Electronic Supplementary Information

Adsorption and Dehydrogenation of C_2 - C_6 *N*-alkanes over Pt catalyst: Theoretical Study on Size Effects of Alkane Molecule and Pt Substrate

Xuefei Ding,‡ Houyu Zhu,‡* Hao Ren, Dongyuan Liu, Zehua Yu, Naiyou Shi, Wenyue Guo*

School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China

*Corresponding authors: Houyu Zhu, Wenyue Guo

E-mail address: hyzhu@upc.edu.cn, wyguo@upc.edu.cn

‡ These authors have made an equal contribution to this work.

Table S1. Adsorption Energies (ΔE_{ads} , eV) and average C–H bond lengths (Å) of CH₄ on Pt(111) and Pt₅₅.

	Pt Substrates	ΔE_{ads}	d _{C-H}	
CH ₄ (g)	-	-	1.098	
CU	Pt(111)	-0.28	1.098	
CH ₄	Pt ₅₅	-1.18	1.101	

Reactions	Pt(111)		Pt ₅₅		Pt ₃₈	
Reactions	$\Delta E_{\rm r}$	E_{a}	$\Delta E_{\rm r}$	E_{a}	$\Delta E_{\rm r}$	E_{a}
$C_2H_6 \rightarrow C_2H_5 + H$	-0.11	0.71	-0.50	0.46	-0.73	0.22
$C_2H_5 \rightarrow C_2H_4 + H$	-0.47	0.51	-0.67	0.38	-0.76	0.41
$C_3H_8 \rightarrow C_3H_7 + H$	0.06	0.72	-0.55	0.52	-0.70	0.29
$C_3H_7 \rightarrow C_3H_6 + H$	-0.23	0.63	-0.85	0.54	-0.78	0.46
$C_4H_{10} \rightarrow C_4H_9 + H$	-0.13	0.78	-0.51	0.46	-0.83	0.27
$C_4H_9 \rightarrow C_4H_8 + H$	-0.31	0.30	-0.85	0.54	-0.71	0.63
$\mathrm{C_5H_{12}} \rightarrow \mathrm{C_5H_{11}+H}$	-0.07	0.87	-0.33	0.51	-0.67	0.35
$C_5H_{11} \rightarrow C_5H_{10} + H$	-0.27	0.54	-0.79	0.54	-0.72	0.63
$\mathrm{C_6H_{14}} \rightarrow \mathrm{C_6H_{13}+H}$	-0.02	0.93	-0.37	0.31	-0.67	0.37
$C_6H_{13} \rightarrow C_6H_{12} + H$	-0.31	0.57	-1.10	0.37	-0.74	0.65

Table S2. ZPE-corrected reaction energies (ΔE_r , eV) and energy barriers (E_a , eV) for the dehydrogenation reactions of C₂–C₆ *n*-alkanes on Pt(111), Pt₅₅, and Pt₃₈.

Table S3. Calculated reaction energies (ΔE_r , eV) and energy barriers (E_a , eV) for the dehydrogenation reactions of C₂–C₆ *n*-alkanes on Pt₃₈.

Reactions	Pt ₃₈			
Reactions	$\Delta E_{\rm r}$	E_{a}		
$C_2H_6 \rightarrow C_2H_5 + H$	-0.58	0.33		
$C_2H_5 \rightarrow C_2H_4 + H$	-0.60	0.58		
$C_3H_8 \rightarrow C_3H_7 + H$	-0.51	0.39		
$C_3H_7 \rightarrow C_3H_6 + H$	-0.64	0.61		
$C_4H_{10} \rightarrow C_4H_9 + H$	-0.60	0.39		
$C_4H_9 \rightarrow C_4H_8 + H$	-0.57	0.78		
$\mathrm{C_5H_{12}} \rightarrow \mathrm{C_5H_{11}} + \mathrm{H}$	-0.49	0.45		
$C_5H_{11} \rightarrow C_5H_{10} + H$	-0.56	0.80		
$C_6H_{14} \rightarrow C_6H_{13} + H$	-0.49	0.47		
$C_6H_{13} \rightarrow C_6H_{12} + H$	-0.55	0.83		

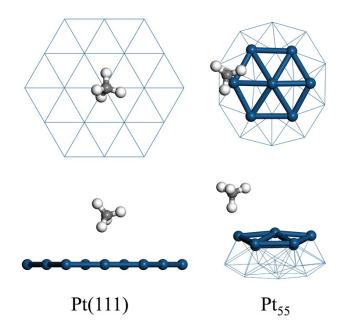
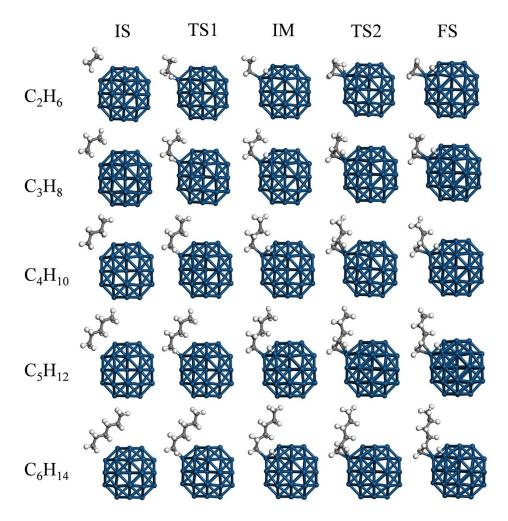
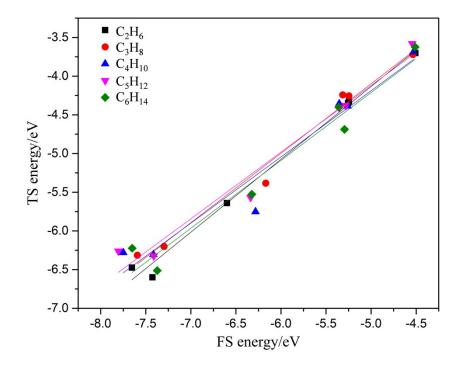




Figure S1. Adsorption configurations of CH_4 on Pt(111) and Pt_{55} .

Figure S2. Dehydrogenation reactions of C_2 – C_6 *n*-alkanes on Pt_{38} . IM denotes the alkyl groups generated from the first dehydrogenation step of alkanes, and the atomic H's co-adsorbed with the alkyls are omitted in the second dehydrogenation step for simplicity.

Figure S3. Linear fittings for the BEP relation based on the C–H bond-scission reactions of each alkane over Pt(111), Pt_{55} , and Pt_{38} . The fitted values of R2 are 0.99, 0.98, 0.98, 0.97, and 0.96 for C₂–C₆ *n*-alkanes, respectively.