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Section S1. Experimental data and calibration 35 
Schematic pulse sequences and representative spectra used for the determination of characteristic times 36 

(T1/TDNP), the NMR signal enhancement (𝜀"), and the depolarization factor (𝜃$%&') are given in Figure S1. 37 
Characteristic times are measured by incrementing τ1 delays and measuring the recovery of NMR signal intensity 38 
following a train of saturation pulses. The NMR signal enhancement (𝜀") is the ratio of signal intensity between the 39 
microwave on and microwave off spectra. During the echo delay (2τ2

 = 160 µs), broad 1H signal intensity from the 40 
probe background and strongly hyperfine-coupled nuclei are significantly broadened and partially dephased due to 41 
their relatively short T2 relaxation times. Consequently 1H spin-echo experiments preferentially detect diamagnetic 42 
1H species in the frozen solvent matrix. It is assumed for all calculations that TDNP ≡ TDNP(on) ≈ TDNP(off), since these values 43 
are generally within 10% of each other as reported in Table S1; noting that TDNP(on) values are used for all analyses 44 
presented in the main text. Only at 2 mM AMUPol concentrations and high glycerol-water 1H spin densities, ρH > 50 45 
M, are the TDNP(off) values appreciably longer. This may be attributed to microwave heating, a greater weighting of 46 
faster-relaxing hyperpolarized 1H species near paramagnetic centers, or due to a slightly differences in the apparent 47 
rate constant, kDNP, in the presence or absence of microwave irradiation. Regardless, these quantities are of the same 48 
order of magnitude suggesting that polarization transfer across the spin-diffusion barrier is similarly impeded both in 49 
the presence and absence of microwave irradiation. 50 

 51 

 52 
Figure S1. (a) Pulse sequence for spin-echo 1H saturation recovery experiment with n = 20 saturation pulses, a fixed 53 
echo delay of 2τ2 = 160 µs and a variable τ1 delay. (b) Pulse sequence for quantitative 1H single-pulse measurements 54 
with n = 16 and a variable τ1 delay. (c) Spin-echo 1H spectra comparing µwave-on versus µwave-off signal intensity for 55 
2 mM AMUPol in glycerol-water (ρH = 3.5 M) at 9.4 T, 100 K, 12.5 kHz MAS. (d) Quantitative 1H signal intensity with 56 
and without 2 mM AMUPol in glycerol-water (ρH = 3.5 M) at 9.4 T, 100 K, 12.5 kHz MAS. 57 
 58 

Table S1. Experimental characteristic build-up times of frozen 2 mM and 12 mM AMUPol glycerol-water matrices,  
                 as functions of 1H spin density with and without microwave irradiation. 

2 mM AMUPol 12 mM AMUPol 
ρH [M] TDNP,on

 [s] TDNP,off
 [s] ρH [M] TDNP,on[s] TDNP,off [s] 

3.5 28.1 26.0 1.3 9.1 8.2 
7.8 20.6 19.5 3.5 4.7 4.4 
13 15.4 15.6 7.9 3.3 3.1 
23 13.5 14.5 14 2.6 2.6 
32 13.5 14.6 28 2.4 2.5 
52 13.7 15.0 56 2.5 2.8 
92 13.1 15.0 108 2.9 3.1 

 59 
 60 
 61 
 62 
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 63 
 64 

In the presence of paramagnetic centers, 1H signal intensity is partially “bleached” by paramagnetic quenching 65 
or MAS-induced depolarization, where the DNP contribution factor (𝜃DNP) is represented by the total fraction of 66 
remaining signal intensity, 𝜃DNP = 𝜃depo𝜃q, as determined from the experimental depolarization factor (𝜃depo) and 67 
quenching factor (𝜃q). 1 For dilute biradical concentrations (e.g., 2 mM AMUPol) it may be assumed that paramagnetic 68 
quenching is negligible, 𝜃q = 1, as quenching arises due to strong paramagnetic interactions near paramagnetic 69 
centers.2 In contrast, depolarization effects are relayed through the diamagnetic bulk by spin diffusion similarly to a 70 
DNP enhancement. In Figure S3, depolarization factors are measured as a function of 1H spin density by single-pulse 71 
1H NMR experiments. Although a linear calibration curve would be expected, the experimental curves are non-linear, 72 
Figure S3a, possibly due to dephasing by strong dipole interactions, r.f. inefficiencies, or a non-linear amplifier 73 
response. In Figure S3b, the depolarization factor as a function of ρH is determined from main text Eq. 12 using the 74 

Figure S2. Characteristic DNP-enhanced 1H polarization build-up 
times (TDNP) for 2 mM AMUPol in glycerol-water with 1H spin 
densities of (a) 3.5 M, (b) 7.8 M, (c) 13 M, (d) 23 M, (e) 32 M, (f) 52 
M, and (g) 92 M, as measured by 1H DNP spin-echo saturation 
recovery at 100 K, 12.5 kHz MAS, and 9.4 T. Each legend includes 
squared norm of the residual, demonstrating close agreement with 
mono-exponential fit.  
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data in Figure S3a. The observed ρH dependence of the depolarization factor is consistent with quantum chemical 75 
simulations which have shown that nuclear depolarization decreases as solvent T1 values decrease.3 76 

For polystyrene in AMUPol glycerol-water suspensions, overlapping 1H intensity prohibits the use of 1H spin-echo 77 
saturation recovery measurements to measure signal enhancements and build-up times. Instead, 13C-detected 1D 78 
13C{1H} CP-MAS saturation recovery experiments are used to measure enhancements 𝜀",) and 𝜀",*  values, shown in 79 
Fig. 5b in the main text. Similar to the enhancement values, characteristic build-up times are influenced by spin 80 
thermodynamic exchange between the dissimilar reservoirs. In Table S2, experimental polarization build-up times for 81 
polystyrene, TDNP,S, and the DNP matrix, TDNP,M, are compared with the, typically, much longer 𝑇,-.,)'  values 82 
corresponding to the homogeneous DNP matrix. Thus, at lower matrix ρH,M, polarization build-up times within the 83 

polystyrene particle interior are only weakly influenced by solvent-mediated 1H spin diffusion. For such conditions, 84 
measured TDNP,S values are less than the 1H spin-lattice relaxation time, 𝑇/,*'  = 1.3 s, indicating that particle surfaces 85 
are directly polarized by hyperfine transfer from adsorbed biradicals as discussed in the main text. Meanwhile at 86 
higher matrix ρH,M, measured TDNP,S values increase as the Zeeman spin conductivity of the matrix, ρH,M𝒟H,MCz, 87 
increases. In general, DNP matrices with higher Zeeman spin conductivities (larger ρH,M) can more effectively relay 88 
hyperpolarization to a solid-particle sink. However, because DNP generation rates are limited by the spin-diffusion 89 
barrier, higher ρH,M𝒟H,MCz may lead to diminished polarization levels as discussed for the homogeneous DNP matrix 90 
in the main text. 91 
 92 

† values extracted from the solid-line in Fig. 3 in the main text 93 
 94 
Section S2. Applying the lumped-element approximation 95 

For Eqs. 4-6 in the main text it is assumed that a lumped-element approximation developed is valid. When spatial 96 
polarization gradients are negligible (∇6𝑃8 = 0), the bulk solvent matrix builds up uniformly to a single-polarization 97 
value for the hollow-sphere spanning from λsdb<r< λws. Similar to lumped-parameter analyses in heat transfer 98 
processes, the following equation satisfies the First Law of Thermodynamics under a lumped-parameter assumption: 99 

Table S2: Experimental characteristic build-up times TDNP,M and TDNP,S for a suspension of polystyrene in 2 mM  
                  AMUPol glycerol-water with different 1H densities. 

ρH,M 1.3 M 4.0 M 12.5 M 25 M 108 M 

†𝑇,-.,)'  [s] 45.2 27.0 15.9 13.5 12.9 

TDNP,M [s] 6.0 5.6 5.9 5.0 5.3 

TDNP,S [s] 1.1 1.1 1.2 1.7 2.2 

 
Figure S3. Quantitative single-pulse 1H MAS NMR measurements of glycerol-water solutions at 9.4 T, 100 K, 12.5 
kHz MAS, including (a) 1H signal intensity with and without 2 mM AMUPol, and (b) DNP contribution factors 
(𝜽𝐝𝐞𝐩𝐨𝐨 ), larger error bars include different masses of glycerol-water in the MAS rotor. 
 



Physical Chemistry Chemical Physics                                    Supporting Information                                                     Page 5 of 12 
 

 
𝜌@𝐶B

𝜕𝑃8
𝜕𝑡 = �̇� + 𝜌@𝐶B

(1 − 𝑃8)
𝑇/

 

 

(S1) 

where the DNP source term per unit volume (�̇�) is calculated by performing a surface integral of the polarization flux 100 
at the spin-diffusion barrier interface divided by the volume of bulk solvent: 101 

 �̇� = /
L
∙ ∬(𝑞@ ∙ 𝑛)𝑑𝑆   , (S2) 

where n is the unit normal vector, and the surface integral is performed at r = λsdb, which leads to: 102 

 �̇� = 𝜌@𝐶B𝑘,-.𝐿U/∆𝑃8   . (S3) 

By substitution of Eq. S3 into Eq. S1, the following expressions are obtained describing polarization build-up with and 103 
without microwave irradiation: 104 

 
𝜕𝑃8
𝜕𝑡 =

(
1 + 𝑘,-.𝐿U/𝑃WXY('Z)𝑇/

1 + 𝑘,-.𝐿U/𝑇/
− 𝑃8)

𝑇/
(1 + 𝑘,-.𝐿U/𝑇/)[

≡
(< 𝑃8̂ .^.,'Z > −𝑃8)

𝑇,-.,'Z
 

 

(S4) 

 105 
 

𝜕𝑃8
𝜕𝑡 =

(
1 + 𝑘,-.𝐿U/𝑃WXY('aa)𝑇/

1 + 𝑘,-.𝐿U/𝑇/
− 𝑃8)

𝑇/
(1 + 𝑘,-.𝐿U/𝑇/)[

≡
b< 𝑃8̂ .^.,'aa > −𝑃8c

𝑇,-.,'aa
						, 

 

(S5) 

where < 𝑃8̂ .^.,'Z > and < 𝑃8̂ .^.,'aa > are the volume averaged steady-state polarization levels with and without 106 
microwave irradiation respectively in the bulk matrix (λsdb<r< λws). As a consequence of the lumped-parameter 107 
approximation, the spatial dependence is removed, so that the polarization becomes a function of time only. These 108 
quantities, hereafter the absolute enhancement (𝜀e) and depolarization factor (𝜃$%&'), are directly proportional to 109 
the net magnetization and, in principle, the NMR signal intensity. 110 
 111 
Section S3. Error analysis for the lumped-element approximation   112 

For high Biot number conditions, nuclear spin diffusion resistances in the bulk frozen glycerol-water matrix are 113 
expected to influence spatial polarization gradients, steady-state enhancements, and characteristic DNP build-up 114 
times. The lumped-parameter solution is no longer applicable as polarization-levels are diminished at distances 115 
progressively farther from the paramagnetic centers (∇6𝑃8 ≠ 0). The steady-state spatial polarization-level, 𝑃8̂ .^.(𝑟), as 116 
a function of position, r, from the paramagnetic center may be solved for analytically. For an annular sphere spanning 117 
from λsdb<r< λws, the steady-state general solution to Eq. 1 in the main text is given, 118 

 𝑃8̂ .^.(𝑟) = 1 + hi
j
∙ cosh[𝛼U/ ∙ 𝑟] + hii

j
∙ sinh[𝛼U/ ∙ 𝑟]    (S6) 

where   𝛼 = t𝒟@𝑇/  and the boundary conditions are: 119 

Boundary Condition #1:       𝑃8̂ .^.|vwxy	at	𝑟 = 𝜆^$} 120 

Boundary Condition #2:       
~�8

~j
|v�w = 0 121 

assuming a homogeneous distribution of paramagnetic centers with a mean separation distance represented by twice 122 
the Wigner-Seitz radius, 2λws. Here α represents the characteristic diffusion length which is >100 nm for frozen 123 
glycerol-water solutions at 9.4 T, 100 K, and 12.5 kHz MAS. The integration constants CI and CII may be solved by 124 
application of the B.C.s to obtain: 125 

 
𝐶� = 	

λ^$}(𝑃8̂ .^.|�wxy − 1)
cosh(𝛼U/λ^$}) − 𝐵�sinh	(𝛼U/λ^$})

 

 

(S8) 

 𝐶�� = −𝐶�𝐵�  (S9) 
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𝐵� =

λ�^𝛼U/ ∙ sinh(λ�^𝛼U/) − cosh	(λ�^𝛼U/)
λ�^𝛼U/ ∙ cosh(λ�^𝛼U/) − sinh	(λ�^𝛼U/)

 

 

(S10) 

where 𝑃8̂ .^.|�wxy  is the steady-state nuclear polarization-level at the effective interface between hyperfine coupled 1H 126 
nuclei and the bulk. This quantity may be determined by recognizing that for conservation of energy the energy flux 127 
flowing into the frozen solvent matrix at r = λsdb, must equal the amount of energy being dissipated by spin-lattice 128 
relaxation over λsdb<r<	λws, 129 

 
(𝑞� ∙ 𝐴)|vwxy =�𝜌@𝐶B

b𝑃8̂ .^.(𝑟) − 1c
𝑇/

dV 

 

(S11) 

with respect to the Zeeman energy flux (𝑞�) and interfacial area (A) which yields, 130 

 
𝑃8�.�.|vwxy =

𝑃Wh� + 𝛽𝐵�� 𝐵���⁄
1 + 𝛽𝐵�� 𝐵���⁄  

 

(S12) 

𝐵�� = −(𝛼U/λ^$} + 𝐵�) sinh(𝛼U/λ^$}) + (𝛼U/λ^$}𝐵� + 1) cosh(𝛼U/λ^$}) + (λ�^𝛼U/
+ 𝐵�) sinh(λ�^𝛼U/) − (λ�^𝛼U/𝐵� + 1)cosh	(λ�^𝛼U/) 

 

(S13) 

 𝐵��� = cosh(𝛼U/λ^$}) − 𝐵� sinh(𝛼U/λ^$}) 
 

(S14) 

where BI, BII, and BIII are geometry specific numerical constants. Importantly, β naturally arises as the dimensionless 131 
scaling parameter, 132 

 
𝛽 =

𝛼6𝑇/U/

𝑘,-.λ^$}
 

 

(S15) 

that characterizes the ratio between the rate of energy dissipation in the bulk and the rate of energy transfer across 133 
a strong local magnetic field gradient (e.g., the spin-diffusion barrier). This is analogous to the second Damköhler 134 
number (DaII), which is commonly used in interphase mass transfer to describe the dissolution of particles. Here, it 135 
compares the rate of polarization transfer to the bulk relative to the rate of polarization dissipation in the bulk. By 136 
comparing the low and high Biot number solutions, it is demonstrated that the condition of Bi<0.65 is sufficient to 137 
justify the use of a lumped-element approximation for 1D spherically symmetric geometry; the same condition used 138 
in heat transfer analyses. Future work will address fast-relaxing reservoirs which can also influence the validity of 139 
lumped-element approximations. The error in the lumped-element calculation is determined as follows: 140 

 
%error =

|𝑃8",�Z��������(𝜆^$}) − 𝑃8",���&%$(𝜆^$})|
𝑃8",�Z��������(𝜆^$})

× 100% 

 

(S16) 

where 𝑃8",���&%$(𝜆^$}) is the solution developed in Section S2 above and 𝑃8",�Z��������(𝜆^$}) is the solution developed 141 
by Eqs. S6 – S15, the calculated error is presented in Figure S4 for a 2 mM AMUPol in glycerol-water matrix. 142 
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Section S4. Derivation of the effectiveness factor (η) 143 
For hyperpolarization transfer to a solid particle sink of radius R facilitated solely by DNP matrix mediated spin-144 

diffusion, from Eq. 7 in the main text, the internal dissipation of hyperpolarization over 0 < r < R is given, 145 

 𝜕𝑃8*
𝜕�̃� = ∅*

U6 ∙ ∇�6𝑃8* −	(𝑃8* − 1) 

Boundary Condition #1:       lim
j̃→¢

~�8£
~j̃

= 0 

Boundary Condition #2:       𝑃8*|j̃¤/	𝑎𝑡	�̃� = 1 
 

(S17) 

where the Thiele modulus of the solid-particle, ∅* = 𝑅/t𝒟@,*𝑇/,*'  , is obtained using �̃� = 𝑟/𝑅	and �̃� =146 
𝑡/𝑇/,*' 	respectively. By application of the boundary conditions, the following steady-state solution is obtained for 147 
𝑃8*(𝑟), the spatial polarization profile within the particle interior,  148 

 
𝑃8*(�̃�) = 1 +

(𝑃8*|j̃¤/ − 1)
�̃� ∙

sinh[∅* ∙ �̃�]
sinh[∅*]

 
(S18) 

where the polarization at the particle surface, 𝑃8*|j̃¤/, is maintained by the rates of hyperpolarization generation and 149 
propagation in the DNP matrix. The effectiveness factor (η) is defined as the ratio between the energy dissipation rate 150 
throughout the solid-particle (𝑄W������) and the theoretical maximum energy dissipation rate (𝑄W��¨) which would occur 151 
if the entire particle was polarized uniformly to the polarization-level at the particle surface, 152 

 𝜂 = 𝑄W������
𝑄W��¨
ª  (S19) 

 with Zeeman energy dissipation rates of,  153 
 

𝑄W��¨ =
4𝜋𝑅­𝜌@,*𝐶B

3𝑇/,*'
∙ (1 − 𝑃8*|j̃¤/) 

 

(S20) 

 
𝑄W������ =

4𝜋𝑅­𝜌@,*CB
3𝑇/,*'

∙ (1−< 𝑃8* >) 
(S21) 

with < 𝑃8*," >	corresponding to the average steady-state polarization of the solid-particle interior. This is obtained 154 
by integration of the steady-state solution as follows, 155 

 
< 𝑃8* >= 3¯𝑃8*(�̃�) ∙ �̃�6

/

¢

𝑑�̃� 
(S22) 

 
Figure S4. Calculated %error of the lumped-element approximation for a 2 mM AMUPol in glycerol-water matrix 
under the conditions described in the main text. 
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Evaluating this integral, and computing the effectiveness factor to obtain, 156 

 𝜂 = 3∅*
U6 ∙ (∅* ∙ coth[∅*] − 1) 

 
(S23) 

Importantly η provides a simple index to relate the polarization-level at the surface with the average polarization 157 
accrued through the particle interior. For DNP-NMR experiments, the absolute polarization enhancement, 𝜀e,*, and 158 
depolarization factor, θ$%&',*, are related to the surface polarization by, 159 

 𝜀e,* = 𝜂(𝑃8*('Z)|j̃¤/ − 1) + 1 (S24) 

 θ$%&',* = 𝜂(𝑃8*('aa)|j̃¤/ − 1) + 1 (S25) 

in the presence and absence of microwave irradiation respectively. To explicitly determine 𝑃8*('Z)|j̃¤/ and 𝑃8*('aa)|j̃¤/ 160 
additional information is needed regarding the efficacy of hyperpolarization transfer to the particle surface. 161 
 162 
Section S5. Efficacy of hyperpolarization transfer to a particle surface 163 

For hyperpolarization transfer to a spherical particle sink (S) of radius R coated with a DNP matrix (M) of 164 
thickness ΔReff, Eq. 7 in the main text corresponds to: 165 

 
𝜌@,)𝐶B

𝜕𝑃8)
𝜕𝑡 = ∇b𝜌@,)𝐶B𝒟@,)∇𝑃8)c −	𝜌@,)𝐶B

(𝑃8) − Ξ))
𝑇²³�,)´  

 

(S26) 

 
𝜌@,*𝐶B

𝜕𝑃8*
𝜕𝑡 = ∇b𝜌@,*𝐶B𝒟@,*∇𝑃8*c −	𝜌@,*𝐶B

(𝑃8* − 1)
𝑇/,*´

 

 

(S27) 

I.C.        
𝑃8)(𝑟, 0) = 	𝑃8*(𝑟, 0) = 0 

 

Ξ) = µ
𝜀e,)´ 	;microwave	on
𝜃$%&',)´ ;microwave	offº 

B.C. #1        
𝑃8)(𝑅, 𝑡) = 	𝑃8*(𝑅, 𝑡) 

B.C. #2        

𝜌@,)𝒟@,)
𝜕𝑃8)
𝜕𝑟 |» = 	𝜌@,*𝒟@,*

𝜕𝑃8*
𝜕𝑟 |»  

 
B.C. #3     

lim
j→¢

𝜕𝑃8*
𝜕𝑟 = 0 

 

B.C. #4  

lim
j→(»¼∆»½¾¾)

𝜕𝑃8)
𝜕𝑟 = 0 

 
assuming that hyperpolarization is solely delivered to the particle surface by DNP matrix-mediated spin diffusion. By 166 
nondimensionalizing of Eq. S26 using �̃� = 𝑟/𝑅	and �̃� = 𝑡/𝑇/,*´ , respectively, 167 

 𝑇,-.,)'

𝑇/,*'
∙
𝜕𝑃8)
𝜕�̃� = ∅)∗

U6∇�6𝑃8) −	(𝑃8) − Ξ)) 

 

(S28) 

where a composite Thiele modulus for the DNP matrix (∅)∗ ) in a heterogeneous solvent-solid suspension may be 168 
represented as, 169 

 
∅)∗ = ∅*À

𝒟@,*𝑇/,*'

𝒟@,)𝑇,-.,)'  

 

(S29) 

which yields the following steady-state solution, 170 
 𝑃8),"(�̃�) = Ξ) +

𝐶���
�̃� ∙ cosh[∅)∗ ∙ �̃�] +

𝐶�L
�̃� ∙ sinh[∅)∗ ∙ �̃�] 

 

(S30) 

where the integration constants CIII and CIV are most conveniently obtained by application of B.C.s #1 and #4. 171 
However, as was the case for Eq. S18, this yields the steady-state spatial polarization profile within the DNP matrix 172 
𝑃8),"(�̃�) in terms of, 𝑃8*|j̃¤/, the unknown surface polarization. For conservation of energy, the rate of energy 173 
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dissipation within the solid-particle interior must be equal to the rate of energy flowing into the particle surface at 174 
steady-state imposing the condition,  175 

 
4𝜋𝑅6𝜌@,)𝐶B𝒟@,)

𝜕𝑃8)
𝜕𝑟 = 𝑄W������ 

 

(S31) 

 
𝑄W������ ≡ 𝜂𝑄W��¨ = −

4𝜋𝑅­𝜌@,*𝐶B
3𝑇/,*'

∙ 𝜂(1 − 𝑃8*|j̃¤/) 

 

(S32) 

where η is the solid-particle effectiveness factor. By nondimensionalization Eq. S31 is then, 176 

 𝜕𝑃8)
𝜕�̃� |j̃	¤	/ =

/
­
Da. ∙ 𝜂(𝑃8*|j̃¤/ − 1) 

 

(S33) 

where the polarization analogue of the Damköhler number (DaP) for the frozen DNP solvent matrix is given, 177 
 

Da. =
𝑅6𝑇/,*'

U/

𝒟@,)
∙
𝜌@,*
𝜌@,)

 

 

(S34) 

which is the ratio between the rate of energy dissipation at the surface versus the rate of energy transfer to the 178 
surface by DNP matrix mediated spin-diffusion weighted with respect to the specific Zeeman heat capacity of each 179 
medium. From which it may be demonstrated that, 180 

 
𝑃8)(�̃�) = Ξ) − 𝛤�

/
­Da	𝜂b𝑃8*|j̃¤/ − 1c

sinh[∅)∗ ] − 𝛤�� cosh[∅)∗ ]
∙ Ã
sinh[∅)∗ ∙ �̃�]

�̃� − 𝛤��
cosh[∅)∗ ∙ �̃�]

�̃� Ä 

 

  (S35) 

 
𝑃8*|j̃¤/ =

Ξ) +
Da.𝜂
3𝛤�

1 + Da.𝜂3𝛤�

 
   (S36) 

where 𝛤� and 𝛤�� are geometry specific numerical constants, 181 

 
𝛤� = −

tanh[∅)∗ ] − 𝛤��
∅)∗ + 𝛤�� − tanh[∅)∗ ] ∙ (1 + ∅)∗ 𝛤��)

 
           (S37) 

 
𝛤�� =

𝜁∅)∗ − tanh[𝜁∅)∗ ]
𝜁∅)∗ ∙ tanh[𝜁∅)∗ ] − 1

 
          (S38) 

where ζ = 1+ΔReff/R corresponds to the �̃� boundary position of the DNP solvent matrix. From Eq. S36, the steady-state 182 
solid enhancement, 𝜀e,* ≡< 𝑃8*('Z) >, or depolarization factor, θ$%&',* ≡	< 𝑃8*('aa) >, is calculated, 183 

 
< 𝑃8* >= 3¯𝑃8*(�̃�) ∙ �̃�6𝑑�̃�

/

¢

 
(S39) 

 

< 𝑃8* >= 𝜂Æ
Ξ) +

Da.	𝜂
3𝛤�

1 + Da.	𝜂3𝛤�

− 1Ç + 1 

(S40) 

importantly the measured NMR signal enhancement, 𝜀",* ≡< 𝑃8*('Z) >/< 𝑃8*('aa) >, may be obtained directly from 184 
Eq. S40. This analytical solution is used to generate the dotted lines in Fig. 5b in the main text.185 
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Section S6. Comparison of lumped-element solution with previous ab initio predictions   186 
     As discussed in the main text, by invoking a DNP transfer coefficient, kDNP, the polarization build-up rates and gain 187 
may be quantitatively predicted from values of kDNP and PÉXY for materials with different compositions and bulk spin-188 
lattice relaxation properties. In particular, previous quantum mechanical simulations3 (Mentink-Vigier, et al., Phys. 189 
Chem. Chem. Phys., 2017 19, 3506, ref. [23] in the main text) have calculated the dependences of T1 vs. TDNP and T1 190 
vs. 𝜀e', which may be directly compared to the predictions of Equations 5a, 6 and 7 in the main text. As shown in 191 
Figure S5 below, the crosses correspond to simulated values extracted from reference [3] corresponding to a 192 
simulation of a “TOTAPol-like” isolated biradical. Although the description of the system does not specify a biradical 193 
concentration, the extracted kDNPL-1  value of 0.137 s-1 is bounded between those measured in the present study. 194 
From the data in the main text, kDNPL-1  values range from 0.03 – 0.06 s-1 and 0.10 – 0.40 s-1 for 2 mM or 12 mM 195 
AMUPol glycerol-water matrices, respectively, with varying extents of deuteration. The simulation results predict 196 
polarization build-up rates that agree with values expected for commonly used DNP matrix formulations. Also from 197 
the simulation, by keeping kDNPL-1 constant, the effective polarization-level of core nuclei under microwave irradiation, 198 
𝑃WXY('Z), may be obtained, as shown in Figure S5b. Again, the simulated value is in agreement with the value of 𝑃WXY('Z) 199 
= 148 ±14 measured for 2 mM AMUPol in a frozen glycerol-water matrix. Although the depolarization factor was not 200 
measured for 12 mM AMUPol solutions in this work, using the data provided in Fig. 2b of reference [4] and the 201 
enhancement factors reported in Table S3 below, a value of 𝑃WXY('Z) = 75 ±5 is estimated for 12 mM AMUPol. Therefore 202 
it may be concluded that the 𝑃WXY('Z) value associated with the simulated data is a realistic estimate bounded by the 203 
conditions used in the present study. The ab initio simulation results accurately describe cross-effect events, which 204 
might be expected to generate a 1H nuclear spin polarization as high as 658. Within the context of the film-transfer 205 
model, this is not the maximum predicted enhancement that can be physically delivered to bulk 1H nuclei. It appears 206 
that the simulation predicts a similar limit to the maximum 1H polarization level that can be delivered to the bulk. 207 
Specifically, 𝑃WXY('Z) = 104.5 corresponds to the asymptotic limit of the curve in Figure S5b, as the bulk T1 value 208 
approaches infinity. From the present work, this value is clearly less than 658, the reason for which is not clear, but 209 
may be due to electron spin relaxation effects, as discussed in the main text. 210 

 211 
Figure S5. Comparison of results from the lumped-element solution presented here (Eqs. 5a, 6, and 7 in the main 212 
text) with those of ab initio calculations from Mentink-Vigier, et al., Phys. Chem. Chem. Phys., 2017 19, 3506 with data 213 
for (a) T1 vs. TDNP and (b) T1 vs. 𝜀e' extracted from Figure 9 in reference [3]. 214 
 215 

*Value of 𝑃WXY('aa) = 0.28 is calculated using 𝜃$%&'' = 0.305 (10 kHz MAS) from Fig. 2b in reference [4] and from Eq. 7 216 
in the main text with 𝑇/' = 79 s and kDNPL-1 = 0.38 s-1 corresponding to 12 mM AMUPol in glycerol-water (ρH = 14 M). 217 
†Values of 𝑃WXY('Z)=75 ±5 calculated from Eq. 7 in the main text and averaged for values in Table S3. 218 

Table S3: Experimental ε∞ values and calculated 𝑷É𝐂𝐄(𝐨𝐧) values of frozen 12 mM AMUPol glycerol-water matrices  
                  as functions of 1H spin density  

ρH,M 1.3 M 3.5 M 7.9 M 14 M 28 M 56 M 108 M 

ε∞ 247 265 254 243 213 184 176 

†𝑃WXY('Z) 80 81 78 76 71 67 75 
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 219 
 220 
Section S7. Calculation of DNP injection rates 221 

For 2 mM AMUPol in glycerol-water the DNP injection rate in units of W/biradical may be straightforwardly 222 
calculated from the reported kDNP and 𝑃WXY values. At steady-state, the energy being dissipated by T1 relaxation 223 
processes must exactly match that being delivered into the bulk across the spin-diffusion barrier. The rate of energy 224 
dissipation by T1 relaxation processes is, 225 

 
𝑄�'Z = 	−¯ 𝜌@𝐶B ∙

𝑃8(𝑟) − 1
𝑇/

4𝜋𝑟6𝑑𝑟
v�w

vwxy
 

(S41) 

which for low Biot conditions is simply, 226 
 𝑄�'Z =	−

4𝜋
3 (𝜆�^

­ − 𝜆^$}
­)𝜌@𝐶B ∙

𝜀e − 1
𝑇/

 (S42) 

under conditions of microwave irradiation. By comparison the rate of hyperpolarization transfer to bulk nuclei is 227 
represented by, 228 

 𝑄Ð%Z = 	4𝜋𝜆^$}
6 ∙ 𝜌@𝐶B𝑘,-.(𝑃WCE(on) − 𝜀e) (S43) 

and these expressions may be evaluated using reported 𝑃WXY('Z), 𝑘,-., and 𝑇/  values in the main text. Equation S42 229 
and S43 are evaluated and compiled for 2 mM AMUPol in glycerol-water in Table S3 below. The measured 230 
hyperpolarization rates are only tabulated for 1H nuclei in the bulk spanning λsdb < r < λws. The present analyses do not 231 
allow for the accounting of energy dissipation occurring among core 1H nuclei, spectator nuclei (e.g., 2H, 13C), or energy 232 
which is transferred to reservoirs other than that of the Zeeman Hamiltonian. The DNP injection rate (W) in plotted 233 
in Figure S5a,b normalized with respect to the number of biradical molecules and the number of bulk 1H nuclei, 234 
respectively.  235 
 236 

Table S4. Calculation of DNP injection and dissipation rates by Equations S42 and S43 for 2 mM AMUPol in frozen 
glycerol-water matrices at 100 K, 12.5 kHz MAS, and 9.4 T. 

ρH [M] T1
 [s] kDNP [nm/s] 𝜀Ò Qcon [W/biradical Qgen [W/biradical] 

3.5 180 0.59 125 -4.93·10-23 +4.93·10-23 
7.8 123 0.80 123 -1.59·10-22 +1.59·10-22 
13 83 1.05 121 -3.86·10-22 +3.86·10-22 
23 53 1.09 111 -9.60·10-22 +9.60·10-22 
32 42 1.00 101 -1.50·10-21 +1.50·10-21 
52 34 0.86 89 -2.74·10-21 +2.74·10-21 
92 25 0.71 70 -5.25·10-21 +5.25·10-21 

 237 

 238 
Figure S6. DNP injection rates (W) normalized with respect to (a) the number of biradical molecules, or (b) the number 239 
of bulk 1H nuclei, respectively, as measured for 2 mM AMUPol in glycerol-water at 9.4 T, 100 K, and 12.5 kHz MAS by 240 
1H spin-echo DNP saturation recovery and calculated from data in Table S3. 241 
 242 
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Section S8. Comparing Thermal, Mass, and Zeeman energy (spin-polarization) transfer 243 
 244 

Table S5. Comparing Thermal, Mass, and Zeeman energy (spin polarization) transfer 

Heat Conduction 

 

𝒒 = −𝒌𝛁𝑻 
q ≡ heat flux in units of W m-2 

k ≡ thermal conductivity in units of W m-1 K-1 

∇T ≡ temperature gradient in units of K m-1 

Molecular Diffusion 
(no ionic charge) 

𝒋 = −𝓓𝛁𝑪 
j ≡ molecular flux in units of mol s-1 m-2 
𝒟 ≡ molecular diffusion coefficient in units of m2 s-1 

∇C ≡ concentration gradient in units of mol m-4 

Spin Polarization Diffusion 
(homogeneous magnetic field) 

𝒒𝒏 = −𝝆𝒏𝑪𝒛𝓓𝒏𝛁𝑷 
𝑞Ý ≡ Zeeman energy flux in units of W m-2 
𝒟Ý ≡ spin diffusion coefficient in units of m2 s-1 

∇P ≡ spin polarization gradient in units of P’ m-1 

𝜌Ý ≡ nuclear spin density in units of mol m-3 

𝐶Þ ≡ Zeeman heat capacity in units of W mol P’-1 

P’ ≡ unitless polarization-level 245 
 246 


