Electronic Supplementary Information

A priori prediction of complex liquid–liquid–liquid equilibria in organic systems using a continuum solvation model

Priyotosh Bairagya^{a, #}, Debashis Kundu^{b, c, #}, Tamal Banerjee^{c,*}

^a Department of Chemical Engineering, Jadavpur University, India

^b Department of Chemical Engineering, Institute of Chemical Technology Marathwada Campus,

Jalna

^c Department of Chemical Engineering, Indian Institute of Technology Guwahati, India

* Corresponding author E-mail: tamalb@iitg.ac.in

Both the authors have equal contributions

Fax: +91 361 2582291, Tel: +91 361 2582266

Table of Contents

SI No	Title	Page				
51, 110,		number				
Table S1.	Governing equations and universal parameters of the COSMO-SAC	S2				
	(2002) model.					
Table S2.	COSMO-SAC predicted liquid phase split percentages and phase	S4				
	fractions calculated by HRL3E algorithm					
Tabla \$3	Consolidated list of assumptions and boundary conditions applicable	\$5				
1 abic 55.	to COSMO-SAC, RRL3E and HRL3E models.					
Table S4.	Structures of Ionic Liquid (IL) compounds studied in the present work.	S 8				
	Phase diagrams for ternary LLLE systems correlated using the GA-	<u> </u>				
Figure S1.	NRTL (RRL3E) and GA-UNIOUAC (RRL3E) models.	59				
	Phase diagrams for quaternary LLLE systems correlated using the	6 10				
Figure S2.	GA-NRTL (RRI 3E) and GA-UNIQUAC (RRI 3E) models					
	Pinery interaction peremeters for CA NDTL correlations of termery					
Table S5.	Binary interaction parameters for GA-INKTL correlations of ternary	S20				
	LLLE systems using the RRL3E algorithm.					
Table S6.	Binary interaction parameters for GA-UNIQUAC correlations of	S22				

	ternary LLLE systems using the RRL3E algorithm.	
Table S7.	Binary interaction parameters for GA-NRTL correlations of	S24
	quaternary LLLE systems using the RRL3E algorithm.	
Table S8.	Binary interaction parameters for GA-UNIQUAC correlations of	S25
	quaternary LLLE systems using the RRL3E algorithm.	
Table S9.	Observed <i>rmsd</i> (%) for GA-NRTL (RRL3E) model correlations	S26
Table S10.	Observed <i>rmsd</i> (%) for GA-UNIQUAC (RRL3E) model correlations	S27
Table S11.	UNIQUAC structural parameters from PCM calculations	S28

Table	Table S1. Governing equations and universal parameters of the COSMO-SAC (2002) model.					
	Governing equations of the COSMO-SAC model					
sl. no.	description	equation	reference			
1.	pair-wise interaction	$E_{pair}(\sigma_A, \sigma_B) = E_{misfit} + E_{hb}$	1			
	energy $(E_{pair}(\sigma_A, \sigma_B))$					
2.	misfit energy (E_{misfit})	$E_{misfit} = (\alpha'/2)(\sigma_A + \sigma_B)^2$	1			
3.	h-bonding energy (E_{hb})	$E_{hb} = c_{hb} * \min[0, \max(0, \sigma_{acc} - \sigma_{hb})]$	1			
		$min(0, \sigma_{don} + \sigma_{hb})]$				
4.	segment activity coefficient $(\ln(\Gamma_s(\sigma_A)))$	$\ln(\Gamma_{s}(\sigma_{A})) = -\ln\left\{\sum_{\sigma_{n}} p_{s}(\sigma_{A})\Gamma_{s}(\sigma_{A})\right\}$	1			
		$* \exp\left[-\frac{E_{pair}(\sigma_A,\sigma_B)}{kT}\right]$				
5.	overall activity	$\ln(\gamma_{i/S}) = n_i \sum p_i(\sigma_A) \left[\ln(\Gamma_s(\sigma_A)) \right]$	1			
	coefficient $(\ln(\gamma_{i/S}))$	σ_m				
		$-\ln(\Gamma_i(\sigma_A))] + \ln(\gamma_{i/S}^{comb})$				
	·					

	Universal COSMO-SAC parameters						
sl. no.	description	parameter value	reference				
1.	a_{eff} (Å ²)	6.32	2				
2.	$\alpha' (kmol * Å^4 mol^{-1}e^{-2})$	8419	2				
3.	$c_{hb} \ (kcal * \text{\AA}^4 mol^{-1}e^{-2})$	75006	2				
4.	$\sigma_{hb} \; (e * \text{\AA}^{-2})$	0.0084	2				

Nomenclature:

symbol	description
σ_A , σ_B	charge density within the limit $\pm 0.035 \ e * \text{\AA}^{-2}$
α'	misfit energy constant
$\sigma_{acc}, \sigma_{don}$	charge density of acceptor and donor segments respectively
σ_{hb}	hydrogen bonding cut-off value
C _{hb}	hydrogen bonding constant
$p_s(\sigma_A)$	mixture σ -profile
k	Boltzmann constant
$\ln(\Gamma_i(\sigma_A))$	pure-component segment activity coefficient
n _i	cumulative number of surface segments
$\ln(\gamma_{i/S}^{comb})$	Stavermann-Guggenheim combinatorial term

References:

1. S.-T. Lin and S. I. Sandler, Ind. Eng. Chem. Res., 2002, 41, 899-913.

2. A. Bharati, D. Kundu, D. Rabari and T. Banerjee, Phase Equilibria in Ionic Liquid Facilitated Liquid-Liquid Extractions, CRC Press, Boca Raton, 1st edn, 2017.

Table S2. COSMO-SAC predicted liquid phase split percentages and phase fractions							
calculated by HRL	.3E algorit	hm					
type of system	system	temperature	liquic	l phase split	t (%)	phase fractions	
type of system	number	(K)	L^T	L^M	L^B	α	β
			31.41	29.59	39.00	0.3141	0.4314
			31.50	29.78	38.72	0.3150	0.4347
			31.48	29.70	38.83	0.3148	0.4334
	1.	296.15	31.49	29.77	38.74	0.3149	0.4345
			31.56	29.90	38.54	0.3156	0.4369
			31.48	29.74	38.78	0.3148	0.4340
			31.51	29.80	38.69	0.3151	0.4351
	2.	296.15	31.94	32.17	35.89	0.3194	0.4726
non-II, systems		298.15	32.13	32.32	35.56	0.3213	0.4762
(ternary)		313.15	32.30	31.06	36.64	0.3230	0.4588
(ternury)		323.15	32.15	30.78	37.07	0.3215	0.4537
	3.	333.15	31.91	30.64	37.45	0.3191	0.4500
		343.15	31.72	30.01	38.27	0.3172	0.4395
		353.15	31.26	29.13	39.61	0.3126	0.4238
		363.15	30.98	28.51	40.50	0.3098	0.4131
	4.	293.15	32.34	31.96	35.71	0.3234	0.4723
		313.15	30.33	39.69	29.98	0.3033	0.5697
	5.	318.15	29.52	40.76	29.72	0.2952	0.5783
		323.15	28.50	42.42	29.09	0.2850	0.5932
	6.	298.15	32.30	32.88	34.82	0.3283	0.5245
		348.15	30.32	31.53	38.15	0.3185	0.5834
II. systems	7.	298.15	33.22	32.85	33.93	0.3428	0.5204
(ternary)		348.15	29.21	30.41	40.38	0.3200	0.6058
(8.	298.15	29.83	45.03	25.14	0.2983	0.6417
		348.15	31.06	38.06	30.87	0.3106	0.5521
	9.	298.15	31.25	34.67	34.08	0.3125	0.5044

			31.25	34.80	33.95	0.3125	0.5061
		3/18 15	50.00	15.31	34.69	0.5000	0.3062
		510.15	50.00	15.60	34.40	0.5000	0.3119
			27.60	43.78	28.62	0.2777	0.5965
		293.15	26.50	45.21	28.29	0.2791	0.5962
	10.		23.18	50.59	26.24	0.2803	0.5960
			25.19	46.68	28.13	0.2793	0.5995
			23.50	48.52	27.98	0.2808	0.5988
non-IL systems			20.78	51.58	27.63	0.2811	0.6012
(quaternary)			27.77	43.08	29.15	0.2760	0.6047
			27.91	42.99	29.11	0.2650	0.6151
	11	293 15	28.03	42.89	29.07	0.2318	0.6585
	11.	275.15	27.93	43.21	28.87	0.2519	0.6239
			28.08	43.07	28.86	0.2350	0.6343
			28.11	43.22	28.67	0.2078	0.6512

Table S	Table S3. Consolidated list of assumptions and boundary conditions applicable to COSMO-							
SAC, RI	SAC, RRL3E and HRL3E models.							
List of a	ssumptions							
Sl. No.	Model	Assumption	Reference to					
			the section of					
			the main					
			manuscript					
1.	COSMO-	Dispersion free energy contribution has been	Section 2.1					
	SAC	neglected.						
2.	COSMO-	The hypothetical screening medium in COSMO-	Section 2.1					
	SAC	solvation step has been assumed to be a perfect						
		conductor having infinite dielectric constant						

		$(\varepsilon = \infty)$. However, for practical solution	vents the	
		COSMO approximation is accurate to \pm	0.5% for	
		strong dielectrics for example water and	has been	
		chosen as the solvent in our study. ¹		
3.	COSMO-	The σ -profile of the IL has been calc	ulated by	Section 3.1
	SAC	linear averaging of cationic and anionic σ -p	profiles.	
4.	COSMO-	Fractional dissociation of IL components i	n solution	Section 3.1
	SAC	has been neglected since the value	s of IL	
		dissociation constants (α_0) is empirical in t	nature and	
		varies with composition and temperature.	Complete	
		dissociation of cations and anions is assume	ed.	
5.	COSMO-	Short and long range weak electrostatic in	teractions	Section 3.1
	SAC	of the IL mixtures using the original Pitz	er-Debye-	
		Huckel (PDH) term has been negle	ected for	
		simplicity and for maintaining therm	odynamic	
		consistency.		
б.	RRL3E	The feed composition for each of	the LLE	Section 2.2
		subsystems has been chosen as the	arithmetic	
		average composition of the top-middle p	phases for	
		$L^T L^M E$ subsystem and likewise the	arithmetic	
		average composition of the middle-botto	om phases	
		for the $L^M L^B E$ subsystem.		
7.	HRL3E	The feed composition chosen in t	this case	Section 2.3
		corresponds to the arithmetic average comp	position of	
		top, middle and bottom phases.		
8.	HRL3E	Assumption of Sampath and Leipzeiger	has been	Section 2.3
		used to simplify the calculation by obtaining	ng α from	
		β and vice-versa using equations 22 and 26	5. ²	
List of t	oundary co	nditions		
Sl. No.	Model	Boundary condition	Reference	to the equations

			of the main manuscript
1.	RRL3E	The objective functions of RRL3E and	Equation 7, 8, 23, 24, 25
		HRL3E algorithms were solved using the	
		modified bisection method which having	
		function bounds corresponding to	
		$f(x_i = 0)$ and $f(x_i = 1)$ where x_i	
		denotes the mole fraction of component <i>i</i> .	

References:

1. A. Bharati, D. Kundu, D. Rabari and T. Banerjee, *Phase Equilibria in Ionic Liquid Facilitated Liquid-Liquid Extractions*, CRC Press, Boca Raton, 1st edn, 2017.

2. V. R. Sampath and S. Leipziger, Ind. Eng. Chem. Process Des. Dev., 1985, 24, 652-658.

Table S4. Structures of Ionic Liquid (IL) compounds studied in the present work.					
system number	name of the IL	Cation	anion		
system6	[C ₁₀ mim][NTf ₂]				
system7	[C ₁₂ mim][NTf ₂]				
system8	[P ₆₆₆₁₄][DCA]	$\begin{array}{cccc} R_1 & R_1: \\ P_1^{+} & P_1^{+} \\ R_1 & P_2^{+} \\ R_2 & R_2: \end{array}$	N N N N N N N N N N N N N N N N N N N		
system9	[P ₆₆₆₁₄][NTf ₂]	$R_1 = R_1$: $R_1 = R_2$: $R_2 = R_2$:			

Figure S1. Phase diagrams for ternary LLLE systems correlated using the GA-NRTL (RRL3E) and GA-UNIQUAC (RRL3E) models. (a)-(b) system1, (c)-(d) system2, (e)-(f) system3, (g)-(h) system4, (i)-(j) system5, (k)-(l) system6, (m)-(n) system7, (o)-(p) system8, and (q)-(r) system9.

Figure S2. Phase diagrams for quaternary LLLE systems correlated using the GA-NRTL (RRL3E) and GA-UNIQUAC (RRL3E) models. (a)-(b) system10; (c)-(d) system11.

Table S5. Binary interaction parameters for GA-NRTL correlations of ternary LLLE systems using the RRL3E algorithm.							
type	system	top-middle phase interactions $(L^T L^M E)$			middle-bottom phase interactions $(L^M L^B E)$		
туре	system	i – j	$ au_{ij}$	$ au_{ji}$	i – j	$ au_{ij}$	$ au_{ji}$
		1-2	2.877	17.531	1-2	2.853	0.739
	system1	1-3	1.627	11.446	1-3	17.278	9.217
		2-3	15.940	18.184	2-3	-2.321	15.349
		1-2	20.000	4.384	1-2	10.231	0.592
	system2	1-3	11.359	-10.000	1-3	19.883	10.186
		2-3	4.384	3.573	2-3	19.589	5.167
ternary non-	system3	1-2	3.277	15.031	1-2	4.153	9.963
IL systems		1-3	2.441	2.715	1-3	-0.611	15.595
III Systems		2-3	-1.608	-8.523	2-3	11.157	17.907
	system4	1-2	5.793	7.704	1-2	-5.959	11.753
		1-3	0.819	-0.172	1-3	1.080	19.943
		2-3	-3.242	8.017	2-3	18.995	3.558
		1-2	20.000	-1.360	1-2	18.070	3.083
	system5	1-3	15.645	9.381	1-3	-8.669	-0.533
		2-3	2.277	0.400	2-3	-17.875	20.000
ternary II		1-2	1.866	-5.710	1-2	14.942	10.923
systems	system6	1-3	11.025	18.050	1-3	15.121	-1.609
5,500115		2-3	-1.525	1.420	2-3	-4.675	10.487

		1 - 2	7.584	2.416	1-2	17.050	19.985
	system7	1 – 3	10.448	12.187	1 – 3	13.716	3.809
		2-3	18.111	9.790	2-3	9.319	9.573
		1 – 2	-9.297	-2.071	1 - 2	-0.033	1.270
	system8	1 – 3	17.427	6.290	1 – 3	6.869	-2.688
		2-3	19.486	6.747	2-3	4.922	-9.885
	system9	1 – 2	-7.527	12.649	1 - 2	5.613	7.069
		1 – 3	5.697	7.157	1 – 3	11.382	0.948
		2-3	5.476	19.655	2-3	19.993	11.416

Table S6. Binary interaction parameters for GA-UNIQUAC correlations of ternary LLLE systems using the RRL3E algorithm.									
typo	system	top-midd	lle phase interactio	ons $(L^T L^M E)$	middle-bottom phase interactions $(L^M L^B E)$				
type	system	i – j	A_{ij}/K	A_{ji}/K	i – j	A_{ij}/K	A_{ji}/K		
		1-2	2556.23	822.44	1 – 2	3261.45	43.41		
	system1	1-3	328.18	-87.95	1 – 3	1346.42	-588.40		
		2-3	-285.29	1032.38	2-3	242.22	1525.44		
		1-2	9158.78	970.43	1-2	-290.57	1590.96		
	system2	1-3	1621.36	-425.70	1 – 3	-1340.45	4163.49		
		2-3	1032.25	7173.55	2-3	790.73	4413.15		
ternary non-IL	system3	1-2	1239.51	-88.54	1-2	-181.76	-7730.24		
		1-3	2126.64	17.05	1 – 3	5389.07	-5703.37		
systems		2-3	1543.12	761.58	2-3	2781.47	-762.50		
	system4	1-2	28.96	1462.04	1-2	-647.02	-3847.17		
		1-3	9885.08	6949.34	1 – 3	2430.00	-4306.51		
		2-3	4506.08	137.26	2-3	4120.71	584.35		
		1-2	7661.72	2332.62	1-2	-8.06	1741.45		
	system5	1-3	7804.89	3222.28	1-3	-4687.49	6135.59		
		2-3	-205.75	540.74	2-3	-9615.66	-542.09		
ternary II.		1-2	-9994.99	3579.06	1-2	-589.16	9936.29		
systems	system6	1-3	461.04	6657.22	1-3	-750.44	4240.27		
5 75001115		2-3	-647.71	-8025.58	2-3	-4254.16	-9788.90		

		1 – 2	7561.09	9852.12	1-2	3804.88	8932.18
	system7	1 – 3	474.41	6978.03	1-3	-493.94	8827.26
		2-3	-310.20	3902.40	2-3	-3045.70	1148.20
	system8	1 – 2	-1596.01	-8590.16	1-2	-769.01	7640.93
		1 – 3	5371.79	395.08	1-3	-7349.61	6952.62
		2-3	2212.12	4229.56	2-3	-7536.29	-1644.00
	system9	1 - 2	714.44	712.15	1-2	218.10	6544.45
		1 – 3	9083.96	8478.15	1-3	461.26	6606.71
		2-3	690.98	87.46	2-3	-29.81	-210.71

Table S7. Binary interaction parameters for GA-NRTL correlations of quaternary LLLE systems using the RRL3E algorithm.											
system number	top-middle phase interactions $(L^T L^M E)$						middle-bottom phase interactions $(L^M L^B E)$				
10.	A_{ij}/K	1	2	3	4	A_{ij}/K	1	2	3	4	
	1	0.0	14.35	-9.66	20.00	1	0.0	17.69	14.28	20.00	
	2	16.93	0.0	-15.50	2.36	2	-13.98	0.0	17.37	7.86	
	3	11.23	9.85	0.0	16.83	3	16.61	9.13	0.0	4.22	
	4	5.84	0.27	19.99	0.0	4	-7.87	-11.31	0.88	0.0	
	f _{min}	-6.49E-04				f _{min}	-2.85E-03				
	A_{ij}/K	1	2	3	4	A_{ij}/K	1	2	3	4	
	1	0.0	19.97	3.69	-11.99	1	0.0	5.38	3.10	19.59	
11.	2	19.41	0.0	1.83	-9.83	2	-18.44	0.0	13.85	9.77	
11.	3	-19.77	-13.70	0.0	-11.21	3	-19.97	0.61	0.0	7.61	
	4	-13.31	-18.96	4.44	0.0	4	9.38	20.00	11.99	0.0	
	f _{min}	-4.79E-03				f _{min}	-2.47E-03				

Table S8. Binary interaction parameters for GA-UNIQUAC correlations of quaternary LLLE systems using the RRL3E algorithm.										
system number	top-middle phase interactions $(L^T L^M E)$					middle-bottom phase interactions $(L^M L^B E)$				
10.	A_{ij}/K	<i>i</i> =1	2	3	4	A_{ij}/K	1	2	3	4
	<i>j</i> =1	0.0	-964.05	-1520.39	-1560.62	1	0.0	97.24	5442.42	-2144.77
	2	5842.98	0.0	-4088.06	-1424.07	2	-8425.09	0.0	1580.12	-3505.88
	3	7332.91	-2041.80	0.0	-1684.76	3	-4370.01	290.00	0.0	9979.13
	4	9998.62	3328.13	1021.18	0.0	4	-7402.54	-241.32	14533.80	0.0
	f _{min}	nin -1.34E-03					-1.01E-05			
	A_{ij}/K	<i>i</i> =1	2	3	4	A_{ij}/K	1	2	3	4
	<i>j</i> =1	0.0	-1318.86	-7428.00	-7519.78	1	0.0	9987.00	-1755.15	227.69
11.	2	6808.32	0.0	-6080.78	-4390.40	2	-658.44	0.0	-7814.50	2411.76
11.	3	5513.04	-1266.92	0.0	9999.89	3	-1538.67	3047.43	0.0	-226.91
	4	2621.80	-2375.99	7200.43	0.0	4	434.55	13264.05	-236.54	0.0
	f _{min}	-4.63E-04		•		f _{min}	-1.56E-05	•		

Table S9. Observed rmsd (%) for GA-NRTL (RRL3E) model correlations								
type of system	system	Individual j	Individual phase-wise <i>rmsd</i> values (%)					
type of system	number	top	middle	bottom	rmsd (%)			
	1.	0.040	0.036	0.428	0.249			
non-IL systems	2.	0.003	0.002	0.022	0.013			
(ternary)	3.	3.180	1.705	0.654	2.117			
(tornary)	4.	0.149	0.025	0.001	0.087			
	5.	0.168	0.106	0.374	0.245			
	6.	0.000	0.000	0.003	0.002			
IL systems (ternary)	7.	0.000	0.000	0.002	0.001			
	8.	0.012	0.405	0.251	0.275			
	9.	0.230	0.232	0.056	0.135			
non-IL systems	10.	0.914	1.350	1.108	0.986			
(quaternary)	11.	0.482	0.358	1.183	0.663			
		ter	0.347					
ave	quater	0.825						
			overall	0.434				

Table S10. Observed rmsd (%) for GA-UNIQUAC (RRL3E) model correlations								
twpo of system	system	Individual p	Individual phase-wise <i>rmsd</i> values (%)					
type of system	number	top	middle	bottom	rmsd (%)			
	1.	0.024	0.002	0.003	0.014			
non-IL systems	2.	0.015	0.002	0.002	0.009			
(ternary)	3.	4.928	1.358	0.380	2.960			
((()))	4.	0.000	0.000	0.000	0.000			
	5.	0.122	0.000	0.000	0.071			
	6.	0.001	0.001	0.003	0.002			
IL systems (ternary)	7.	0.001	0.001	0.002	0.001			
	8.	0.000	0.001	0.000	0.001			
	9.	0.045	0.002	0.001	0.026			
non-IL systems	10.	0.087	0.000	0.000	0.044			
(quaternary)	11.	0.094	0.000	0.000	0.047			
		ter	0.343					
a	quater	0.045						
			0.288					

Table S11. UNIQUAC structural parameters from PCM calculations									
type	name	GEPOL volume (Å ³)	GEPOL surface area (Å ²)	r _{predicted}	q _{predicted}				
	[C ₁₀ mim]	250.827	331.109	9.9573	7.9759				
П	[C ₁₂ mim]	284.367	374.409	11.2887	9.0190				
components	[P ₆₆₁₄]	573.534	757.169	22.7680	18.2391				
components	[DCA]	55.390	81.086	2.1989	1.9532				
	[NTf ₂]	151.224	202.428	6.0032	4.8762				
	aniline	94.885	125.281	3.7667	3.0178				
	1-hexane	111.507	155.215	4.4266	3.7389				
	1-heptane	128.140	176.567	5.0869	4.2532				
	1-dodecane	213.095	287.406	8.4594	6.9232				
	1-octane	144.764	197.814	5.7468	4.7651				
Non-IL	phenol	91.706	120.171	3.6405	2.8947				
components	triacetin	195.538	258.987	7.7624	6.2386				
	1-decane	178.007	240.383	7.0665	5.7905				
	1-hexadecane	277.772	368.181	11.0269	8.8690				
	benzene	84.122	110.837	3.3394	2.6699				
	C4E1	127.917	177.469	5.0780	4.2750				
	water	19.105	35.964	0.7584	0.8663				