
The Benefit of Poor Mixing: Kinetics of Coacervation SI

Whitney C. Blocher McTigue, Elizabeth Voke, Li-Wei Chang, and Sarah L. Perry*
Department of Chemical Engineering, University of Massachusetts Amherst

*Correspondence: perrys@engin.umass.edu

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2020

Figure S1. Plots of turbidity versus cationic charge fraction illustrating the of polymer chain
length. The positive polymer was added first for EN/KN systems with (a) N = 50, (b) N = 100, (c)
N = 400, and (d) N = 800. In all cases, the stoichiometric curves are broader than peptides whose
chains are half charged. Elapsed time was (a) 65 min, (b) 80 min, (c) 45 min, and (d) 35 min.
Error bars represent the standard deviation of N = 27.

Figure S2. Plots of turbidity versus cationic charge fraction illustrating the effect of polymer
chain length. The negative polymer was added first for EN/KN systems with (a) N = 50, (b) N =
100, (c) N = 400, and (d) N = 800. In all cases, the stoichiometric curves are broader than
peptides whose chains are half charged. Elapsed time was (a) 65 min, (b) 85 min, (c) 65 min, and
(d) 60 min. Error bars represent the standard deviation of N = 27.

Figure S3. Plots of turbidity versus cationic charge fraction for symmetrically-patterned peptides
where the the positive peptide was added first for (a) (EG)25/(KG)25, (b) (E2G2)12/(K2G2)12, (c)
(E4G4)6/(K4G4)6, and (d) (E8G8)3/(K8G8)3. Elapsed time was (a) 80 min, (b) 60 min, (c) 80 min,
and (d) 55 min. Error bars represent the standard deviation of N = 27.

Figure S4. Plots of turbidity versus cationic charge fraction for symmetrically- patterned
peptides where the negative peptide was added first for (a) (EG)25/(KG)25, (b) (E2G2)12/(K2G2)12,
(c) (E4G4)6/(K4G4)6, and (d) (E8G8)3/(K8G8)3. Elapsed time was (a) 85 min, (b) 40 min, (c) 80
min, and (d) 55 min. Error bars represent the standard deviation of N = 27.

Figure S5. Turbidity comparison of complexation of (KG)25/(EG)25 with (black) and without
(blue) 10 mM HEPES. (a) Complexation of (KG)25/(EG)25 varying the cationic mole fraction of
(KG)25 and (b) 50/50 mole ratio of (KG)25/(EG)25 as a function of increasing NaCl concentration.
The salt resistance for the no buffer sample was determined to be 42 mM NaCl, while the sample
with 10 mM HEPES had a salt resistance of 36 mM NaCl. Experiments were done in triplicate
with three aliquots of each sample read three times each to calculate the standard deviation at
each point. Error bars represent the standard deviation of N = 27.

Figure S6. Plots of turbidity versus cationic charge fraction showing the complexation of K50
and (EG)25. (a) Shows the addition of K50 first and (b) shows the addition of (EG)25 of first in 10
mM HEPES. When the patterned polyelectrolyte is added first, there is a shift toward
equilibrium, whereas there is little to no shift when the homopolymer is added first. Elapsed time
for (a) and (b) was 20 min and 70 min, respectively. Error bars represent the standard deviation
of N = 27.

Figure S7. Plots of turbidity versus cationic charge fraction showing the complexation of K50
with (a, c) (EG)25 and (b, d) E100. Data where the positive polymer was added first are shown in
(a, b), while those corresponding to experiments where the negative polymer was added first are
in (c, d). Elapsed time was (a) 80 min, (b) 70 min, (c) 65 min, and (d) 65 min. Error bars
represent the standard deviation of N = 27.

Figure S8. Plots of turbidity versus cationic charge fraction showing the complexation of E50
with (a, c) (KG)25 and (b, d) K100. Data where the positive polymer was added first are shown in
(a, b), while those corresponding to experiments where the negative polymer added first are in (c,
d). Elapsed time was (a) 65 min, (b) 60 min, (c) 75 min, and (d) 60 min. Error bars represent the
standard deviation of N = 27.

Figure S9. Plots of turbidity versus cationic charge fraction showing the effect of 10 mM (a)
KBr, (b) KCl, (c) NaBr, and (d) NaCl on the (EG)25/(KG)25 system, for samples where the
positive peptide was added first. Elapsed time was (a) 5 min, (b) 25 min, (c) 5 min, and (d) 50
min. Error bars represent the standard deviation of N = 27.

Figure S10. Plots of turbidity versus cationic charge fraction showing the effect of 10 mM (a)
KBr, (b) KCl, (c) NaBr, and (d) NaCl on the (EG)25/(KG)25 system, for samples where the
negative peptide was added first. Elapsed time was (a) 5 min, (b) 90 min, (c) 65 min, and (d) 75
min. Error bars represent the standard deviation of N = 27.

Table S1: Polycation, polyanion, order of addition, type of salt, salt concentration, half time, its
standard deviation and elapsed time with its standard deviation for systems with no added buffer.

Polycation Polyanion Order Salt Type [Salt] (mM) t1/2 (min) SD (min) te (min) SD (min)
K4G4 E4G4 P/N - - 14.34 1.6 80.0 5.0
K8G8 E8G8 P/N - - 16.3 0.9 55.0 5.0
K100 E50 P/N - - 23.7 0.7 60.0 5.0
K50 E100 P/N - - 8.8 0.7 70.0 5.0
K400 E400 P/N - - 14.9 3.0 45.0 5.0
K50 E50 P/N - - 16.3 1.4 65.0 5.0

K4G4 E4G4 N/P - - 14.6 2.6 80.0 5.0
K8G8 E8G8 N/P - - 12.5 1.7 55.0 5.0
K100 E50 N/P - - 7.5 5.8 60.0 5.0
K50 E100 N/P - - 31.6 4.6 65.0 5.0
K400 E400 N/P - - 4.7 3.6 65.0 5.0
K50 E50 N/P - - 31.6 1.5 65.0 5.0
K800 E800 N/P - - 21.3 1.5 60.0 5.0
K800 E800 P/N - - 15.3 1.0 35.0 5.0
K2G2 E2G2 N/P - - 35.0 1.1 40.0 5.0

(KG)25 (EG)25 N/P KBr 10 10.4 0.2 5.0 5.0
(KG)25 (EG)25 N/P KCl 10 57.5 2.1 90.0 5.0
(KG)25 (EG)25 N/P NaBr 10 4.0 0.8 65.0 5.0
(KG)25 (EG)25 N/P NaCl 10 47.5 1.3 75.0 5.0
(KG)25 (EG)25 N/P KBr 25 2.5 0.2 5.0 5.0
(KG)25 (EG)25 N/P KCl 25 2.5 0.2 5.0 5.0
(KG)25 (EG)25 N/P NaBr 25 17.5 0.3 20.0 5.0
(KG)25 (EG)25 N/P NaCl 25 57.5 4.1 60.0 5.0
(KG)25 (EG)25 N/P - - 21.3 1.0 85.0 5.0

K50 (EG)25 N/P - - 8.5 1.2 65.0 5.0
K2G2 E2G2 N/P - - 13.7 0.4 60.0 5.0

(KG)25 (EG)25 P/N KBr 10 2.5 0.3 5.0 5.0
(KG)25 (EG)25 P/N KCl 10 22.5 3.1 25.0 5.0
(KG)25 (EG)25 P/N NaBr 10 2.5 0.3 5.0 5.0
(KG)25 (EG)25 P/N NaCl 10 8.4 1.2 50.0 5.0
(KG)25 (EG)25 P/N KBr 25 0.0 - 0.0 -
(KG)25 (EG)25 P/N KCl 25 3.4 1.0 30.0 5.0
(KG)25 (EG)25 P/N NaBr 25 17.5 0.2 20.0 5.0
(KG)25 (EG)25 P/N NaCl 25 63.3 0.4 85.0 5.0
(KG)25 (EG)25 P/N - - 9.9 1.2 80.0 5.0
(KG)25 E50 P/N - - 4.0 1.9 65.0 5.0

K100 E100 P/N - - 17.5 2.4 80.0 5.0
K50 (EG)25 P/N - - 46.2 2.8 80.0 5.0
K100 E100 N/P - - 14.4 4.9 85.0 5.0

(KG)25 E50 N/P - - 8.7 1.9 75.0 5.0

Table S2. Table of counter-ions, molecular weights with (Mnc) and without (Mn) the counter-
ions, and polydispersity index (PDI) of polypeptides. Polypeptides of chain length 50 were made
in house, while N = 100, 400, and 800 were purchased from Alamanda Polymers.

 Counter Iona Mnc (g/mol) Mn (g/mol) PDIe 𝑅!! f (Å)

50

K50 TFA– 12,000 6,400 - 204

E50
b

 Na+ 7,600 6,500 - 204

KGc TFA– 7,500 4,600 - 204

EGc Na+ 5,200 4,700 - 204

100
K100 Br– 21,000 13,000 1.06 825

E100
d

 Na+ 15,000 13,000 1.02 825

400
K400 TFA– 97,000 51,000 1.08 1630

E400
d

 Na+ 60,000 52,000 1.01 1630

800
K800 TFA– 194,000 103,000 1.06

1.06

3270

E800
d

 Na+ 120,000 103,000 1.06 3270
a TFA is defined as trifluoroacetate.
b E50 was made in house and is composed of alternating D and L monomers.
c Patterned peptides have the same number of glycine and lysine/glutamate residues and have the
same molecular weight.
d En was purchased from Alamanda Polymers and is racemic, but without sequence control.
e PDI was reported by the manufacturer based on characterization using gel permeation
chromatography (GPC).
f Mean squared radius of gyration was estimated assuming ideal flexible chain behavior
𝑅!! = !!!

!
 where 𝑏 is the Kuhn length (7 Å) and 𝑁 is the number of Kuhn monomers per chain

approximated as two chemical monomers.1-3 We therefore estimate the persistence length for
each of our polymers to be ~3.5 Å, corresponding to a single animo acid residue.

Gaussian Fits
Gaussian fits were calculated using a MATLAB script. Based on preliminary plots, a unimodal
of Gaussian curves were used. The mathematics behind the code will be discussed in the next
sections.

To use the code, the data was imported as a matrix with the first column comprised of the
various time points. The second column lists the different charge fractions, defined as the ratio of
positive charges over the total number of positive and negative charges. The following columns
list the turbidity readings of each charge fraction as a function of time with its corresponding
standard deviation. Three samples at each charge fraction for each order of addition were made
and each sample was read three times for nine total turbidity readings per stoichiometric point
for both negative first and positive first runs.

The data was separated into its constituents and then the maximum turbidity for each time point
series was determined. This maximum value was used as a guess for the peak of the Gaussian
curve for its respective time. Next, the mole fraction corresponding to this peak was found and
used as a guess for the point on the x-axis for the peak location. The standard deviation of the
turbidity readings for that time point is then calculated and used as the standard deviation for the
Gaussian curve.

A Gaussian curve follows the equation:

𝐺 = 𝐴𝑒!
(!!!)!

!!! (S2)

where 𝐴 is the height of the peak, 𝑏 is the position of the center of the peak, 𝑐 is the standard
deviation of the curve, and 𝑥 is the independent variable, which is the charge fraction. Using the
guesses from above, a second function was written to minimize the sum of the squared error
between the raw data and the curve from the Gaussian fit. This function changed the values of 𝐴,
𝑏, and 𝑐 to find the set that would lead to the best fit. Once found, the raw data and Gaussian fit
could be plotted together.

Plotting and Determining Kinetics
In addition to Gaussian fits, plots of peak location versus time were made. This was done using
the max values were found using MATLAB and the max() function plotted versus time. We
defined the time to reach equilibrium as the time point at which the peak location first reached its
maximum or minimum, depending on the order of addition. In addition to this elapsed time
calculation, we also evaluated our data by determining the “half-time,” or the time required to
reach half of the maximum or minimum value (Figure 2b,d). This halftime was found via linear
interpolation between points for the time corresponding to peak1/2.

𝑝𝑒𝑎𝑘!
!
= !"#$!"#!!"#$!"#

!
 (S3)

The upper and lower bounds of this half time were calculated using the same method along the
upper and lower bound curves. A list of all the halftimes and their corresponding standard
deviations are listed in Table S1.

Reynolds Number and Characteristic Time Calculations

Calculating the Reynolds Number
To calculate the Reynolds number (Re), the following equation was used:

𝑅𝑒 = !"#
!

 (S4)

where 𝜌 is the density, 𝑣 is the velocity, 𝑙 is the height of the liquid level in the well, and 𝜇 is the
dynamic viscosity. The system is assumed to be dilute with respect to the coacervate (~2 mM
polyelectrolyte concentration on a monomer basis) such that the density and viscosity of water
was used: 𝜌 is 0.997 g/mL or 0.000997 kg/mL and 𝜇 is 0.890 cP or 0.00089 kg/(cm*s) at 25°C.
A 384-well plate has the dimensions of a truncated pyramid with the side of the bottom rounded
square equal to 3.130 mm and the side of the top rounded square 3.144 mm. For simplicity, and
using 35 µL as the volume, 3.130 mm was used for 𝑙. The speed of the orbital shaker was 950
rpm and was converted to cm/s by:

𝑣 = 𝑟𝑝𝑚 ∗ 𝐶 (S5)

where 𝐶 is the circumference of the well, calculated by assuming the side of the well (3.130 mm)
is the diameter of a circle and using 𝐶 = 𝜋𝑑. The velocity was calculated to be approximately
15.5 cm/s. Using the equation for the Reynolds number, Re ~ 546 for the 384-well plate
categorizing the flow as laminar.

The same approach was used for the round 96-well plate with the bottom diameter equal to 6.35
mm and the top equal to 6.85 mm, thus using 6.35 mm as l. The velocity was calculated as
described above resulting in an approximate velocity of 31.6 cm/s. Using these values and the
physical properties of water, the Reynolds number was calculated to be Re ~ 2247, in the regime
of transitional flow.

Characteristic Time for Diffusive Mixing
To further expand the discussion of diffusive versus convective transport, we calculated a
characteristic time by:

𝜏 = !!

!!
 (S6)

where 𝐿 is the distance over which diffusion occurs and 𝐷 is the diffusivity. We assumed this
time would be for the polymer to diffuse half way across the well, resulting in a time of ~3.4 hr
and ~14.0 hr for the 384- and 96-well plates, respectively. The relative magnitude of this
timeframe in the 384-well plate is of the same order of magnitude as the 90 min length of our
experiments.

MATLAB Script
function Linear_Interp_Stats_Perry

clear,clc % clears command window and workspace

files = dir('*.xlsx')'; % required for multiple file runs

for runs = 1:length(files) % required for multpile file runs
namefile = files(runs).name % required for multiple file runs

data = xlsread(namefile);

% Note that the sheet you inport can only have a header line and then the
% data that you are inporting. Make sure that you are in the current folder
% or be sure to write the whole extension starting with the hard drive and
% navigating to the correct file. Use doc xlsread if you are unsure how to
% import data using xlsread.

% For your data, the first column is your times. The second is your x.
% The third, and every 2 after, is your y data. The column that is skipped
% is the standard deviation for that y column:
% times x y std y std y std y std...

time = data(:,1); % makes time array
for j = 1:length(time)
 times = time(~isnan(time)); % gets rid of any NaN
end

molfrac = data(:,2);
for k = 1:length(molfrac)
 mol_frac = molfrac(~isnan(molfrac)); % gets rid of any NaN
end
 % Uses the second column as the mole fractions
[~, numcol] = size(data);
readings = data(:,3:numcol);
readings(~any(~isnan(readings), 2),:)=[]; % gets rid of any NaN
[~,readcol] = size(readings);
 % The rest of the columns are the reads for the data set

colorVec = hsv(readcol); % creates a vector of rainbow colors
legend_names = cell(1,readcol/2); % generates a vector for the legend
peaks = zeros(readcol/2,1); % creates a preallocated vector
peak_st = zeros(readcol/2,1);
c1 = zeros(readcol/2,3); % preallocated vector for Gaussian coef

file_names{runs} = namefile;

figure(2*runs-1)
for i = 1:readcol
 if mod(i,2) == 1
 sigma = std(readings(:,i)); % standard deviation of data set
 guess(1) = max(readings(:,i)); % guess for amplitude / highest y value
 [r,s] = find(readings(:,i)==guess(1));
 guess(2) = mol_frac(r(1),s(1)); % guess for x where y is highest
 % mole fraction of max, specifying first as some
 % runs try to generate multiple peaks
 guess(3) = sigma; % guess for standard deviation
 gaus = @(guess,mol_frac)(guess(1).*exp((-(mol_frac-
guess(2)).^2)./(2*guess(3)^2)));
 y = readings(:,i); % corresponding y data for fitting

 [beta, ~, ~,cov] = nlinfit(mol_frac,y,gaus,guess);
 coef_sd = sqrt(diag(cov)); % obtains std dev of each coef
 c1((i+1)/2,:) = beta;

 % Creating and plotting the Gaussian
 x = 0:0.001:1; % mole fraction values for fit
 gaussian = beta(1).*exp((-(x-beta(2)).^2)./(2*beta(3)^2)); % fit
 peaks((i+1)/2) = beta(2); % mole fraction peak for set of data
 peak_st((i+1)/2) = coef_sd(2);
 plot(x,gaussian,'Color',colorVec(i,:))
 hold on
 fwhm((i+1)/2,:) = 2.*sqrt(2.*log(2)).*beta(3);
 end
end

FWHM0(runs) = fwhm(1);
FWHM90(runs) = fwhm(19);

for i = 1:readcol
 if mod(i,2) == 1
 errorbar(mol_frac,readings(:,i),readings(:,i+1),'o','Color',...
 colorVec(i,:)) % plotting data with error bars
 legend_names{((i+1)/2)} = [num2str(times((i+1)/2)) ' min']; % generating
legend names
 hold on
 end

end

lgd = legend(legend_names);

legend('boxoff')
hold off
xtickformat('%.1f')
ytickformat('%.2f')
set(findall(gcf,'-property','FontSize'),'FontSize',8)
xlabel('Charge Fraction K(+)
(mol/mol)','fontsize',10,'fontweight','bold','FontName','Arial')
ylabel('Turbidity (a.u.)','fontsize',10,'fontweight','bold','FontName','Arial')

lgd.FontSize = 6;
% Note: Use sprintf() to include subtitles by using \n

set(figure(2*runs-1), 'PaperUnits', 'centimeters','PaperPosition',[0 0 8.25 8.25]);
print(figure(2*runs-1), '-depsc', num2str([namefile '_turb.eps']),'-r600');

figure(2*runs)
for i = 1:readcol
 if mod(i,2) == 1
 m((i+1)/2) = max(readings(:,i));
 [r,s] = find(readings(:,i)==m((i+1)/2));
 n((i+1)/2) = mol_frac(r(1),s(1));
 sdr = readings(r(1),s(1)+1);
 ll((i+1)/2) = n((i+1)/2) - 2.306.*sdr./sqrt(9);
 ul((i+1)/2) = n((i+1)/2) + 2.306.*sdr./sqrt(9);

 errorbar(times((i+1)/2),n((i+1)/2),sdr,'o','Color',...
 colorVec(i,:)) % plotting data, add in error bars
 legend_names{(i+1)/2} = [num2str(times((i+1)/2)) ' min']; % generating legend
names

 hold on
 end
end

nhalf = (max(n)+min(n))./2; % Calculating the stoichiometry for t1/2
 [pall] = find(n==max(n)); % determine the increments corresponding to the maximum
value of n
[uall] = find(n==min(n)); % determine the increments corresponding to the minimum
value of n

if n(1) < nhalf % used for experiments which start at low stoichiometry and increase

 [p]=[pall(1)]; % determine the index of the lowest index corresponding to the
maximum
 if size(uall,2) == 1
 [u]=[uall(1)]; % determine the index of the highest index corresponding to the
minimum
 else
 [u]=size(uall,2); % determine the index of the highest index corresponding to
the minimum
 end

else % used for experiments which start at high stoichiometry and decrease

 [u]=[uall(1)]; % determine the index of the lowest index corresponding to the
minimum
 if size(pall,2) == 1
 [p]=[pall(1)]; % determine the index of the highest index corresponding to the
minimum
 else
 [p]=size(pall,2); % determine the index of the highest index corresponding to
the minimum
 end
end

minll = ll(u); % determine the value of the lowest increment for the bottom asymptote
minul = ul(u); % determine the value of the lowest increment for the upper asymptote
maxll = ll(p); % determine the value of the highest increment for the lower asymptote
maxul = ul(p); % determine the value of the highest increment for the upper asymptote
mll = (minll - maxll)./(times(u)-times(p)); % calculate the slope of the line for the
lower error bound
mul = (minul - maxul)./(times(u)-times(p)); % calculate the slope of the line for the
upper error bound
bll = minll - mll.*times(u); % calculate the y-intercept of the line for the lower
error boundary
bul = minul - mul.*times(u); % calculate the y-intercept of the line for the upper
error boundary

if n(1) < nhalf % used for experiments which start at low stoichiometry and increase
 mline = (max(n)-min(n))./(times(u)-times(p)); % calculate the slope of the line
for the actual data
 bline = max(n) - mline.*times(u); % calculate the y-intercept of the line for the
actual data
 telapsed(runs) = times(p);
else
 mline = (max(n)-min(n))./(times(p)-times(u)); % calculate the slope of the line
for the actual data
 bline = max(n) - mline.*times(p); % calculate the y-intercept of the line for the
actual data
 telapsed(runs) = times(u);
end

lt = [times(u) times(p)]; % times for the bounds
llm = [minll maxll]; % Calculating the stoichiometry values for the upper error bound
ulm = [minul maxul]; % Calculating the stoichiometry values for the upper error bound
tl(runs) = (nhalf - bll)./mll; % Calculating the time for the upper error bound
tu(runs) = (nhalf - bul)./mul; % Calculating the time for the lower error bound
th(runs) = (nhalf - bline)./mline; % Calculating the time for n1/2

CI_ul(runs) = abs(tu(runs) - th(runs)); % Calculating the upper boundary of the
confidence interval
CI_ll(runs) = abs(tl(runs) - th(runs)); % Calculating the lower boundary of the
confidence interval

tvl = [tl(runs) tl(runs)]; % indices for plotting the lines
tvu = [tu(runs) tu(runs)];
mvl = [0 nhalf];
mvu = [0 nhalf];
tvh = [th(runs) th(runs)];
mvh = [0 nhalf];

tspline = 0:0.001:90;
nspline = interp1(times,n,tspline);
nspline_ll = interp1(times,ll,tspline);
nspline_ul = interp1(times,ul,tspline); %spline

if n(1) < nhalf
 n_ub = find(nspline<nhalf, 1, 'last'); % When the charge first becomes positive
 n_lb = find(nspline>nhalf, 1, 'first'); % When the charge is last to be negative
else
 n_ub = find(nspline<nhalf, 1, 'first'); % When the charge first becomes positive
 n_lb = find(nspline>nhalf, 1, 'last'); % When the charge is last to be negative
end

n_half(runs) = nhalf;
thalf(runs) = (tspline(n_ub)+tspline(n_lb))./2;
% tll(runs) = (tspline(ll_ub)+tspline(ll_lb))./2;
% tul(runs) = (tspline(ul_ub)+tspline(ul_lb))./2;

tul(runs) = thalf(runs) + CI_ul(runs);
tll(runs) = thalf(runs) - CI_ll(runs);

tulb = [tul(runs) tul(runs)];
tllb = [tll(runs) tll(runs)];
thb = [thalf(runs) thalf(runs)];

plot(tspline,nspline_ll,'b',tspline,nspline_ul) %changed from ll3 and ul3
plot(lt, llm, 'k-', lt, ulm, 'k-')
plot(tvl, mvl, 'k-', tvu, mvu, 'k-', tvh, mvh, 'b*-')
plot(tllb, mvl, 'k-', tulb, mvu, 'k-', thb, mvh, 'b*-')
plot(times,ll,'k:',times,ul,'k:',thalf(runs),n_half(runs),'kd')
hold off

set(findall(gcf,'-property','FontSize'),'FontSize',8)
xlabel('Time (min)','fontsize',10,'fontweight','bold','FontName','Arial')
ylabel('Peak Location (mol/mol)','fontsize',10,'fontweight','bold','FontName','Arial')

set(figure(2*runs), 'PaperUnits', 'centimeters','PaperPosition',[0 0 8.25 8.25]);
print(figure(2*runs), '-depsc', num2str([namefile '_peaks.eps']),'-r600');

end

T =
table(thalf',tll',tul',telapsed',FWHM0',FWHM90','VariableNames',{'t_half','tll','tul',
'telapsed','FWHM0','FWHM90'},'RowNames',file_names)
writetable(T,'Kinetics_Symmetry_Data.xlsx','WriteRowNames',true)

end

References

(1) Marciel, A. B.; Srivastava, S.; Tirrell, M. V. Structure and rheology of polyelectrolyte

complex coacervates. Soft Matter 2018, 14 (13), 2454–2464 DOI: 10.1039/C7SM02041D.
(2) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press, 2003.
(3) Hanke, F.; Serr, A.; Kreuzer, H. J.; Netz, R. R. Stretching single polypeptides: The effect

of rotational constraints in the backbone. EPL 2010, 92 (5), 53001–53007 DOI:
10.1209/0295-5075/92/53001.

