position; 3= β -position; 4= position equivalent to β -position; 5= position equivalent to α -position; 6= Protonation at N atom.

Table S3: G2(MP2) and G3B3 Proton Affinity (PA in kJ/mol) at different sites of 2CNT and 3CNT for T = 10.00 K and T = 5.00 K.

	Protonation sites												
	-	1	2	2	:	3	4	4		5		5	
T(K)	10.00	5.00	10.00	5.00	10.00	5.00	10.00	5.00	10.00	5.00	10.00	5.00	
2CNT	671.89	671.79	727.27	727.17	718.79	718.69	721.66	721.56	748.07	747.97	807.49	807.39	
3CNT	669.08	668.97	754.03	753.94	692.65	692.54	723.49	723.38	748.48	743.55	808.06	807.95	
						G3	3B3						
2CNT	670.36	670.28	722.72	722.63	716.71	716.61	719.69	719.60	745.18	745.08	804.54	804.44	
3CNT	668.06	667.96	751.18	751.08	689.02	688.92	721.32	721.22	745.28	745.17	809.10	793.05	

1= Sulfur atom; 2= α -position; 3= β -position; 4= position equivalent to β -position; 5= position equivalent to α -position; 6= Protonation at N atom.

Table S4:	Milliken	charges	for $2CNTH^+$, $3CNTH^+$	and HCNH ⁺
-----------	----------	---------	---------------	-------------	-----------------------

Atom	$2CNT-H^+$	$3CNT-H^+$	$HCNH^+$	
S1	0.332	0.352		
C2	-0.137	-0.182		
C3	-0.056	0.025		
C4	-0.142	-0.184		
C5	-0.152	-0.180		
C6	0.577	0.582		
Ν	-0.358	-0.347	-0.429	
С			0.071	

Table S5: G2(MP2) Proton Affinity (PA in kJ/mol) at different sites of some dicyanothiophenes at T = 10.00 and 298.15 K.

	2		3		4		5		6		7		8	8	
	10.00	298.15	10.00	298.15	10.00	298.15	10.00	298.15	10.00	298.15	10.00	298.15	10.00	298.15	
23CNT	681.51	686.45	643.23	648.04	675.01	679.68	696.81	701.49	777.06	782.39	777.91	781.87	1224.52	1229.04	
24CNT	666.39	675.13	667.85	674.15	637.95	644.44	694.70	703.22	767.65	773.85	770.60	776.58	1261.86	1269.79	

2= *α*-position; **3**= *β*-position; **4**= position equivalent to *β*-position; **5**= position equivalent to *α*-position; **6**= Protonation only at N atom of the cyano-group in *α*-position; **7**= Protonation only at N atom of the cyano-group in *β*-position; **8**= Protationation at both the two Nitrogen atoms of the cyano-groups.

reactions yielding nyurogen cy	annue, cy	ano-unophen	es and then p	lotonateu ioi	1115(1 - 290.1)	JK and $I = I$	$5.00 \times 101 T =$	- 1 am).
Reaction		$\Delta_r H^{298.15}$	$\Delta_r G^{298.15}$	$\Delta_r S^{298.15}$	$\Delta_r H^{10.00}$	$\Delta_r G^{10.00}$	$\Delta_r S^{10.00}$	Lev. of theory
$H^{+} + CN^{-} \rightarrow HCN + H$	(1)	-1047.03	-1038.98	-0.027	-1046.24	-1046.10	0.015	а
$H_3^{-} + CN \longrightarrow HCN + H_2$	(1)	-1048.61	-1045.03	-0.012	-1047.93	-1047.93	-0.000	b
$C U S^+ + C N^- \rightarrow 2 C N T + U$	(2)	-611.21	-597.15	-0.047	-577.91	-570.55	-0.736	а
$C_4H_4S^+ + CN^- \longrightarrow 2CNT + H$	(2)	-607.98	-595.00	-0.044	-609.84	-609.43	-0.041	Ь
$C H S^+ + C N^- \rightarrow 2 C N T + H$	(2)	-615.65	-601.54	-0.047	-582.33	-574.97	-0.736	а
$C_4 H_4 S^+ + C N^- \longrightarrow S C N I^- + H^-$	(3)	-612.64	-599.65	-0.044	-614.51	-614.09	-0.041	ь
$CN H + H^{+} \rightarrow HCN H^{+} + H$	(4)	352.21	-342.91	-0.031	-350.67	-350.69	0.002	а
$CN-H + H_3 \longrightarrow HCN-H^+ + H_2$	(4)	-353.63	348.77	-0.016	-352.18	-352.18	0.000	ь
$C = U = C N + U^{+} \rightarrow C N T U^{+} + U$	(5)	-392.19	-385.01	-0.024	-392.22	-392.22	0.000	а
$C_4 H_4 SCN + H_3 \longrightarrow 2CN T - H^+ + H_2$	(3)	-387.27	-385.072	-0.008	-391.56	-391.54	-0.002	ь
$C = U = C N + U^{+} \rightarrow 2 C N T U^{+} + U$	(6)	-392.98	-385.42	-0.025	-392.79	-392.79	0.000	а
$C_4H_4SCN + H_3 \longrightarrow SCNI - H^2 + H_2$	(0)	-391.04	-390.81	-0.001	-392.10	-392.08	-0.002	b

Table S6: Gase phase G2(MP2) and G3B3 calculated enthalpy, entropy and Gibbs free energy ($\Delta_r H$, $\Delta_r S$ and $\Delta_r G$ in $kJ mol^{-1}$) of the reactions vielding hydrogen evanide, evano-thiophenes and their protonated forms (T = 298.15K and T = 10.00K for P = 1 atm).

a = G2(MP2); b = G3B3.

Table S7: Gase phase G3B3 calculated enthalpy, entropy and Gibbs free energy ($\Delta_r H$, $\Delta_r S$ and $\Delta_r G$ in $kJmol^{-1}$) of the reactions producing hydrogen cyanide, cyano-thiophenes and their protonated forms (T = 1000.00 K and T = 5.00 K for $P = 10^{-5} atm$).

ing all ogen og anna og anno p	montoo anta ti	Protomatoa	1011110 (1 10000	oon ana i on			
Reaction		$\Delta_r H^{1000.00}$	$\Delta_r G^{1000.00}$	$\Delta_r S^{1000.00}$	$\Delta_r H^{5.00}$	$\Delta_r G^{5.00}$	$\Delta_r S^{5.00}$
$H_3^+ + CN^- \longrightarrow HCN + H_2$	(1)	-1044.11	-1030.32	-0.046	-1018.84	-1170.50	0.509
$C_4H_4S^+ + CN^- \longrightarrow 2CNT + H$	(2)	-562.64	-433.66	-0.433	-574.21	-574.00	-0.001
$C_4H_4S^+ + CN^- \longrightarrow 3CNT + H$	(3)	-567.05	-438.47	-0.431	-578.93	-578.72	-0.001
$CN-H + H_3^+ \longrightarrow HCN-H^+ + H_2$	(4)	381.56	-327.04	-0.094	-352.18	-290.50	-0.207
$C_4H_4SCN + H_3^+ \longrightarrow 2CNT - H^+ + H_2$	(5)	-381.56	-374.56	-0.023	-391.58	-391.50	-0.0002
$C_4H_4SCN + H_3^+ \longrightarrow 3CNT - H^+ + H_2$	(6)	-384.86	-385.77	0.003	-392.05	-391.97	-0.0002

Figure S1: Partial atomic charges for (a) Neutral 2,3-dicyanothiophene and (b) Monoprotonated 2,3-dicyanonophene (c) Neutral 2,5-dicyanothiophene and (d) Monoprotonated 2,5-dicyanothiophene.

Frequency	PED	Mode		At	oms ¹		PED	Mode		At	oms ¹	
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
In - nlane modes												
3530 33	07%	Varr	7	11	0	Ο						
3101 63	66%	Vou	, 1	0	0	0	27%	Var	5	10	0	0
5101.05	50%	VCH	т 2	Q	0	0	2770	VCH	5	10	0	0
3080 33	65%	VCH	5	10	0	0	100%	Var	2	Q	0	0
5009.55	16%	VCH	J ⊿	0	0	0	1970	VCH	5	0	0	0
3081 40	75%	VCH	т २	2	0	0	18%	Var	Δ	0	0	0
5001.79	70/	VCH	5	10	0	0	1070	VCH	т	2	0	0
2227 41	830%	VCH V	6	7	0	0	140%	Vaa	2	6	0	0
2237.71	0070	^v C≡N	0	,	0	0	1770	VCC	2	5	0	0
1497.37	29%	$v_{C=C}$	2	3	0	0	23%	$v_{\rm C=C}$	4	5	0	0
	11%	δ_{CCH}	4	3	8	0	7%	δ_{CCH}	-	3	8	0
1 400 40	.7%	v_{CC}	2	6	0	0	8%	δ_{CCH}	3	4	9	0
1408.49	40%	VCC	3	4	0	0	15%	δ_{CCH}	5	4	9	0
	11%	δ_{CCH}	3	4	9	0	11%	$v_{C=C}$	4	5	0	0
	6%	δ_{CCH}	2	3	8	0						
1335.64	24%	$v_{C=C}$	4	5	0	0	23%	$v_{C=C}$	2	3	0	0
	14%	δ_{SCH}	1	5	10	0	14%	v_{CC}	2	6	0	0
	14%	δ_{CCH}	4	5	10	0						
1236.89	20%	δ_{CCH}	2	3	8	0	18%	δ_{CCH}	4	3	8	0
	10%	v_{CC}	2	6	0	0	10%	δ_{CCH}	5	4	9	0
	9%	δ_{CCH}	3	4	9	0	8%	δ_{CCH}	4	5	10	0
1173.73	29%	v_{CC}	2	6	0	0	22%	v_{SC}	1	2	0	0
	12%	$v_{C=C}$	2	3	0	0	7%	v_{CC}	3	4	0	0
	6%	δ_{CCH}	2	3	8	0						
1086.10	27%	δ_{CCH}	4	5	10	0	25%	δ_{SCH}	1	5	10	0
	19%	$v_{\rm C=C}$	4	5	0	0	14%	δ_{CCH}	5	4	9	0
	11%	δ_{CCH}	3	4	9	0						
1057.05	26%	v_{CC}	3	4	0	0	21%	δ_{CCH}	4	3	8	0
	10%	δ_{CCH}	2	3	8	0	10%	δ_{CCH}	3	4	9	0
	9%	δ_{CCH}	5	4	9	0	6%	v_{CC}	2	6	0	0
855.06	49%	v_{SC}	1	5	0	0	16%	δ_{SCC}	1	5	4	0
	12%	δ_{CCC}	3	4	5	0	7%	δ_{SCH}	1	5	10	0
	6%	δ_{SCH}	3	4	9	0						
738.13	35%	v_{SC}	1	5	0	0	22%	v_{SC}	1	2	0	0
	13%	δ_{CCC}	3	4	5	0	13%	δ_{CCC}	2	3	4	0
	5%	δ_{CCH}	2	3	8	0	5%	δ_{CCH}	5	4	9	0
681.15	26%	v_{SC}	1	2	0	0	12%	δ_{CCN}	2	6	7	0
	10%	δ_{CSC}	2	1	5	0	9%	v_{CC}	2	6	0	0
	8%	v_{SC}	1	5	0	0	8%	δ_{SCC}	1	5	4	0
634.21	93%	δ_{CNH}	6	7	11	0	6%	δ_{CCN}	2	6	7	0
520.93	51%	δ_{CCN}	2	6	7	0	18%	v_{SC}	1	2	2	0
	9%	δ_{CCC}	3	2	6	0	7%	δ_{CSC}	2	1	5	0
	6%	δ_{SCC}	1	2	6	0						
477.06	30%	VCC	2	6	0	0	20%	δ_{SCC}	1	2	3	0
	13%	δ_{CSC}	2	1	5	0	10%	v_{SC}	1	2	0	0
	6%	δ_{CCC}	2	3	4	00						
143.33	44%	δ_{CCN}	2	6	7	0	28%	δ_{SCC}	1	2	6	0
	26%	$\dot{\delta}_{CCC}$	3	2	6	0						

Table S8: Potential energy distribution for $2CNTH^+$

(Continued)

	Table S8 – (Continued) Frequency PED Mode Atoms1 PED Mode											
Frequency	PED	Mode		At	oms^1		PED	Mode		At	oms ¹	
((04)		h	1.	1		(04)		h	1.	1	
(cm -)	(%)		n	K	1	III	(%)		n	K		m
Out - of - plane modes												
943.69	31%	үнссн	8	3	4	9	27%	үнссн	9	4	5	10
	10%	Yhccs	9	4	5	1	8%	<i>Үсссн</i>	2	3	4	9
	6%	үсссн	6	2	3	8	6%	Ŷscch	1	2	3	8
866.48	25%	үнссн	9	4	5	10	15%	<i><i>УСССН</i></i>	3	4	5	10
	14%	үнссс	6	2	3	8	13%	Үнссс	8	3	4	5
	12%	Ŷ SCCH	1	2	3	8	9%	ŶĊSĊĦ	2	1	5	10
751.15	22%	үсссн	3	4	5	10	22%	Yhccs	9	4	5	1
	20%	<i>Үсссн</i>	2	3	4	9	16%	YCSCH	2	1	5	10
	7%	<i>Үсссн</i>	6	2	3	8	6%	Ŷscch	1	2	3	8
551.49	60%	YCCN	0	2	6	7	8%	YSCCC	1	2	3	4
	7%	Ycccc	2	3	4	5						
525.46	61%	YCCN	0	2	6	7	9%	YCCCS	3	4	5	1
	6%	Үсссс	2	3	4	5						
420.34	36%	YCCN	0	2	6	7	16%	YCSCC	5	1	2	3
	14%	YCSCC	2	1	5	4	11%	YSCCC	1	2	3	4
	9%	Ycccs	3	4	5	1						
287.26	69%	YCNH	0	6	7	11	17%	YCCN	0	2	6	7
134.42	32%	YCCN	0	2	6	7	24%	YCSCCC	6	2	3	4
	19%	YCSCC	5	1	2	6	17%	үсссн	6	2	3	8
	5%	YCNH	0	6	7	11						

¹ See Figure 1 for atom numbering.

v: stretching, δ : in-plane bending and γ : out-of-plane bending modes.

Table S9: Potential energy distribution for $3CNTH^+$

Frequency	PED	Mode	Atoms ¹		PED	PED Mode		Ato	oms ¹			
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
In - plane modes												
3545.56	97%	VNH	7	11	0	0						
3122.71	82%	VCH	5	10	0	0	16%	VCH	4	9	0	0
3111.54	99%	V _{CH}	2	8	0	0		en				
3103.59	83%	VCH	4	9	0	0	17%	v_{CH}	5	910	0	0
2243.78	85%	$v_{\rm C=N}$	6	7	0	0	12%	V _{CC}	3	6	0	0
1495.04	49%	$v_{C=C}$	4	5	0	0	11%	δ_{CCH}	3	4	9	0
	10%	$v_{C=C}$	2	3	0	0	6 %	δ_{CCH}	5	4	9	0
1402.09	25%	$v_{C=C}$	2	3	0	0	16%	$v_{C=C}$	4	5	0	0
	15%	δ_{CCH}	3	2	8	0	14%	δ_{SCH}	1	2	8	0
	10%	V _{CC}	3	6	0	0	5%	δ_{SCH}	1	5	10	0
1351.97	36%	VCC	3	4	0	0	25%	$v_{\rm C=C}$	2	3	0	0
	9%	δ_{CCH}	5	4	9	0	8%	δ_{CCH}	4	5	10	0
1227.94	24%	δ_{CCH}	3	2	8	0	13%	δ_{SCH}	1	2	8	0
	12%	δ_{CCH}	4	5	10	0	11%	δ_{SCH}	5	4	9	0
	10%	δ_{SCH}	1	5	10	0	9%	δ_{SCH}	3	4	9	0
1167.85	34%	δ_{CCH}	1	2	8	0	27%	δ_{SCH}	3	2	8	0
	20%	v_{CC}	3	6	0	0						

(Continued)

Table S9 – (Continued)												
Frequency	PED	Mode	Mode Atoms ¹			PED	Mode		At	oms ¹		
(cm^{-1})	(%)		h	k	1	m	(%)		h	k	1	m
1091.36	20%	δ_{CCH}	5	4	9	0	19%	δ_{CCH}	4	5	10	0
	18%	δ_{CCH}	3	4	9	0	17%	δ_{SCH}	1	5	10	0
	10%	$v_{\rm C=C}$	4	5	0	0						
920.50	15%	δ_{CCC}	3	4	5	0	15%	v_{CC}	3	6	0	0
	14%	v_{CC}	3	4	0	0	13%	$v_{\rm C=C}$	2	3	0	0
	11%	δ_{SCH}	1	5	10	0	8%	δ_{SCC}	1	5	4	0
880.44	72%	v_{SC}	1	2	0	0	15%	δ_{CCH}	1	2	8	0
	6%	δ_{CCC}	2	3	4	0						
800.41	63%	V_{SC}	4	5		0	11%	δ_{SCC}	1	5	4	0
	6%	V_{CC}	3	4	0	0						
637.28	64%	δ_{CNH}	6	7	11	0	8%	δ_{CSC}	2	1	5	0
	8%	v_{SC}	1	5	0	0	7%	δ_{CCN}	3	6	7	0
627.50	53%	δ_{CNH}	6	7	11	0	13%	δ_{CSC}	2	1	5	0
	13%	v_{SC}	1	5	0	0						
558.52	61%	δ_{CCN}	3	6	7	0	13%	δ_{CCC}	4	3	6	0
	11%	δ_{CCC}	2	3	6	0						
472.43	37%	v_{CC}	3	6	0	0	14%	δ_{CCC}	2	3	4	0
	13%	v_{SC}	1	2	0	0	9%	δ_{SCC}	2	1	5	0
147.54	47%	δ_{CCN}	3	6	7	0	25%	δ_{CCC}	2	3	6	0
	25%	δ_{CCC}	4	3	6	0						
Out - of - plane modes												
894.08	49%	<i>үнссн</i>	9	4	5	10	11%	YHCCS	9	4	5	1
	10%	<i>ҮСССН</i>	2	3	4	9	9%	<i>Үсссн</i>	3	4	5	10
	9%	<i>Үсссн</i>	6	3	4	9	7%	YCSCH	2	1	5	10
799.58	33%	үнссс	8	2	3	6	26%	үнссс	8	2	3	4
	21%	YCSCH	5	1	2	8						
713.74	27%	үсссн	3	4	5	10	17%	YCSCH	2	1	5	10
	14%	Yhccs	9	4	5	1	11%	үнссс	2	3	4	9
	10%	<i>үсссн</i>	8	2	3	4	9%	<i>Үсссн</i>	6	3	4	9
604.43	53%	YCCN	3	6	7	0	10%	YCCCC	2	3	4	5
	8%	YSCCC	1	2	3	4	5%	<i>Үсссн</i>	8	2	3	4
497.78	74%	YCCN	0	3	6	7	6%	Ycccs	3	4	5	1
	5%	YCCCC	2	3	4	5						
441.05	21%	YCCN	0	3	6	7	20%	YCSCC	2	1	5	4
	19%	YCSCC	5	1	2	3	14%	YSCCC	1	2	3	4
	5%	YCCCS	3	4	5	1						
366.92	82%	YCNH	0	6	7	11	14%	YCCN	0	3	6	7
132.27	34%	YCCN	0	3	6	7	21%	YSCCCC	1	2	3	6
	18%	Үсссс	6	3	4	5	12%	<i>Үсссн</i>	6	3	4	9
	12%	Үнссс	8	2	3	6						

¹ See Figure 1 for atom numbering. ν: stretching, δ: in-plane bending and γ: out-of-plane bending modes.

	$2CNTH^+$						3CNTH ⁺						
Sym	NSc.Freq.	Sc.Freq.	IR int.	Ram. Activ	Ram. Int.	Sym	NSc.Freq.	Sc.Freq.	IR int.	Ram. Activ	Rama. Int		
A'	3753	3539	1380.68	16.58	1.10	A'	3747	3546	1337.37	12.96	1.79		
A'	3289	3102	23.22	209.08	21.15	A'	3301	3123	20.99	150.13	73.06		
A'	3276	3089	29.15	73.37	7.51	A'	3289	3112	34.28	55.95	8.29		
A'	3268	3081	1.65	74.84	7.72	A'	3280	3104	13.57	63.80	1.27		
A'	2388	2237	667.39	322.88	75.72	A'	2395	2244	573.87	343.51	35.43		
A'	1560	1497	23.65	1.35	0.70	A'	1573	1495	59.30	36.55	10.82		
A'	1467	1408	144.82	66.51	38.44	A'	1479	1402	95.13	24.85	4.86		
A'	1395	1336	162.92	58.68	37.11	A'	1419	1352	14.53	4.04	0.13		
A'	1278	1237	38.13	4.45	3.19	A'	1262	1228	21.69	7.30	10.42		
A'	1231	1174	12.48	3.43	2.67	A'	1214	1168	61.18	9.65	4.18		
A'	1121	1086	7.14	12.90	11.37	A'	1121	1091	12.52	1.75	5.26		
A'	1094	1057	28.14	1.08	1.00	A'	958	920	7.03	5.79	0.20		
A"	977	944	0.13	0.77	0.84	A"	934	894	0.36	0.15	31.68		
A"	907	866	0.38	0.94	1.17	A'	928	880	30.25	5.00	6.05		
A'	889	855	24.93	6.58	8.31	A'	846	800	0.58	22.77	0.18		
A"	783	751	79.80	1.80	2.74	A"	833	800	65.76	0.14	6.56		
A'	767	738	5.38	9.86	15.44	A"	745	714	23.43	3.20	1.53		
A'	711	681	1.65	21.09	37.05	A'	662	637	69.17	2.16	7.60		
A'	658	634	132.93	0.36	0.69	A'	652	627	65.12	5.27	5.30		
A"	571	551	6.66	0.33	0.78	A"	625	604	14.52	0.06	2.50		
A"	544	525	0.53	0.46	1.17	A'	581	559	4.42	2.08	14.47		
A'	543	521	1.62	2.08	5.39	A"	515	498	0.50	3.91	19.05		
A'	495	477	7.22	10.67	31.42	A'	494	472	12.55	11.86	80.05		
A"	431	420	4.56	2.98	10.58	A"	453	441	0.35	0.39	6.44		
A"	298	287	179.53	2.26	14.42	A"	381	367	173.99	1.90	5.60		
A'	149	143	4.85	4.75	97.22	A'	153	148	3.06	3.76	14.88		
<i>A</i> "	137	134	5.37	0.19	4.40	A"	136	132	4.71	0.08	0.86		

Table S10: M06-2X/6-31G(d,p) calculated frequencies (cm^{-1}) , infrared intensities $(km.mol^{-1})$ and Raman activities $(Å^4/amu)$ and Raman intensities $(\times 10^{-24}F^2.m^{-1}.kg^{-1})$ for $2CNTH^+$ and $3CNTH^+$.

Table S11: Potential energy distribution for stretching and bending modes of *HCNH*⁺ and IR intensities.

Frequency	IR Int.	PED	Mode	Atoms ¹		PED	Mode		Atoms ¹				
(cm^{-1})	(km/mol)	(%)		h	k	1	m	(%)		h	k	1	m
3482.94	611.57	98%	v_{NH}	2	4	0	0						
3187.90	249.68	96%	V_{CH}	1	3	0	0						
2155.69	35.05	98%	$v_{C \equiv N}$	1	2	0	0						
791.15	183.41	51%	YNCH	0	2	1	3	49%	YCNH	0	1	2	4
791.15	183.41	51%	δ_{NCH}	2	1	3	0	49%	δ_{CNH}	1	2	4	0
756.00	21.77	51%	δ_{CNH}	1	2	4	0	49%	δ_{NCH}	2	1	3	0
756.00	21.77	51%	YCNH	0	1	2	4	49%	YNCH	0	2	1	3

¹ See Figure 1 for atom numbering. *ν*: stretching, δ : in-plane bending and γ : out-of-plane bending modes.

Figure S2: M06-2X/6-31G(d,p) gas phase simulated IR spectra of (a) *HCNH*⁺, (b) 2*CNTH*⁺ and (c) 3*CNTH*⁺.

Table S12: M06-2X/6-31G(d,p) calculated frequencies and intensities for hyperfine structures of $HCNH^+$ and for strongest rotational lines at 10.00 K of $3CNTH^+$.

			CNH	+		$2CNTH^+$						
J'	\leftarrow	$J^{''}$	V_{exp}	V_{calc}	Int (nm^2MHz)	$J'_{K_{-1}K_{+1}}F'$	\leftarrow	$J_{K_{-1}K_{+1}}^{''}F^{''}$	V_{calc}	$Int (nm^2 MHz)$		
3,4	\leftarrow	2,3	222329.2990	222329.2990	3.565E-02	8 _{8,1} 9	\leftarrow	7 _{7,0} 8	80552.491	3.051E-02		
2,3	\leftarrow	1,2		148221.4671	2.726E-02	8 _{8,0} 9	\leftarrow	77,18	80552.491	3.051E-02		
3,3	\leftarrow	2,2		222329.2939	2.465E-02	$9_{9,1}10$	\leftarrow	8 _{8,0} 9	91083.833	2.903E-02		
4,5	\leftarrow	3,4	296433.6520	296433.6613	2.398E-02	9 _{9,0} 10	\leftarrow	88,19	91083.833	2.903E-02		
4,4	\leftarrow	3,3		296433.6580	1.840E-02	77,18	\leftarrow	6 _{6,0} 7	70020.211	2.901E-02		
3,2	\leftarrow	2,1		222329.2725	1.664E-02	77,08	\leftarrow	66,17	70020.211	2.901E-02		
2,2	\leftarrow	1,1		148221.4580	1.460E-02	$9_{8,2}10$	\leftarrow	87,19	83644.940	2.865E-02		
4,3	\leftarrow	3,2		296433.6489	1.402E-02	$9_{8,1}10$	\leftarrow	87,29	83644.940	2.865E-02		
5,6	\leftarrow	4,5		370533.3955	9.567E-03	87,29	\leftarrow	76,18	73112.444	2.790E-02		
5,5	\leftarrow	4,4		370533.3932	7.771E-03	87,19	\leftarrow	76,28	73112.446	2.790E-02		
1,2	\leftarrow	0,1	74111.3300	74111.3290	6.809E-03	88,18	\leftarrow	77,07	80552.471	2.687E-02		
2,1	\leftarrow	1,0	148221.4500	148221.3512	6.491E-03	88,08	\leftarrow	77,17	80552.471	2.687E-02		
5,4	\leftarrow	4,3	370533.3750	370533.3882	6.296E-03	$10_{9,1}11$	\leftarrow	9 _{8,2} 10	94176.399	2.667E-02		
2,2	\leftarrow	1,2		148221.3298	4.868E-03	$10_{9,2}11$	\leftarrow	$9_{8,1}10$	94176.399	2.667E-02		
2,2	\leftarrow	1,2		148221.3298	4.868E-03	$10_{8,3}11$	\leftarrow	97,210	86735.919	2.660E-02		
1,1	\leftarrow	0,1	74111.1400	74111.2008	4.085E-03	$10_{8,2}11$	\leftarrow	97,310	86735.920	2.660E-02		
3,3	\leftarrow	2,3		222329.1565	3.081E-03	9 _{7,3} 10	\leftarrow	8 _{6,2} 9	76202.620	2.654E-02		
3,3	\leftarrow	2,3		222329.1565	3.081E-03	9 _{7,2} 10	\leftarrow	86,39	76202.635	2.654E-02		
6,7	\leftarrow	5,6	444627.3610	444627.3439	2.411E-03	9 _{9,1} 9	\leftarrow	88,08	91083.817	2.594E-02		
6,6	\leftarrow	5,5		444627.3422	2.031E-03	9 _{9,0} 9	\leftarrow	88,18	91083.817	2.594E-02		
6,5	\leftarrow	5,4		444627.3390	1.709E-03	9 _{8,2} 9	\leftarrow	87,18	83644.903	2.560E-02		
1,0	\leftarrow	0,1	74111.5400	74111.5213	1.362E-03	9 _{8,1} 9	\leftarrow	87,28	83644.903	2.560E-02		
4,4	\leftarrow	3,4		296433.5156	1.226E-03	$10_{10,1}11$	\leftarrow	9 _{9,0} 10	101614.120	2.526E-02		
4,4	\leftarrow	3,4		296433.5156	1.226E-03	$10_{10,0}11$	\leftarrow	$9_{9,1}10$	101614.120	2.526E-02		
7,8	\leftarrow	6,7	518714.3310	518714.3490	3.970E-04	7 _{7,1} 7	\leftarrow	$6_{6,0}6$	70020.186	2.507E-02		
7,7	\leftarrow	6,6		518714.3478	3.431E-04	7 _{7,0} 7	\leftarrow	$6_{6,1}6$	70020.186	2.507E-02		
2,1	\leftarrow	1,2		148221.5435	3.246E-04	$10_{7,4}11$	\leftarrow	9 _{6,3} 10	79289.079	2.492E-02		
5,5	\leftarrow	4,5		370533.2476	3.238E-04	107,311	\leftarrow	9 _{6,4} 10	79289.156	2.492E-02		
5,5	\leftarrow	4,5		370533.2476	3.238E-04	87,28	\leftarrow	7 _{6,1} 7	73112.399	2.457E-02		
7,6	\leftarrow	6,5		518714.3455	2.964E-04	87,18	\leftarrow	76,27	73112.401	2.457E-02		
3,2	\leftarrow	2,3		222329.3488	8.802E-05	66,17	\leftarrow	$5_{5,0}6$	59487.103	2.456E-02		
6,6	\leftarrow	5,6		444627.1943	5.804E-05	66,07	\leftarrow	55,16	59487.108	2.456E-02		

^{*a*}Experimental values for $HCNH^+$ in Quénard *et al.* (2017)

Table S13:	M06-2X/6-31G(d,p)	calculated frequencies	and intensities for	r hyperfine strong	gest lines of 2CNTH ⁺	and 3CNTH ⁺	at 10.00
K							

<u>n.</u>		2CN	TH^+			3CNTH ⁺						
$J'_{K_{-1}K_{+1}}F'$	\leftarrow	$J_{K_{-1}K_{+1}}^{''}F^{''}$	v_{calc}	Int (nm^2MHz)	$J'_{K_{-1}K_{+1}}F'$	\leftarrow	$J_{K_{-1}K_{+1}}^{''}F^{''}$	v_{calc}	Int (nm^2MHz)			
88,19	\leftarrow	77.08	80552.491	3.051E-02	77,18	\leftarrow	66.07	91719.252	1.220E-01			
8 _{8,0} 9	\leftarrow	77,18	80552.491	3.051E-02	77.08	\leftarrow	66,17	91719.252	1.220E-01			
$9_{9,1}10$	\leftarrow	88.09	91083.833	2.903E-02	87,19	\leftarrow	76.28	94375.606	1.165E-01			
9 _{9,0} 10	\leftarrow	88,19	91083.833	2.903E-02	87.29	\leftarrow	76,18	94375.606	1.165E-01			
77,18	\leftarrow	66,07	70020.211	2.901E-02	88,19	\leftarrow	77,08	105623.208	1.150E-01			
77,08	\leftarrow	66,17	70020.211	2.901E-02	88,09	\leftarrow	77,18	105623.208	1.150E-01			
9 _{8,2} 10	\leftarrow	87,19	83644.940	2.865E-02	66,17	\leftarrow	55,06	77814.426	1.133E-01			
$9_{8,1}10$	\leftarrow	87,29	83644.940	2.865E-02	6 _{6,0} 7	\leftarrow	$5_{5,1}6$	77814.426	1.133E-01			
87.29	\leftarrow	76,18	73112.444	2.790E-02	9 _{7,3} 10	\leftarrow	86.29	97031.498	1.106E-01			
87,19	\leftarrow	76.28	73112.446	2.790E-02	97,210	\leftarrow	86,39	97031.498	1.106E-01			
88,18	\leftarrow	77.07	80552.471	2.687E-02	76.28	\leftarrow	65,17	80470.751	1.105E-01			
88,08	\leftarrow	77,17	80552.471	2.687E-02	76,18	\leftarrow	65,27	80470.752	1.105E-01			
$10_{9,1}11$	\leftarrow	9 _{8,2} 10	94176.399	2.667E-02	9 _{8,2} 10	\leftarrow	87,19	108279.540	1.077E-01			
$10_{9,2}11$	\leftarrow	$9_{8,1}10$	94176.399	2.667E-02	$9_{8,1}10$	\leftarrow	87,29	108279.540	1.077E-01			
$10_{8,3}11$	\leftarrow	97,210	86735.919	2.660E-02	86,39	\leftarrow	75,28	83126.400	1.074E-01			
$10_{8,2}11$	\leftarrow	97,310	86735.920	2.660E-02	86,29	\leftarrow	75,38	83126.403	1.074E-01			
97,310	\leftarrow	86,29	76202.620	2.654E-02	77,17	\leftarrow	66,06	91719.227	1.054E-01			
97,210	\leftarrow	86,39	76202.635	2.654E-02	77,07	\leftarrow	66,16	91719.227	1.054E-01			
9 _{9,1} 9	\leftarrow	88,08	91083.817	2.594E-02	107,411	\leftarrow	96,310	99686.583	1.041E-01			
9 _{9,0} 9	\leftarrow	88,18	91083.817	2.594E-02	$10_{7,3}11$	\leftarrow	$9_{6,4}10$	99686.584	1.041E-01			
9 _{8,2} 9	\leftarrow	87,18	83644.903	2.560E-02	9 _{6,4} 10	\leftarrow	85,39	85780.837	1.036E-01			
9 _{8,1} 9	\leftarrow	87,28	83644.903	2.560E-02	9 _{6,3} 10	\leftarrow	85,49	85780.851	1.036E-01			
$10_{10,1}11$	\leftarrow	9 _{9,0} 10	101614.120	2.526E-02	87,18	\leftarrow	76,27	94375.562	1.026E-01			
$10_{10,0}11$	\leftarrow	9 _{9,1} 10	101614.120	2.526E-02	87,28	\leftarrow	76,17	94375.562	1.026E-01			
7 _{7,1} 7	\leftarrow	$6_{6,0}6$	70020.186	2.507E-02	$8_{8,1}8$	\leftarrow	77,07	105623.189	1.013E-01			
7 _{7,0} 7	\leftarrow	66,16	70020.186	2.507E-02	$8_{8,0}8$	\leftarrow	77,17	105623.189	1.013E-01			
$10_{7,4}11$	\leftarrow	9 _{6,3} 10	79289.079	2.492E-02	$10_{8,3}11$	\leftarrow	9 _{7,2} 10	110935.530	1.002E-01			
107,311	\leftarrow	9 _{6,4} 10	79289.156	2.492E-02	$10_{8,2}11$	\leftarrow	9 _{7,3} 10	110935.530	1.002E-01			
87,28	\leftarrow	7 _{6,1} 7	73112.399	2.457E-02	$10_{6,5}11$	\leftarrow	9 _{5,4} 10	88433.410	9.885E-02			
87,18	\leftarrow	76,27	73112.401	2.457E-02	$10_{6,4}11$	\leftarrow	95,510	88433.459	9.885E-02			
6 _{6,1} 7	\leftarrow	$5_{5,0}6$	59487.103	2.456E-02	9 _{7,3} 9	\leftarrow	86,28	97031.448	9.882E-02			
6 _{6,0} 7	\leftarrow	$5_{5,1}6$	59487.108	2.456E-02	9 _{7,2} 9	\leftarrow	86,38	97031.448	9.882E-02			

Figure S3: Comparison of ¹⁴N quadrupole hyperfine spectra of (a) $2CNTH^+$ and (b) $3CNTH^+$ for different temperatures (T = 7, 10, 30, 100 and 300 K).