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Figure S1. Plots of turbidity versus cationic charge fraction illustrating the of polymer chain 
length. The positive polymer was added first for EN/KN systems with (a) N = 50, (b) N = 100, (c) 
N = 400, and (d) N = 800. In all cases, the stoichiometric curves are broader than peptides whose 
chains are half charged. Elapsed time was (a) 65 min, (b) 80 min, (c) 45 min, and (d) 35 min. 
Error bars represent the standard deviation of N = 27. 



 
Figure S2. Plots of turbidity versus cationic charge fraction illustrating the effect of polymer 
chain length. The negative polymer was added first for EN/KN systems with (a) N = 50, (b) N = 
100, (c) N = 400, and (d) N = 800. In all cases, the stoichiometric curves are broader than 
peptides whose chains are half charged. Elapsed time was (a) 65 min, (b) 85 min, (c) 65 min, and 
(d) 60 min. Error bars represent the standard deviation of N = 27. 



 
 
Figure S3. Plots of turbidity versus cationic charge fraction for symmetrically-patterned peptides 
where the the positive peptide was added first for (a) (EG)25/(KG)25, (b) (E2G2)12/(K2G2)12, (c) 
(E4G4)6/(K4G4)6, and (d) (E8G8)3/(K8G8)3. Elapsed time was (a) 80 min, (b) 60 min, (c) 80 min, 
and (d) 55 min. Error bars represent the standard deviation of N = 27. 
 
 
 



 
 
Figure S4. Plots of turbidity versus cationic charge fraction for symmetrically- patterned 
peptides where the negative peptide was added first for (a) (EG)25/(KG)25, (b) (E2G2)12/(K2G2)12, 
(c) (E4G4)6/(K4G4)6, and (d) (E8G8)3/(K8G8)3. Elapsed time was (a) 85 min, (b) 40 min, (c) 80 
min, and (d) 55 min. Error bars represent the standard deviation of N = 27. 
 



 

Figure S5. Turbidity comparison of complexation of (KG)25/(EG)25 with (black) and without 
(blue) 10 mM HEPES. (a) Complexation of (KG)25/(EG)25 varying the cationic mole fraction of 
(KG)25 and (b) 50/50 mole ratio of (KG)25/(EG)25 as a function of increasing NaCl concentration. 
The salt resistance for the no buffer sample was determined to be 42 mM NaCl, while the sample 
with 10 mM HEPES had a salt resistance of 36 mM NaCl. Experiments were done in triplicate 
with three aliquots of each sample read three times each to calculate the standard deviation at 
each point. Error bars represent the standard deviation of N = 27. 



 
 
Figure S6. Plots of turbidity versus cationic charge fraction showing the complexation of K50 
and (EG)25. (a) Shows the addition of K50 first and (b) shows the addition of (EG)25 of first in 10 
mM HEPES. When the patterned polyelectrolyte is added first, there is a shift toward 
equilibrium, whereas there is little to no shift when the homopolymer is added first. Elapsed time 
for (a) and (b) was 20 min and 70 min, respectively. Error bars represent the standard deviation 
of N = 27. 



 
Figure S7. Plots of turbidity versus cationic charge fraction showing the complexation of K50 
with (a, c) (EG)25 and (b, d) E100. Data where the positive polymer was added first are shown in 
(a, b), while those corresponding to experiments where the negative polymer was added first are 
in (c, d). Elapsed time was (a) 80 min, (b) 70 min, (c) 65 min, and (d) 65 min. Error bars 
represent the standard deviation of N = 27. 
 
 



 

Figure S8. Plots of turbidity versus cationic charge fraction showing the complexation of E50 
with (a, c) (KG)25 and (b, d) K100. Data where the positive polymer was added first are shown in 
(a, b), while those corresponding to experiments where the negative polymer added first are in (c, 
d). Elapsed time was (a) 65 min, (b) 60 min, (c) 75 min, and (d) 60 min. Error bars represent the 
standard deviation of N = 27. 

  



 
Figure S9. Plots of turbidity versus cationic charge fraction showing the effect of 10 mM (a) 
KBr, (b) KCl, (c) NaBr, and (d) NaCl on the (EG)25/(KG)25 system, for samples where the 
positive peptide was added first.  Elapsed time was (a) 5 min, (b) 25 min, (c) 5 min, and (d) 50 
min. Error bars represent the standard deviation of N = 27. 
 
  



 
 
Figure S10. Plots of turbidity versus cationic charge fraction showing the effect of 10 mM (a) 
KBr, (b) KCl, (c) NaBr, and (d) NaCl on the (EG)25/(KG)25 system, for samples where the 
negative peptide was added first.  Elapsed time was (a) 5 min, (b) 90 min, (c) 65 min, and (d) 75 
min. Error bars represent the standard deviation of N = 27. 
 
 
  



 
Table S1: Polycation, polyanion, order of addition, type of salt, salt concentration, half time, its 
standard deviation and elapsed time with its standard deviation for systems with no added buffer. 
 

Polycation Polyanion Order Salt Type [Salt] (mM) t1/2 (min) SD (min) te (min) SD (min) 
K4G4 E4G4 P/N - - 14.34 1.6 80.0 5.0 
K8G8 E8G8 P/N - - 16.3 0.9 55.0 5.0 
K100 E50 P/N - - 23.7 0.7 60.0 5.0 
K50 E100 P/N - - 8.8 0.7 70.0 5.0 
K400 E400 P/N - - 14.9 3.0 45.0 5.0 
K50 E50 P/N - - 16.3 1.4 65.0 5.0 

K4G4 E4G4 N/P - - 14.6 2.6 80.0 5.0 
K8G8 E8G8 N/P - - 12.5 1.7 55.0 5.0 
K100 E50 N/P - - 7.5 5.8 60.0 5.0 
K50 E100 N/P - - 31.6 4.6 65.0 5.0 
K400 E400 N/P - - 4.7 3.6 65.0 5.0 
K50 E50 N/P - - 31.6 1.5 65.0 5.0 
K800 E800 N/P - - 21.3 1.5 60.0 5.0 
K800 E800 P/N - - 15.3 1.0 35.0 5.0 
K2G2 E2G2 N/P - - 35.0 1.1 40.0 5.0 

(KG)25 (EG)25 N/P KBr 10 10.4 0.2 5.0 5.0 
(KG)25 (EG)25 N/P KCl 10 57.5 2.1 90.0 5.0 
(KG)25 (EG)25 N/P NaBr 10 4.0 0.8 65.0 5.0 
(KG)25 (EG)25 N/P NaCl 10 47.5 1.3 75.0 5.0 
(KG)25 (EG)25 N/P KBr 25 2.5 0.2 5.0 5.0 
(KG)25 (EG)25 N/P KCl 25 2.5 0.2 5.0 5.0 
(KG)25 (EG)25 N/P NaBr 25 17.5 0.3 20.0 5.0 
(KG)25 (EG)25 N/P NaCl 25 57.5 4.1 60.0 5.0 
(KG)25 (EG)25 N/P - - 21.3 1.0 85.0 5.0 

K50 (EG)25 N/P - - 8.5 1.2 65.0 5.0 
K2G2 E2G2 N/P - - 13.7 0.4 60.0 5.0 

(KG)25 (EG)25 P/N KBr 10 2.5 0.3 5.0 5.0 
(KG)25 (EG)25 P/N KCl 10 22.5 3.1 25.0 5.0 
(KG)25 (EG)25 P/N NaBr 10 2.5 0.3 5.0 5.0 
(KG)25 (EG)25 P/N NaCl 10 8.4 1.2 50.0 5.0 
(KG)25 (EG)25 P/N KBr 25 0.0 - 0.0 - 
(KG)25 (EG)25 P/N KCl 25 3.4 1.0 30.0 5.0 
(KG)25 (EG)25 P/N NaBr 25 17.5 0.2 20.0 5.0 
(KG)25 (EG)25 P/N NaCl 25 63.3 0.4 85.0 5.0 
(KG)25 (EG)25 P/N - - 9.9 1.2 80.0 5.0 
(KG)25 E50 P/N - - 4.0 1.9 65.0 5.0 

K100 E100 P/N - - 17.5 2.4 80.0 5.0 
K50 (EG)25 P/N - - 46.2 2.8 80.0 5.0 
K100 E100 N/P - - 14.4 4.9 85.0 5.0 

(KG)25 E50 N/P - - 8.7 1.9 75.0 5.0 



Table S2. Table of counter-ions, molecular weights with (Mnc) and without (Mn) the counter-
ions, and polydispersity index (PDI) of polypeptides. Polypeptides of chain length 50 were made 
in house, while N = 100, 400, and 800 were purchased from Alamanda Polymers.  
 

 Counter Iona Mnc (g/mol) Mn (g/mol) PDIe 𝑅!! f (Å) 

50 

K50 TFA– 12,000 6,400 - 204 

E50
b

 Na+ 7,600 6,500 - 204 

KGc TFA– 7,500 4,600 - 204 

EGc Na+ 5,200 4,700 - 204 

100 
K100 Br– 21,000 13,000 1.06 825 

E100
d

 Na+ 15,000 13,000 1.02 825 

400 
K400 TFA– 97,000 51,000 1.08 1630 

E400
d

 Na+ 60,000 52,000 1.01 1630 

800 
K800 TFA– 194,000 103,000 1.06 

1.06 

3270 

E800
d

 Na+ 120,000 103,000 1.06 3270 
a TFA is defined as trifluoroacetate. 
b E50 was made in house and is composed of alternating D and L monomers. 
c Patterned peptides have the same number of glycine and lysine/glutamate residues and have the 
same molecular weight. 
d En was purchased from Alamanda Polymers and is racemic, but without sequence control. 
e PDI was reported by the manufacturer based on characterization using gel permeation 
chromatography (GPC). 
f Mean squared radius of gyration was estimated assuming ideal flexible chain behavior 
𝑅!! = !!!

!
 where 𝑏 is the Kuhn length (7 Å) and 𝑁 is the number of Kuhn monomers per chain 

approximated as two chemical monomers.1-3 We therefore estimate the persistence length for 
each of our polymers to be ~3.5 Å, corresponding to a single animo acid residue. 
 



Gaussian Fits 
Gaussian fits were calculated using a MATLAB script. Based on preliminary plots, a unimodal 
of Gaussian curves were used. The mathematics behind the code will be discussed in the next 
sections. 

To use the code, the data was imported as a matrix with the first column comprised of the 
various time points. The second column lists the different charge fractions, defined as the ratio of 
positive charges over the total number of positive and negative charges. The following columns 
list the turbidity readings of each charge fraction as a function of time with its corresponding 
standard deviation. Three samples at each charge fraction for each order of addition were made 
and each sample was read three times for nine total turbidity readings per stoichiometric point 
for both negative first and positive first runs. 

The data was separated into its constituents and then the maximum turbidity for each time point 
series was determined. This maximum value was used as a guess for the peak of the Gaussian 
curve for its respective time. Next, the mole fraction corresponding to this peak was found and 
used as a guess for the point on the x-axis for the peak location. The standard deviation of the 
turbidity readings for that time point is then calculated and used as the standard deviation for the 
Gaussian curve. 

A Gaussian curve follows the equation: 

𝐺 = 𝐴𝑒!
(!!!)!

!!!  (S2) 

where 𝐴 is the height of the peak, 𝑏 is the position of the center of the peak, 𝑐 is the standard 
deviation of the curve, and 𝑥 is the independent variable, which is the charge fraction. Using the 
guesses from above, a second function was written to minimize the sum of the squared error 
between the raw data and the curve from the Gaussian fit. This function changed the values of 𝐴, 
𝑏, and 𝑐 to find the set that would lead to the best fit. Once found, the raw data and Gaussian fit 
could be plotted together. 

Plotting and Determining Kinetics 
In addition to Gaussian fits, plots of peak location versus time were made. This was done using 
the max values were found using MATLAB and the max() function plotted versus time. We 
defined the time to reach equilibrium as the time point at which the peak location first reached its 
maximum or minimum, depending on the order of addition. In addition to this elapsed time 
calculation, we also evaluated our data by determining the “half-time,” or the time required to 
reach half of the maximum or minimum value (Figure 2b,d). This halftime was found via linear 
interpolation between points for the time corresponding to peak1/2.  

𝑝𝑒𝑎𝑘!
!
= !"#$!"#!!"#$!"#

!
 (S3) 

The upper and lower bounds of this half time were calculated using the same method along the 
upper and lower bound curves. A list of all the halftimes and their corresponding standard 
deviations are listed in Table S1. 



Reynolds Number and Characteristic Time Calculations 

Calculating the Reynolds Number 
To calculate the Reynolds number (Re), the following equation was used: 

𝑅𝑒 = !"#
!

 (S4) 

where 𝜌 is the density, 𝑣 is the velocity, 𝑙 is the height of the liquid level in the well, and 𝜇 is the 
dynamic viscosity. The system is assumed to be dilute with respect to the coacervate (~2 mM 
polyelectrolyte concentration on a monomer basis) such that the density and viscosity of water 
was used: 𝜌 is 0.997 g/mL or 0.000997 kg/mL and 𝜇 is 0.890 cP or 0.00089 kg/(cm*s) at 25°C. 
A 384-well plate has the dimensions of a truncated pyramid with the side of the bottom rounded 
square equal to 3.130 mm and the side of the top rounded square 3.144 mm. For simplicity, and 
using 35 µL as the volume, 3.130 mm was used for 𝑙. The speed of the orbital shaker was 950 
rpm and was converted to cm/s by: 

𝑣 = 𝑟𝑝𝑚 ∗ 𝐶 (S5) 

where 𝐶 is the circumference of the well, calculated by assuming the side of the well (3.130 mm) 
is the diameter of a circle and using 𝐶 = 𝜋𝑑. The velocity was calculated to be approximately 
15.5 cm/s. Using the equation for the Reynolds number, Re ~ 546 for the 384-well plate 
categorizing the flow as laminar. 

The same approach was used for the round 96-well plate with the bottom diameter equal to 6.35 
mm and the top equal to 6.85 mm, thus using 6.35 mm as l. The velocity was calculated as 
described above resulting in an approximate velocity of 31.6 cm/s. Using these values and the 
physical properties of water, the Reynolds number was calculated to be Re ~ 2247, in the regime 
of transitional flow. 

Characteristic Time for Diffusive Mixing 
To further expand the discussion of diffusive versus convective transport, we calculated a 
characteristic time by: 

𝜏 = !!

!!
 (S6) 

where 𝐿 is the distance over which diffusion occurs and 𝐷 is the diffusivity. We assumed this 
time would be for the polymer to diffuse half way across the well, resulting in a time of ~3.4 hr 
and ~14.0 hr for the 384- and 96-well plates, respectively. The relative magnitude of this 
timeframe in the 384-well plate is of the same order of magnitude as the 90 min length of our 
experiments. 

 
  



MATLAB Script 
function Linear_Interp_Stats_Perry 
 
clear,clc % clears command window and workspace 
  
files = dir('*.xlsx')'; % required for multiple file runs 
  
for runs = 1:length(files) % required for multpile file runs 
namefile = files(runs).name % required for multiple file runs     
     
data = xlsread(namefile); 
 
% Note that the sheet you inport can only have a header line and then the 
% data that you are inporting. Make sure that you are in the current folder 
% or be sure to write the whole extension starting with the hard drive and 
% navigating to the correct file. Use doc xlsread if you are unsure how to 
% import data using xlsread. 
  
% For your data, the first column is your times. The second is your x. 
% The third, and every 2 after, is your y data. The column that is skipped 
% is the standard deviation for that y column: 
% times x y std y std y std y std... 
  
time = data(:,1); % makes time array 
for j = 1:length(time) 
    times = time(~isnan(time)); % gets rid of any NaN 
end 
  
molfrac = data(:,2); 
for k = 1:length(molfrac) 
    mol_frac = molfrac(~isnan(molfrac)); % gets rid of any NaN 
end 
    % Uses the second column as the mole fractions 
[~, numcol] = size(data); 
readings = data(:,3:numcol); 
readings(~any(~isnan(readings), 2),:)=[]; % gets rid of any NaN 
[~,readcol] = size(readings); 
    % The rest of the columns are the reads for the data set 
  
colorVec = hsv(readcol); % creates a vector of rainbow colors 
legend_names = cell(1,readcol/2); % generates a vector for the legend 
peaks = zeros(readcol/2,1); % creates a preallocated vector 
peak_st = zeros(readcol/2,1); 
c1 = zeros(readcol/2,3); % preallocated vector for Gaussian coef 
  
file_names{runs} = namefile; 
  
figure(2*runs-1) 
for i = 1:readcol 
    if mod(i,2) == 1  
        sigma = std(readings(:,i)); % standard deviation of data set 
        guess(1) = max(readings(:,i)); % guess for amplitude / highest y value 
        [r,s] = find(readings(:,i)==guess(1)); 
        guess(2) = mol_frac(r(1),s(1)); % guess for x where y is highest 
            % mole fraction of max, specifying first as some 
            % runs try to generate multiple peaks 
        guess(3) = sigma; % guess for standard deviation 
        gaus = @(guess,mol_frac)(guess(1).*exp((-(mol_frac-
guess(2)).^2)./(2*guess(3)^2))); 
        y = readings(:,i); % corresponding y data for fitting 



  
        [beta, ~, ~,cov] = nlinfit(mol_frac,y,gaus,guess); 
        coef_sd = sqrt(diag(cov)); % obtains std dev of each coef 
        c1((i+1)/2,:) = beta; 
  
        % Creating and plotting the Gaussian 
        x = 0:0.001:1; % mole fraction values for fit 
        gaussian = beta(1).*exp((-(x-beta(2)).^2)./(2*beta(3)^2)); % fit 
        peaks((i+1)/2) = beta(2); % mole fraction peak for set of data 
        peak_st((i+1)/2) = coef_sd(2); 
        plot(x,gaussian,'Color',colorVec(i,:)) 
        hold on   
        fwhm((i+1)/2,:) = 2.*sqrt(2.*log(2)).*beta(3); 
    end 
end 
  
FWHM0(runs) = fwhm(1);  
FWHM90(runs) = fwhm(19); 
  
for i = 1:readcol 
    if mod(i,2) == 1 
        errorbar(mol_frac,readings(:,i),readings(:,i+1),'o','Color',... 
            colorVec(i,:)) % plotting data with error bars 
         legend_names{((i+1)/2)} = [num2str(times((i+1)/2)) ' min']; % generating 
legend names 
        hold on 
    end 
  
end 
  
lgd = legend(legend_names); 
  
legend('boxoff') 
hold off 
xtickformat('%.1f') 
ytickformat('%.2f') 
set(findall(gcf,'-property','FontSize'),'FontSize',8) 
xlabel('Charge Fraction K(+) 
(mol/mol)','fontsize',10,'fontweight','bold','FontName','Arial') 
ylabel('Turbidity (a.u.)','fontsize',10,'fontweight','bold','FontName','Arial') 
  
lgd.FontSize = 6; 
% Note: Use sprintf() to include subtitles by using \n 
  
set(figure(2*runs-1), 'PaperUnits', 'centimeters','PaperPosition',[0 0 8.25 8.25]); 
print(figure(2*runs-1), '-depsc', num2str([namefile '_turb.eps']),'-r600');  
  
figure(2*runs) 
for i = 1:readcol 
    if mod(i,2) == 1 
       m((i+1)/2) = max(readings(:,i)); 
       [r,s] = find(readings(:,i)==m((i+1)/2)); 
       n((i+1)/2) = mol_frac(r(1),s(1)); 
       sdr = readings(r(1),s(1)+1);  
       ll((i+1)/2) = n((i+1)/2) - 2.306.*sdr./sqrt(9); 
       ul((i+1)/2) = n((i+1)/2) + 2.306.*sdr./sqrt(9); 
        
       errorbar(times((i+1)/2),n((i+1)/2),sdr,'o','Color',... 
            colorVec(i,:)) % plotting data, add in error bars 
       legend_names{(i+1)/2} = [num2str(times((i+1)/2)) ' min']; % generating legend 
names 



       hold on 
    end 
end 
  
nhalf = (max(n)+min(n))./2; % Calculating the stoichiometry for t1/2 
 [pall] = find(n==max(n)); % determine the increments corresponding to the maximum 
value of n 
[uall] = find(n==min(n)); % determine the increments corresponding to the minimum 
value of n 
  
if n(1) < nhalf % used for experiments which start at low stoichiometry and increase 
     
    [p]=[pall(1)]; % determine the index of the lowest index corresponding to the 
maximum 
    if size(uall,2) == 1 
        [u]=[uall(1)]; % determine the index of the highest index corresponding to the 
minimum 
    else 
        [u]=size(uall,2); % determine the index of the highest index corresponding to 
the minimum 
    end 
     
else % used for experiments which start at high stoichiometry and decrease 
     
    [u]=[uall(1)]; % determine the index of the lowest index corresponding to the 
minimum 
    if size(pall,2) == 1 
        [p]=[pall(1)]; % determine the index of the highest index corresponding to the 
minimum 
    else 
        [p]=size(pall,2); % determine the index of the highest index corresponding to 
the minimum 
    end 
end 
  
minll = ll(u); % determine the value of the lowest increment for the bottom asymptote 
minul = ul(u); % determine the value of the lowest increment for the upper asymptote 
maxll = ll(p); % determine the value of the highest increment for the lower asymptote 
maxul = ul(p); % determine the value of the highest increment for the upper asymptote 
mll = (minll - maxll)./(times(u)-times(p)); % calculate the slope of the line for the 
lower error bound 
mul = (minul - maxul)./(times(u)-times(p)); % calculate the slope of the line for the 
upper error bound 
bll = minll - mll.*times(u); % calculate the y-intercept of the line for the lower 
error boundary 
bul = minul - mul.*times(u); % calculate the y-intercept of the line for the upper 
error boundary 
  
if n(1) < nhalf % used for experiments which start at low stoichiometry and increase 
    mline = (max(n)-min(n))./(times(u)-times(p)); % calculate the slope of the line 
for the actual data 
    bline = max(n) - mline.*times(u); % calculate the y-intercept of the line for the 
actual data 
    telapsed(runs) = times(p); 
else 
    mline = (max(n)-min(n))./(times(p)-times(u)); % calculate the slope of the line 
for the actual data 
    bline = max(n) - mline.*times(p); % calculate the y-intercept of the line for the 
actual data 
    telapsed(runs) = times(u); 
end 
     



  
lt = [times(u) times(p)]; % times for the bounds 
llm = [minll maxll]; % Calculating the stoichiometry values for the upper error bound 
ulm = [minul maxul]; % Calculating the stoichiometry values for the upper error bound 
tl(runs) = (nhalf - bll)./mll; % Calculating the time for the upper error bound 
tu(runs) = (nhalf - bul)./mul; % Calculating the time for the lower error bound 
th(runs) = (nhalf - bline)./mline; % Calculating the time for n1/2 
  
CI_ul(runs) = abs(tu(runs) - th(runs)); % Calculating the upper boundary of the 
confidence interval 
CI_ll(runs) = abs(tl(runs) - th(runs)); % Calculating the lower boundary of the 
confidence interval 
  
tvl = [tl(runs) tl(runs)]; % indices for plotting the lines 
tvu = [tu(runs) tu(runs)]; 
mvl = [0 nhalf]; 
mvu = [0 nhalf]; 
tvh = [th(runs) th(runs)]; 
mvh = [0 nhalf]; 
  
tspline = 0:0.001:90; 
nspline = interp1(times,n,tspline); 
nspline_ll = interp1(times,ll,tspline); 
nspline_ul = interp1(times,ul,tspline); %spline 
  
if n(1) < nhalf 
    n_ub = find(nspline<nhalf, 1, 'last'); % When the charge first becomes positive 
    n_lb = find(nspline>nhalf, 1, 'first'); % When the charge is last to be negative 
else 
    n_ub = find(nspline<nhalf, 1, 'first'); % When the charge first becomes positive 
    n_lb = find(nspline>nhalf, 1, 'last'); % When the charge is last to be negative 
end 
  
n_half(runs) = nhalf; 
thalf(runs) = (tspline(n_ub)+tspline(n_lb))./2; 
% tll(runs) = (tspline(ll_ub)+tspline(ll_lb))./2; 
% tul(runs) = (tspline(ul_ub)+tspline(ul_lb))./2; 
  
tul(runs) = thalf(runs) + CI_ul(runs); 
tll(runs) = thalf(runs) - CI_ll(runs); 
  
tulb = [tul(runs) tul(runs)]; 
tllb = [tll(runs) tll(runs)]; 
thb = [thalf(runs) thalf(runs)]; 
  
plot(tspline,nspline_ll,'b',tspline,nspline_ul) %changed from ll3 and ul3 
plot(lt, llm, 'k-', lt, ulm, 'k-') 
plot(tvl, mvl, 'k-', tvu, mvu, 'k-', tvh, mvh, 'b*-') 
plot(tllb, mvl, 'k-', tulb, mvu, 'k-', thb, mvh, 'b*-') 
plot(times,ll,'k:',times,ul,'k:',thalf(runs),n_half(runs),'kd') 
hold off 
  
set(findall(gcf,'-property','FontSize'),'FontSize',8) 
xlabel('Time (min)','fontsize',10,'fontweight','bold','FontName','Arial') 
ylabel('Peak Location (mol/mol)','fontsize',10,'fontweight','bold','FontName','Arial') 
  
set(figure(2*runs), 'PaperUnits', 'centimeters','PaperPosition',[0 0 8.25 8.25]); 
print(figure(2*runs), '-depsc', num2str([namefile '_peaks.eps']),'-r600'); 
  
end 



  
T = 
table(thalf',tll',tul',telapsed',FWHM0',FWHM90','VariableNames',{'t_half','tll','tul',
'telapsed','FWHM0','FWHM90'},'RowNames',file_names) 
writetable(T,'Kinetics_Symmetry_Data.xlsx','WriteRowNames',true) 
 
end 
 
  



References 
 
(1) Marciel, A. B.; Srivastava, S.; Tirrell, M. V. Structure and rheology of polyelectrolyte 

complex coacervates. Soft Matter 2018, 14 (13), 2454–2464 DOI: 10.1039/C7SM02041D. 
(2) Rubinstein, M.; Colby, R. H. Polymer Physics; Oxford University Press, 2003. 
(3) Hanke, F.; Serr, A.; Kreuzer, H. J.; Netz, R. R. Stretching single polypeptides: The effect 

of rotational constraints in the backbone. EPL 2010, 92 (5), 53001–53007 DOI: 
10.1209/0295-5075/92/53001. 

 


