Electronic Supplementary Information (ESI) for

First-principles calculations of phonon behaviors in graphether: a comparative study with graphene

Xiaoheng Yang,‡^a Dan Han,‡^a Hongzhao Fan,^a Man Wang,^a Mu Du^{*b} and Xinyu Wang^{*a} ^a Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China ^b Institute for Advanced Technology, Shandong University, Jinan 250061, China

1. The list of thermal conductivities of representative 2D monolayers

Table S1. The summary of thermal conductivities of representative 2D monolayers at

2D material	Reference	$k (W m^{-1} K^{-1})$
graphether	Our work	600.91 (armchair)
		393.32 (zigzag)
graphene	Our work	3544.41
graphene	Peng et al. ¹	3716.6
h-BN	Lindsay et al. ²	~520
C_2N	Ouyang et al. ³	82.22
C_3N	Peng et al. ⁴	482
C ₃ B	Wang et al. ⁵	301
silicene	Xie et al. ⁶	9.4
germanene	Peng et al. ¹	2.4
stanene	Peng et al. ⁷	11.6
phosphorene	Jain et al. ⁸	36 (armchair)
		83.5 (zigzag)

300 K using first-principles calculations.

[‡] The first author contributed equally to this work.

^{*} Corresponding authors. Xinyu Wang, Email: <u>xyw@sdu.edu.cn</u>; Mu Du, Email: <u>dumu@sdu.edu.cn</u>.

MoS_2	Gu et al. ⁹	103
$MoSe_2$	Gu et al. ⁹	54
MoTe ₂	Zhang et al. ¹⁰	~79
WS_2	Han et al. ¹¹	262.78
WSe ₂	Gu et al. ⁹	53
WTe ₂	Zhang et al. ¹⁰	~40
SnSe	S	5.58 (b direction)
	Sun et al.	5.01 (<i>c</i> direction)
SiSb	Huang et al. ¹³	4.75
GeSb	Huang et al. ¹³	7.89
SnSb	Huang et al. ¹³	18.21
InS	Shafique et al. ¹⁴	57.1
InSe	Shafique et al. ¹⁴	44.4
InTe	Shafique et al. ¹⁴	33.1
SnP ₃	Wei et al. ¹⁵	3.1

2. The electronic band structure of graphether employing the PBE and

HSE06 hybrid functionals

Figure S1. The electronic band structure of graphether. The black dashed and the blue solid lines indicate calculation results employing the PBE and HSE06 hybrid functionals, respectively.

3. The cohesive energies of some 2D doped graphene structures

Figure S2. The cohesive energies (eV/atom) of graphether, graphene, C₂N, C₃N, C₃B, C₃N₄, C₃₆N₆, C₁₈N₆, As₂C₃, Sb₂C₃, and Bi₂C₃. The calculated cohesive energies (eV/atom) of graphether, graphene, C₂N, C₃N, C₃B, C₃N₄, As₂C₃, Sb₂C₃, and Bi₂C₃ are calculated by ourselves, which are similar to other DFT work (graphene: 7.91 eV/atom,¹⁶ As₂C₃: 5.16 eV/atom,¹⁷ Sb₂C₃: 4.89 eV/atom,¹⁷ and Bi₂C₃: 4.66 eV/atom¹⁷). The results of C₃₆N₆ and C₁₈N₆ are obtained from other DFT work.¹⁸

4. The total energies of some 2D doped graphene structures

Figure S3. The calculated total energies (eV/atom) of graphether, graphene, C₂N, C₃N, C₃B, C₃N₄, As₂C₃, Sb₂C₃, and Bi₂C₃. All the results are calculated by ourselves, which are similar to other DFT work (graphene: -9.23 eV/atom,¹⁹ C₃N: -8.80 eV/atom,¹⁹ and C₃N₄: -8.37 eV/atom²⁰).

5. The cumulative lattice thermal conductivities as a function of phonon mean free paths of graphether and graphene

Figure S4. The cumulative lattice thermal conductivities with respect to phonon mean

free paths of graphether and graphene at 300 K.

References

- B. Peng, H. Zhang, H. Shao, Y. Xu, G. Ni, R. Zhang and H. Zhu, *Phys. Rev. B*, 2016, 94, 245420.
- 2. L. Lindsay and D. A. Broido, Phys. Rev. B, 2011, 84, 155421.
- T. Ouyang, H. Xiao, C. Tang, X. Zhang, M. Hu and J. Zhong, *Nanotechnology*, 2017, 28, 045709.
- B. Peng, B. Mortazavi, H. Zhang, H. Shao, K. Xu, J. Li, G. Ni, T. Rabczuk and H. Zhu, *Phys. Rev. Appl.*, 2018, **10**, 034046.
- 5. H. Wang, Q. Li, H. Pan, Y. Gao and M. Sun, J. Appl. Phys., 2019, 126, 234302.
- 6. H. Xie, M. Hu and H. Bao, Appl. Phys. Lett., 2014, 104, 666.
- 7. B. Peng, H. Shao, Y. Xu, X. Zhang and H. Zhu, Sci. Rep., 2016, 6, 20225.
- 8. A. Jain and A. J. H. McGaughey, Sci. Rep., 2015, 5, 8501.
- 9. X. Gu and R. Yang, Appl. Phys. Lett, 2014, 105, 131903.
- 10. Z. Zhang, Y. Xie, Y. Ouyang and Y. Chen, Int. J. Heat. Mass. Tran, 2017, 108, 417-422.
- D. Han, H. Sun, W. Ding, Y. Chen, X. Wang and L. Cheng, *Physica E*, 2020, **124**, 114312.
- 12. Y. Sun, Z. Shuai and D. Wang, J. Phys. Chem. C, 2019, 123, 12001-12006.
- H. H. Huang, X. Fan, D. J. Singh and W. T. Zheng, J. Mater. Chem. C, 2019, 7, 10652-10662.
- 14. A. Shafique and Y. H. Shin, Sci Rep, 2020, 10, 1093.
- 15. S. Wei, C. Wang, S. Fan and G. Gao, J. Appl. Phys., 2020, 127, 155103.
- 16. H. Shin, S. Kang, J. Koo, H. Lee and Y. Kwon, J. Chem. Phys., 2014, 140, 114702.
- 17. P.-F. Liu, T. Bo, Z. Liu, O. Eriksson, F. Wang, J. Zhao and B.-T. Wang, *J. Mater. Chem. C*, 2018, **6**, 12689-12697.
- B. Mortazavi, M. Makaremi, M. Shahrokhi, Z. Fan and T. Rabczuk, *Carbon*, 2018, 137, 57-67.
- 19. B. Mortazavi, Carbon, 2017, 118, 25-34.
- 20.G. Algara-Siller, N. Severin, S. Y. Chong, T. Bjorkman, R. G. Palgrave, A. Laybourn,

M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas and M. J. Bojdys, *Angew. Chem. Int. Ed. Engl.*, 2014, **53**, 7450-7455.