# Kinetics of contracting geometry-type reactions in the solid state: Implications from the thermally induced transformation processes of $\alpha$ -oxalic acid dihydrate

Satoki Kodani and Nobuyoshi Koga\*

Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

# Contents

| S1. Sample characterization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s2                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| Figure S1. (a) XRD pattern and (b) FT-IR spectrum of the CPs sample.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s2                         |
| Table S1. Assignments of IR absorption peaks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            |
| Figure S2. Optical microscopic views of the samples: (a) CPs and (b) SC samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | s2                         |
| S2. Overall thermal behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s2                         |
| Figure S3. (a) Changes in the XRD pattern of the CPs sample during a stepwise isothermal heating from room temperature to K in steps of 5 K under a dynamic flow of dry N <sub>2</sub> gas and (b) the diffraction pattern of the product solid at 353 K                                                                                                                                                                                                                                                                                             | s2                         |
| <b>Figure S4.</b> (a) Changes in the XRD pattern of the CPs sample during isothermal heating at 323 K under a dynamic flow of d gas and (b) changes in the crystallite size of the solid product, i.e., α-oxalic acid anhydride, calculated with reference to diffraction peak.                                                                                                                                                                                                                                                                      | (020)<br>s2                |
| <b>Figure S5.</b> TG–DTG curves for the samples at various $\beta$ values under a dynamic flow of dry N <sub>2</sub> gas: (a) CPs ( $m_0 = 3.09 \pm 0.19$ and (b) SC ( $m_0 = 3.32 \pm 0.17$ mg) samples.                                                                                                                                                                                                                                                                                                                                            | s3                         |
| <b>Figure S6.</b> Typical <i>T</i> –TG–DTG records for the samples recorded using the CRTA mode at a <i>C</i> of 15 $\mu$ g min <sup>-1</sup> under a dyr flow of dry N <sub>2</sub> gas: (a) CPs ( <i>m</i> <sub>0</sub> : 3.71 mg) and (b) SC ( <i>m</i> <sub>0</sub> : 2.55 mg) samples                                                                                                                                                                                                                                                           | s3                         |
| S3. Thermal dehydration process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| <ul> <li>Figure S7. Typical TG–DTG curves for the thermal dehydration of the dihydrate to form anhydride recorded under isother conditions at various <i>T</i>: (a) CPs (<i>m</i><sub>0</sub> = 3.59 ± 0.13 mg) and (b) SC (<i>m</i><sub>0</sub> = 3.11 ± 0.28 mg). Time zero was defined as the ti which the sample temperature reached to the programmed temperature for isothermal measurement.</li> <li>Figure S8. Kinetic curves for the thermal dehydration recorded under linear nonisothermal conditions at various β values: (a)</li> </ul> | ime at<br>s3<br>ı) CPs     |
| and (b) SC samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s3                         |
| Figure S9. Kinetic curves for the thermal dehydration recorded under CR conditions at various C values: (a) CPs and (b) SC san                                                                                                                                                                                                                                                                                                                                                                                                                       | nples.                     |
| Figure S10. Kinetic curves for the thermal dehydration recorded under isothermal conditions at various <i>T</i> values: (a) CPs ar SC samples                                                                                                                                                                                                                                                                                                                                                                                                        | nd (b)<br>4                |
| <b>Figure S11.</b> Friedman plots for the mass-loss process of the thermal dehydration at various $\alpha_1$ from 0.1 to 0.9 in steps of 0. CPs and (b) SC samples.                                                                                                                                                                                                                                                                                                                                                                                  | s4                         |
| <b>Table S2.</b> Differential kinetic equations of the SR–PBR( $n$ ) models<br><b>Table S3.</b> Optimized $k_{SR}$ and $k_{PBR(2)}$ for the thermal dehydration of $\alpha$ -oxalic acid dihydrate at various temperatures                                                                                                                                                                                                                                                                                                                           |                            |
| S4. Sublimation/decomposition process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |
| <b>Figure S12.</b> TG–DTG curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced be thermal dehydration of the dihydrate, as recorded under isothermal conditions at various <i>T</i> : (a) CPs ( $m_0 = 3.57 \pm 0.09$ mg (b) SC ( $m_0 = 2.98 \pm 0.12$ mg) samples. Time zero was defined as the time at which the sample temperature reached the programmed temperature for isothermal measurement.                                                                                                    | by the<br>g) and<br>to the |
| Figure S13. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced b                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| thermal dehydration of the dihydrate recorded under linear nonisothermal conditions at various $\beta$ values: (a) CPs and (l samples.                                                                                                                                                                                                                                                                                                                                                                                                               | s6                         |
| <b>Figure S14.</b> Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced b thermal dehydration of the dihydrate recorded under CR conditions at various <i>C</i> values: (a) CPs and (b) SC samples                                                                                                                                                                                                                                                                                               | s6                         |
| <b>Figure S15.</b> Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced b                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |
| thermal dehydration of the dihydrate recorded under isothermal conditions at various <i>T</i> values: (a) CPs and (b) SC sampl<br><b>Figure S16.</b> Friedman plots for the mass-loss process of the thermally induced sublimation/decomposition of the anhydrous of<br>acid produced by the thermal dehydration of the dihydrate at various $\alpha_2$ from 0.1 to 0.9 in steps of 0.1: (a) CPs and (b<br>samples.                                                                                                                                  | oxalic<br>b) SC            |

<sup>\*</sup> Corresponding author. E-mail: nkoga@hiroshima-u.ac.jp

#### S1. Sample characterization



**Figure S1**. (a) XRD pattern and (b) FT-IR spectrum of the CPs sample.

**Table S1.** Assignments of IR absorption peaks<sup>38-40</sup>

| Peak/cm <sup>-1</sup> | Vibration mode                                  |
|-----------------------|-------------------------------------------------|
| 3420                  | OH stretching                                   |
| 1693                  | Stretching of the C=O moiety of the carboxyl    |
|                       | groups                                          |
| 1445                  | H–O–H bending                                   |
| 1252                  | C–O stretching                                  |
| 1122                  | out-of-plane vibration of the hydroxyl group of |
|                       | oxalic acid                                     |
| 723                   | Combination band                                |
| 608                   | Out of plane vibration that involve five atoms  |
| 480                   | Combination band                                |



Figure S2. Optical microscopic views of the samples: (a) CPs and (b) SC samples.

## S2. Overall thermal behavior



**Figure S3.** (a) Changes in the XRD pattern of the CPs sample during a stepwise isothermal heating from room temperature to 353 K in steps of 5 K under a dynamic flow of dry  $N_2$  gas and (b) the diffraction pattern of the product solid at 353 K.



**Figure S4.** (a) Changes in the XRD pattern of the CPs sample during isothermal heating at 323 K under a dynamic flow of dry N<sub>2</sub> gas and (b) changes in the crystallite size of the solid product, i.e.,  $\alpha$ -oxalic acid anhydride, calculated with reference to (020) diffraction peak.





**Figure S5.** TG–DTG curves for the samples at various  $\beta$  values under a dynamic flow of dry N<sub>2</sub> gas: (a) CPs ( $m_0 = 3.09 \pm 0.19$  mg) and (b) SC ( $m_0 = 3.32 \pm 0.17$  mg) samples.



**Figure S6.** Typical *T*–TG–DTG records for the samples recorded using the CRTA mode at a *C* of 15  $\mu$ g min<sup>-1</sup> under a dynamic flow of dry N<sub>2</sub> gas: (a) CPs (*m*<sub>0</sub>: 3.71 mg) and (b) SC (*m*<sub>0</sub>: 2.55 mg) samples.

S3. Thermal dehydration process



**Figure S7.** Typical TG–DTG curves for the thermal dehydration of the dihydrate to form anhydride recorded under isothermal conditions at various *T*: (a) CPs ( $m_0 = 3.59 \pm 0.13$  mg) and (b) SC ( $m_0 = 3.11 \pm 0.28$  mg). Time zero was defined as the time at which the sample temperature reached to the programmed temperature for isothermal measurement.



**Figure S8.** Kinetic curves for the thermal dehydration recorded under linear nonisothermal conditions at various  $\beta$  values: (a) CPs and (b) SC samples.



**Figure S9.** Kinetic curves for the thermal dehydration recorded under CR conditions at various C values: (a) CPs and (b) SC samples.



**Figure S10.** Kinetic curves for the thermal dehydration recorded under isothermal conditions at various *T* values: (a) CPs and (b) SC samples.



**Figure S11.** Friedman plots for the mass-loss process of the thermal dehydration at various  $\alpha_1$  from 0.1 to 0.9 in steps of 0.1: (a) CPs and (b) SC samples.

**Table S2.** Differential kinetic equations of the SR–PBR(*n*) models  $n \qquad d\alpha$ 

| п | $\frac{\mathrm{d}\alpha}{\mathrm{d}t} =$ |                                                                                                                                                                                                                                              |
|---|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | a) $t \le 1/k_{\text{PBR}(1)}$ :         | $k_{\text{PBR}(1)}[1 - \exp(-k_{\text{SR}}t)]$                                                                                                                                                                                               |
|   | b) $t \ge 1/k_{PBR(1)}$ :                | $k_{\text{PBR}(1)} \exp(-k_{\text{SR}}t) \left[ \exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(1)}}\right) - 1 \right]$                                                                                                                        |
| 2 | a) $t \le 1/k_{PBR(2)}$ :                | $-2k_{\text{PBR}(2)}\left[\left(1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\right)\exp(-k_{\text{SR}}t)+k_{\text{PBR}(2)}t-\left(1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\right)\right]$                                                      |
|   | b) $t \ge 1/k_{PBR(2)}$ :                | $-2k_{\text{PBR}(2)}\exp(-k_{\text{SR}}t)\left[1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}-\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(2)}}\right)\right]$                                             |
| 3 | a) $t \le 1/k_{\text{PBR}(3)}$ :         | $-3k_{\text{PBR}(3)}\left[\left(1+2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}+2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^{2}\right)\exp(-k_{\text{SR}}t)-\left(-k_{\text{PBR}(3)}t\right)^{2}\right]$                                |
|   |                                          | $+ 2k_{\text{PBR}(3)} \left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}} + 1\right) t - \left(1 + 2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}} + 2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^2\right)\right]$                               |
|   | b) $t \ge 1/k_{PBR(3)}$ :                | $3k_{\text{PBR}(3)}\exp(-k_{\text{SR}}t)\left[2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^2\left(\exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(3)}}\right)-1\right)-\left(1+2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)\right]$ |
|   |                                          |                                                                                                                                                                                                                                              |

| <b>Table S3.</b> Optimized $k_{SR}$ and $k_{PBR(2)}$ for the thermal of | lehydration of $\alpha$ -oxalic acid dihydrate at various temperatures |
|-------------------------------------------------------------------------|------------------------------------------------------------------------|
|-------------------------------------------------------------------------|------------------------------------------------------------------------|

| Sample | <i>Т /</i> К | $k_{ m SR}$ / $ m s^{-1}$ | $k_{\text{PBR}(2)} / \mathrm{s}^{-1}$ | R <sup>2, a</sup> |          |
|--------|--------------|---------------------------|---------------------------------------|-------------------|----------|
| Sample | 1 / K        | KSR / S                   |                                       | differential      | integral |
| CPs    | 292.8        | $7.92 \times 10^{-4}$     | $5.26 \times 10^{-5}$                 | 0.9970            | 0.9998   |
|        | 294.7        | $6.88 	imes 10^{-4}$      | $5.89 \times 10^{-5}$                 | 0.9939            | 0.9997   |
|        | 296.8        | $1.01 \times 10^{-3}$     | $8.11 \times 10^{-5}$                 | 0.9868            | 0.9990   |
|        | 298.4        | $1.19 \times 10^{-3}$     | $1.04 \times 10^{-4}$                 | 0.9932            | 0.9998   |
|        | 300.5        | $1.35 \times 10^{-3}$     | $1.36 \times 10^{-4}$                 | 0.9905            | 0.9989   |
|        | 300.9        | $1.15 \times 10^{-3}$     | $1.77 \times 10^{-4}$                 | 0.9872            | 0.9957   |
| SC     | 296.1        | $3.43 \times 10^{-4}$     | $2.60 \times 10^{-5}$                 | 0.9966            | 0.9992   |
|        | 299.0        | $1.03 \times 10^{-3}$     | $3.95 \times 10^{-5}$                 | 0.9985            | 0.9993   |
|        | 302.0        | $1.48 \times 10^{-3}$     | $4.40 \times 10^{-5}$                 | 0.9764            | 0.9990   |
|        | 305.0        | $5.82 \times 10^{-3}$     | $6.54 \times 10^{-5}$                 | 0.9984            | 0.9991   |

<sup>a</sup> determination coefficient of the nonlinear least squares analysis.

### S4. Sublimation/decomposition process



**Figure S12.** TG–DTG curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate, as recorded under isothermal conditions at various *T*: (a) CPs ( $m_0 = 3.57 \pm 0.09$  mg) and (b) SC ( $m_0 = 2.98 \pm 0.12$  mg) samples. Time zero was defined as the time at which the sample temperature reached to the programmed temperature for isothermal measurement.



**Figure S13.** Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under linear nonisothermal conditions at various  $\beta$  values: (a) CPs and (b) SC samples.



**Figure S14.** Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under CR conditions at various C values: (a) CPs and (b) SC samples.



**Figure S15.** Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under isothermal conditions at various T values: (a) CPs and (b) SC samples.



**Figure S16.** Friedman plots for the mass-loss process of the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate at various  $\alpha_2$  from 0.1 to 0.9 in steps of 0.1: (a) CPs and (b) SC samples.