Kinetics of contracting geometry-type reactions in the solid state: Implications from the thermally induced transformation processes of α -oxalic acid dihydrate

Satoki Kodani and Nobuyoshi Koga*

Department of Science Education, Graduate School of Education, Hiroshima University, 1-1-1 Kagamiyama, Higashi-Hiroshima 739-8524, Japan

Contents

S1. Sample characterization	s2
Figure S1. (a) XRD pattern and (b) FT-IR spectrum of the CPs sample.	s2
Table S1. Assignments of IR absorption peaks	s2
Figure S2. Optical microscopic views of the samples: (a) CPs and (b) SC samples.	s2
S2. Overall thermal behavior	s2
Figure S3. (a) Changes in the XRD pattern of the CPs sample during a stepwise isothermal heating from room temp K in store of 5 K under a duramia flow of dry N ₂ are and (b) the differentian pattern of the product solid at 252 k	erature to 353
Figure S4 (a) Changes in the VPD pattern of the CPs sample during isothermal heating at 223 K under a dynamic f	1
gas and (b) changes in the crystallite size of the solid product, i.e., α-oxalic acid anhydride, calculated with refe diffraction peak.	rence to (020)
Figure S5. TG–DTG curves for the samples at various β values under a dynamic flow of dry N ₂ gas: (a) CPs ($m_0 = 3$.	09 ± 0.19 mg)
and (b) SC ($m_0 = 3.32 \pm 0.17$ mg) samples.	s3
Figure S6. Typical <i>T</i> –TG–DTG records for the samples recorded using the CRTA mode at a <i>C</i> of 15 μ g min ⁻¹ und flow of dry N ₂ gas: (a) CPs (<i>m</i> ₀ : 3.71 mg) and (b) SC (<i>m</i> ₀ : 2.55 mg) samples.	ler a dynamics3
S3. Thermal dehydration process	s3
Figure S7. Typical TG–DTG curves for the thermal dehydration of the dihydrate to form anhydride recorded und	ler isothermal
conditions at various T: (a) CPs ($m_0 = 3.59 \pm 0.13$ mg) and (b) SC ($m_0 = 3.11 \pm 0.28$ mg). Time zero was defined	as the time at
which the sample temperature reached to the programmed temperature for isothermal measurement.	s3
Figure S8. Kinetic curves for the thermal dehydration recorded under linear nonisothermal conditions at various β v	alues: (a) CPs
and (D) SC samples.	$\sim 10^{-10}$ SC samples
Figure 55. Kinetic cui ves foi the thermal denytration recorded under CK conditions at various C values. (a) CF s and (t)) SC samples.
Figure S10. Kinetic curves for the thermal dehydration recorded under isothermal conditions at various T values: (a	a) CPs and (b)
SC samples	4
Figure S11. Friedman plots for the mass-loss process of the thermal dehydration at various α_1 from 0.1 to 0.9 in st	eps of 0.1: (a)
CPs and (b) SC samples.	
Table S2. Differential kinetic equations of the SR-PBR(n) models	s5
Table S3. Optimized k_{SR} and $k_{\text{PBR}(2)}$ for the thermal dehydration of α -oxalic acid dihydrate at various temperatures	s5
S4. Sublimation/decomposition process	s6
Figure S12. TG–DTG curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid pro-	oduced by the
thermal dehydration of the dihydrate, as recorded under isothermal conditions at various T : (a) CPs ($m_0 = 3.57 \pm$	0.09 mg) and
(b) SC ($m_0 = 2.98 \pm 0.12$ mg) samples. Time zero was defined as the time at which the sample temperature is	reached to the
programmed temperature for isothermal measurement.	s6
Figure S13. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid pro	oduced by the
thermal dehydration of the dihydrate recorded under linear nonisothermal conditions at various β values: (a) C	Ps and (b) SC
samples.	
Figure S14. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid pro	oduced by the
thermal dehydration of the dihydrate recorded under CR conditions at various C values: (a) CPs and (b) SC sam	ples s6
Figure S15. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid pro	bduced by the
thermal dehydration of the dihydrate recorded under isothermal conditions at various T values: (a) CPs and (b) S	SC samples.s6
Figure S16. Friedman plots for the mass-loss process of the thermally induced sublimation/decomposition of the and acid produced by the thermal dehydration of the dihydrate at various α_2 from 0.1 to 0.9 in steps of 0.1: (a) Cl	Ps and (b) SC
samples.	s7

^{*} Corresponding author. E-mail: nkoga@hiroshima-u.ac.jp

S1. Sample characterization

Figure S1. (a) XRD pattern and (b) FT-IR spectrum of the CPs sample.

Table S1. Assignments of IR absorption peaks³⁸⁻⁴⁰

Peak/cm ⁻¹	Vibration mode
3420	OH stretching
1693	Stretching of the C=O moiety of the carboxyl
	groups
1445	H–O–H bending
1252	C–O stretching
1122	out-of-plane vibration of the hydroxyl group of
	oxalic acid
723	Combination band
608	Out of plane vibration that involve five atoms
480	Combination band

Figure S2. Optical microscopic views of the samples: (a) CPs and (b) SC samples.

S2. Overall thermal behavior

Figure S3. (a) Changes in the XRD pattern of the CPs sample during a stepwise isothermal heating from room temperature to 353 K in steps of 5 K under a dynamic flow of dry N_2 gas and (b) the diffraction pattern of the product solid at 353 K.

Figure S4. (a) Changes in the XRD pattern of the CPs sample during isothermal heating at 323 K under a dynamic flow of dry N₂ gas and (b) changes in the crystallite size of the solid product, i.e., α -oxalic acid anhydride, calculated with reference to (020) diffraction peak.

Figure S5. TG–DTG curves for the samples at various β values under a dynamic flow of dry N₂ gas: (a) CPs ($m_0 = 3.09 \pm 0.19$ mg) and (b) SC ($m_0 = 3.32 \pm 0.17$ mg) samples.

Figure S6. Typical *T*–TG–DTG records for the samples recorded using the CRTA mode at a *C* of 15 μ g min⁻¹ under a dynamic flow of dry N₂ gas: (a) CPs (*m*₀: 3.71 mg) and (b) SC (*m*₀: 2.55 mg) samples.

S3. Thermal dehydration process

Figure S7. Typical TG–DTG curves for the thermal dehydration of the dihydrate to form anhydride recorded under isothermal conditions at various *T*: (a) CPs ($m_0 = 3.59 \pm 0.13$ mg) and (b) SC ($m_0 = 3.11 \pm 0.28$ mg). Time zero was defined as the time at which the sample temperature reached to the programmed temperature for isothermal measurement.

Figure S8. Kinetic curves for the thermal dehydration recorded under linear nonisothermal conditions at various β values: (a) CPs and (b) SC samples.

Figure S9. Kinetic curves for the thermal dehydration recorded under CR conditions at various *C* values: (a) CPs and (b) SC samples.

Figure S10. Kinetic curves for the thermal dehydration recorded under isothermal conditions at various *T* values: (a) CPs and (b) SC samples.

Figure S11. Friedman plots for the mass-loss process of the thermal dehydration at various α_1 from 0.1 to 0.9 in steps of 0.1: (a) CPs and (b) SC samples.

Table S2. Differential kinetic equations of the SR–PBR(*n*) models $n \qquad d\alpha$

n	$\frac{\mathrm{d}t}{\mathrm{d}t} =$	
1	a) $t \le 1/k_{\text{PBR}(1)}$:	$k_{\rm PBR(1)}[1 - \exp(-k_{\rm SR}t)]$
	b) $t \ge 1/k_{PBR(1)}$:	$k_{\text{PBR}(1)} \exp(-k_{\text{SR}}t) \left[\exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(1)}}\right) - 1 \right]$
2	a) $t \le 1/k_{\text{PBR}(2)}$:	$-2k_{\text{PBR}(2)}\left[\left(1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\right)\exp(-k_{\text{SR}}t)+k_{\text{PBR}(2)}t-\left(1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\right)\right]$
	b) $t \ge 1/k_{PBR(2)}$:	$-2k_{\text{PBR}(2)}\exp(-k_{\text{SR}}t)\left[1+\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}-\frac{k_{\text{PBR}(2)}}{k_{\text{SR}}}\exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(2)}}\right)\right]$
3	a) $t \le 1/k_{PBR(3)}$:	$-3k_{\text{PBR}(3)}\left[\left(1+2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}+2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^{2}\right)\exp(-k_{\text{SR}}t)-\left(-k_{\text{PBR}(3)}t\right)^{2}\right]$
		$+ 2k_{\text{PBR}(3)} \left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}} + 1\right) t - \left(1 + 2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}} + 2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^{2}\right)\right]$
	b) $t \ge 1/k_{PBR(3)}$:	$3k_{\text{PBR}(3)}\exp(-k_{\text{SR}}t)\left[2\left(\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)^{2}\left(\exp\left(\frac{k_{\text{SR}}}{k_{\text{PBR}(3)}}\right)-1\right)-\left(1+2\frac{k_{\text{PBR}(3)}}{k_{\text{SR}}}\right)\right]$

Table S3. Optimized k_{SR} and $k_{PBR(2)}$ for the thermal dehy	ydration of α -oxalic acid dihydrate at various temperatures
---	---

Sample	T/K $k_{\rm SR}$	h_{r-r} / a^{-1}	$k_{\rm SR} / {\rm s}^{-1}$ $k_{\rm PBR(2)} / {\rm s}^{-1}$	R ^{2, a}	R ^{2, a}	
		KSR / S		differential	integral	
CPs	292.8	7.92×10^{-4}	5.26×10^{-5}	0.9970	0.9998	
	294.7	6.88×10^{-4}	5.89×10^{-5}	0.9939	0.9997	
	296.8	1.01×10^{-3}	8.11×10^{-5}	0.9868	0.9990	
	298.4	1.19×10^{-3}	1.04×10^{-4}	0.9932	0.9998	
	300.5	1.35×10^{-3}	1.36×10^{-4}	0.9905	0.9989	
	300.9	1.15×10^{-3}	1.77×10^{-4}	0.9872	0.9957	
SC	296.1	3.43×10^{-4}	2.60×10^{-5}	0.9966	0.9992	
	299.0	1.03×10^{-3}	3.95×10^{-5}	0.9985	0.9993	
	302.0	1.48×10^{-3}	4.40×10^{-5}	0.9764	0.9990	
	305.0	5.82×10^{-3}	6.54×10^{-5}	0.9984	0.9991	

^a determination coefficient of the nonlinear least squares analysis.

S4. Sublimation/decomposition process

Figure S12. TG–DTG curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate, as recorded under isothermal conditions at various *T*: (a) CPs ($m_0 = 3.57 \pm 0.09$ mg) and (b) SC ($m_0 = 2.98 \pm 0.12$ mg) samples. Time zero was defined as the time at which the sample temperature reached to the programmed temperature for isothermal measurement.

Figure S13. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under linear nonisothermal conditions at various β values: (a) CPs and (b) SC samples.

Figure S14. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under CR conditions at various C values: (a) CPs and (b) SC samples.

Figure S15. Kinetic curves for the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate recorded under isothermal conditions at various T values: (a) CPs and (b) SC samples.

Figure S16. Friedman plots for the mass-loss process of the thermally induced sublimation/decomposition of the anhydrous oxalic acid produced by the thermal dehydration of the dihydrate at various α_2 from 0.1 to 0.9 in steps of 0.1: (a) CPs and (b) SC samples.