Vibrational spectroscopy of protonated amine-water clusters:

Tuning Fermi resonance and lighting up dark states

Chih-Kai Lin,*a Ryunosuke Shishido,^b Qian-Rui Huang,^a Asuka Fujii*^b and Jer-Lai Kuo*a

^a Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan, ROC.

^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.

Electronic Supplementary Information

The following information contains the procedure for calculating localized normal mode (LNM), the discussion on rotation-vibration couplings and simulated rotational profiles, calculated geometric parameters, harmonic vibrational frequencies, Hamiltonian matrices of vibrational quantum states, and other properties relevant to Fermi resonance of the simplest ammonium ion (NH₄⁺) and methylated ammonium ions (protonated amines, including MA–H⁺, DMA–H⁺ and TMA–H⁺), their hydrogen-bonded clusters with one water molecule, and their argon-tagged clusters.

Procedure for calculating localized normal mode (LNM)

In many large molecular systems, the vibrational normal modes are delocalized over the whole molecule. If we are interested in specific characteristics of a fragment in the system, the interpretation using normal mode analysis becomes rather complicated – There will be many modes contributing to the vibrations of that fragment, and we have to include all of them which contain a large portion of motions concerning other parts of the system. However, in many cases, the IR spectra show the characteristics of that fragment only, indicating that there should be a better way than the conventional normal modes to present the vibrational properties.

A natural answer to the above situation is to constrain the vibrational modes into the target fragment. Many methods have been proposed for this purpose. For example, in the partial Hessian vibrational analysis (PHVA) proposed by Head, the partial Hessian matrix was diagonalized to obtain the vibrations for adsorbates on surfaces.¹ This method would be one of the simplest ways to constrain vibrational modes vectors into a specific region, and many researchers have applied PHVA to different systems.^{2,3}

To differentiate the conventional normal mode and the projected vibrational mode, we used the term "global normal mode" (GNM) for the original normal mode analysis across the whole molecular system, and "localized normal mode" (LNM) utilizing the concept of PHVA. We divided the Hessian matrix into several sub-matrices corresponding to different fragments and diagonalized them individually, resulting in LNMs as the eigenvector matrices. We then chose some of the vectors from LNMs, scanned the reduced-dimensional PES, and performed anharmonic vibrational analysis using the DVR algorithm. Note that the vector space spanned by LNM coordinates is exactly the same as the calculation along GNM coordinates if all LNMs/GNMs are included. The major difference between the two approaches occurs when we disregard some modes in the reduced-dimensional vibrational analysis; the choice of LNM or GNM will result in different loss of the information about the exact PES. Clearly, it is non-trivial to determine which method is better in any specific case. Nevertheless, as we have found only negligible vibrational coupling between CH₃ and NH₂/NH groups in neutral MA/DMA,^{4,5} we believe that the current choice of LNMs is good enough in this study.

Rotation-vibration coupling and rotational profile in vibrational spectra

According to the characteristics of rotation-vibration coupling, the rotational profile of a vibrational transition can be seen when (i) there is a component of dipole derivative perpendicular to one rotational axis, and (ii) the rotational constant is not small (moment of inertia is not large) about that axis.

We have simulated the rotational profiles of these cluster systems using the PGOPHER program,⁶ finding that the 3400 cm⁻¹ band of $NH_4^+...H_2O$ shown in **Fig. 8(b)** would bear certain features attributed to the rotation-vibration coupling for free NH stretching modes. This mode satisfies criteria (i), and (ii) the corresponding rotational constant about the N–O axis is as large as 126 GHz. As the size of the amine moiety increases to $CH_3NH_3^+$ (MA–H⁺), the bulky methyl group reduces the rotational constant to 24 GHz, and those fine structures almost disappear. The simulated

rotational profiles at different proposed temperatures are shown in **Fig. S1**. However, the current experimental resolution was not enough to resolve the rotational profile in either case.

For comparison, it is seen in Dopfer's work that the NH_4^+ ...Ar cluster did show a clear rotational profile.⁷ The corresponding rotational constant is 180 GHz therein. All NH_4^+ ...Rg clusters have similar rotational constants about the N–Rg axis, and thus similar rotation-vibration coupling features are expected for their free NH stretching modes. Summarizing these findings, it is not the size of molecule/cluster alone that determines the effect of vibrational angular momentum, but the criteria (i) and (ii) mentioned above that decide its significance.

Figure S1. Simulated vibrational spectra with rotational profiles in the free NH stretching region of $NH_4^+...H_2O$ and MA–H⁺...H₂O. The experimental spectra (with Ar tagging and cooling) are shown for comparison.

References

- ¹ J. D. Head, Int. J. Quantum Chem., 1997, 65, 827–838.
- ² H. Li and J. H. Jensen, *Theor. Chem. Acc.*, 2002, **107**, 211–219.
- ³ N. A. Besley and K. A. Metcalf, J. Chem. Phys., 2007, **126**, 035101.
- ⁴ Q.-R. Huang, Y.-C. Li, K.-L. Ho and J.-L. Kuo, Phys. Chem. Chem. Phys., 2018, 20, 7653–7660.
- ⁵ B. Zhang, Q.-R. Huang, S. Jiang, L.-W. Chen, P.-J. Hsu, C. Wang, C. Hao, X. Kong, D. Dai, X. Yang, J.-L. Kuo and L. Jiang, *J. Chem. Phys.*, 2019, **150**, 064317.
- ⁶ PGOPHER, A Program for Simulating Rotational, Vibrational and Electronic Spectra, C. M. Western, University of Bristol, <u>http://pgopher.chm.bris.ac.uk</u>
- ⁷ O. Dopfer, S. A. Nizkorodov, M. Meuwly, E. J. Bieske and J. P. Maier, *Int. J. Mass Spectrom. Ion Proc.*, 1997, **167–168**, 637–647.

Table S1. Cartesian coordinates of bare ammonium ions and ammonium–water clusters optimized at the MP2/aug-cc-pVDZ level.

NF	I ₄+
T N T	14

7			
Ν	0.0000000	0.00000000	0.00000000
Н	-0.0000000	-0.00000000	1.02802758
Н	-0.0000000	-0.96923370	-0.34267586
Н	-0.83938100	0.48461685	-0.34267586
Н	0.83938100	0.48461685	-0.34267586
NH4 ⁺ H2O			
N	0.00001125	-1.34562722	0.00000000
Н	-0.00291663	-0.28771642	0.00000000
Н	-0.48126923	-1.69952281	0.83256600
Н	-0.48126923	-1.69952281	-0.83256600
Н	0.96400260	-1.69306699	0.00000000
0	0.00152189	1.36252936	0.00000000
Н	-0.00540070	1.94949232	-0.76968500
н	-0.00540070	1.94949232	0.76968500
NH4 ⁺ H2O	Ar (type 1)		
N	-3.10534360	-0.56825989	0.00000000
Н	-2.24402878	0.04966401	0.00000000
Н	-3.95280514	0.00763386	0.00000000
Н	-3.11116951	-1.16292084	0.83432800
Н	-3.11116951	-1.16292084	-0.83432800
0	-0.91318354	0.99988929	0.00000000
Н	-0.88130467	1.96705355	0.00000000
Н	0.01155044	0.70959874	0.0000000
Ar	2.35176671	-0.24607797	0.00000000
ArNH4+H	₂ O (type 2)		
Ν	0.95283989	1.18513924	0.0000000
Н	1.70488899	0.44390451	0.0000000
Н	1.04153662	1.77341105	0.83392900
Н	0.02403586	0.74834207	0.0000000
Н	1.04153662	1.77341105	-0.83392900
0	2.88792265	-0.72061710	0.00000000
Н	3.84631888	-0.58541737	0.00000000
Н	2.76551313	-1.68071029	0.00000000

Ar	-2.23317169	-0.27799883	0.00000000	
MA-H ⁺				
Ν	0.00000000	0.00000000	0.70996389	
н	0.00000000	0.95585690	1.08653789	
н	0.82779636	-0.47792845	1.08653789	
Н	-0.82779636	-0.47792845	1.08653789	
С	0.00000000	0.00000000	-0.80128311	
Н	0.90200503	0.52077284	-1.14055411	
Н	-0.90200503	0.52077284	-1.14055411	
н	0.0000000	-1.04154569	-1.14055411	
$MA-H^+H_2O$				
Ν	-0.68167544	0.67362437	0.0000000	
н	0.33730608	0.42232717	0.00000000	
н	-0.86809300	1.25489240	0.82389900	
Н	-0.86809300	1.25489240	-0.82389900	
С	-1.53598156	-0.56416168	0.00000000	
Н	-1.29642947	-1.14286315	-0.89873000	
Н	-1.29642947	-1.14286315	0.89873000	
Н	-2.59122864	-0.27026469	0.00000000	
0	1.94113114	-0.14869611	0.00000000	
Н	2.52076790	-0.25847630	-0.76737500	
Н	2.52076790	-0.25847630	0.76737500	
MA-H ⁺ H ₂ OAr	(type1)			
Ν	2.23691321	-0.12902004	0.00000000	
Н	1.58600223	0.69519198	0.00000000	
Н	2.84101320	-0.05930707	-0.82556679	
Н	2.84101320	-0.05930707	0.82556679	
С	1.46345217	-1.41843102	0.00000000	
Н	0.83834119	-1.43999799	0.89942926	
Н	0.83834119	-1.43999799	-0.89942926	
н	2.16739415	-2.25766604	0.00000000	
0	0.43698327	1.93512401	0.00000000	
н	0.58480829	2.89147001	0.00000000	
н	-0.52432774	1.82401304	0.00000000	
Ar	-2.17264380	-0.34564392	0.00000000	

Ar...MA $-H^+$...H₂O (type 2)

Ν	0.81190208	0.56984420	0.59375306
н	1.53559111	-0.15405278	0.36809707
н	-0.11164389	0.12341213	0.56664819
н	0.96568314	0.88723230	1.55624102
С	0.87927292	1.71410310	-0.37827206
н	1.87667990	2.16219818	-0.31328619
н	0.70744386	1.31522699	-1.38403000
н	0.10896690	2.44844208	-0.11844606
0	2.75537713	-1.23998575	-0.13981493
н	2.63051414	-2.06518081	-0.62993283
н	3.67819416	-1.26115066	0.15121900
Ar	-2.46629991	-0.43387608	-0.05359055
$DMA-H^+$			
Ν	0.00000000	0.00000000	0.54707770
н	-0.81934300	0.0000000	1.16690170
Н	0.81934300	0.00000000	1.16690170
С	0.00000000	1.25799800	-0.27843930
н	-0.90122500	1.25457300	-0.90292130
Н	0.0000000	2.12378500	0.39480470
н	0.90122500	1.25457300	-0.90292130
С	0.0000000	-1.25799800	-0.27843930
н	0.00000000	-2.12378500	0.39480470
н	-0.90122500	-1.25457300	-0.90292130
Н	0.90122500	-1.25457300	-0.90292130
$DMA-H^+H_2O$			
Ν	0.50380605	0.00661606	-0.43578517
Н	-0.53534996	-0.00839293	-0.33150121
н	0.70280609	0.02268002	-1.44199416
С	1.07069402	-1.24578591	0.16020891
н	0.81292097	-1.26104887	1.22624190
н	0.63339504	-2.11201793	-0.35109408
н	2.16012502	-1.23743192	0.03365596
С	1.03738502	1.25530409	0.19781081
н	0.58537404	2.12475907	-0.29470525
н	0.76669297	1.23790413	1.26039680
н	2.12780102	1.27421308	0.08132685
0	-2.22525798	-0.00879491	0.06107971

Н	-2.75200399	-0.73946190	0.41505772
н	-2.87481396	0.66573508	-0.18364434
DMA-H ⁺ H	₂ OAr (type 1)		
Ν	-1.67700309	0.06844853	0.0000000
н	-1.01141598	0.87410338	0.0000000
н	-2.62027519	0.47216563	0.0000000
С	-1.48578588	-0.73191121	1.25226300
н	-0.46749556	-1.13803695	1.24267700
н	-1.62392926	-0.07284520	2.11776800
н	-2.22012012	-1.54652023	1.26796500
С	-1.48578588	-0.73191121	-1.25226300
н	-1.62392926	-0.07284520	-2.11776800
Н	-0.46749556	-1.13803695	-1.24267700
н	-2.22012012	-1.54652023	-1.26796500
0	0.12262784	2.17987236	0.0000000
н	-0.05081570	3.13195235	0.0000000
н	1.08684480	2.10027253	0.0000000
Ar	2.21145452	-0.56660407	0.00000000

Ar...DMA- H^+ ... H_2O (type 2)

Ν	-0.64604209	0.21433302	0.01258612
Н	-1.53011209	-0.33741699	-0.04090992
Н	0.13381792	-0.44949796	-0.04623995
С	-0.58849409	0.92013290	1.33194918
Н	-1.45329410	1.59131288	1.39772726
Н	-0.62481207	0.17443083	2.13544712
Н	0.34533390	1.49294592	1.38495322
С	-0.57729513	1.14640613	-1.15719280
Н	-0.61868013	0.55859422	-2.08237585
Н	-1.43266514	1.83070211	-1.10010072
Н	0.36260687	1.70923914	-1.10469776
0	-3.10820207	-1.07274101	-0.08070197
Н	-3.43229805	-1.77393207	0.50234297
Н	-3.78503508	-0.99307496	-0.76774395
Ar	2.68987692	-0.50671892	-0.04274599

TMA-H⁺

Ν	0.00000000	0.00000000	0.34833471

Н	0.0000000	0.00000000	1.37644971
С	0.0000000	1.43229675	-0.10485722
Н	-0.90147400	1.92509873	0.28008880
Н	0.90147400	1.92509873	0.28008880
Н	0.0000000	1.43807680	-1.20263122
С	-1.24040537	-0.71614837	-0.10485722
Н	-1.21644740	-1.74324875	0.28008880
Н	-2.11792140	-0.18184998	0.28008880
Н	-1.24541104	-0.71903840	-1.20263122
С	1.24040537	-0.71614837	-0.10485722
Н	2.11792140	-0.18184998	0.28008880
Н	1.21644740	-1.74324875	0.28008880
Н	1.24541104	-0.71903840	-1.20263122

 $TMA-\!H^+\!...H_2O$

Ν	-0.37803599	-0.00343359	0.00000000
Н	0.66369784	-0.02396082	0.00000000
С	-0.84588481	-0.70460013	1.23633000
Н	-0.48760839	-1.74149309	1.21220700
Н	-0.43920576	-0.18412472	2.11243600
Н	-1.94376779	-0.68349309	1.25579800
С	-0.84588481	-0.70460013	-1.23633000
Н	-0.43920576	-0.18412472	-2.11243600
Н	-0.48760839	-1.74149309	-1.21220700
Н	-1.94376779	-0.68349309	-1.25579800
С	-0.79780839	1.43277225	0.00000000
Н	-0.39988722	1.91733151	0.90071700
Н	-0.39988722	1.91733151	-0.90071700
Н	-1.89521805	1.47634531	0.00000000
0	2.41727367	-0.01869610	0.00000000
Н	3.00850539	0.74742628	0.00000000
Н	3.00948382	-0.78408000	0.00000000

 $TMA\text{--}H^+\text{...}H_2O\text{...}Ar$

Ν	-0.17023941	1.26152844	0.00000000
н	0.66169570	0.63384174	0.00000000
С	-0.96241817	0.97489975	1.23637600
н	-1.29569147	-0.06958557	1.20740700

Н	-0.32308826	1.14451134	2.11182400
Н	-1.82854978	1.64986414	1.26043500
С	-0.96241817	0.97489975	-1.23637600
Н	-0.32308826	1.14451134	-2.11182400
Н	-1.29569147	-0.06958557	-1.20740700
Н	-1.82854978	1.64986414	-1.26043500
С	0.34329475	2.66697229	0.00000000
Н	0.95151829	2.82057580	0.90031200
Н	0.95151829	2.82057580	-0.90031200
Н	-0.51425237	3.35310713	0.00000000
0	2.13423204	-0.31229917	0.00000000
Н	3.05990070	-0.03035380	0.00000000
Н	2.16917816	-1.27924532	0.00000000
Ar	-0.37654615	-2.65561209	0.0000000

Ammonium ion	$\mathrm{NH_4^+}$	MA–H ⁺	DMA-H ⁺	TMA-H ⁺
Free NH bond length (Å) ^a	1.027	1.027	1.027	1.028
NC bond length (Å)	_	1.511	1.505	1.502
Ammonium–water cluster	NH4 ⁺ H ₂ O	$MA-H^+H_2O$	DMA-H ⁺ H ₂ O	$TMA-H^+H_2O$
Free NH bond length (Å) ^a	1.025	1.025	1.026	_
H-bonded NH bond length (Å)	1.058	1.050	1.044	1.042
NC bond length (Å)	_	1.504	1.498	1.496
NHO distance (Å)	1.650	1.702	1.735	1.753
OH bond length (Å)	0.968	0.968	0.968	0.968
NHO angle (°)	179.7	174.2	172.6	178.7
Ammonium–water–argon		MA U+ U O Ar		
cluster (type 1)	ΝΠ ₄ Π ₂ ΟΑΙ	MA-nn ₂ OAl	DWIA-пп ₂ OАI	ПМА-пп₂ОАі
Free NH bond length (Å) ^a	1.025	1.025	1.026	-
H-bonded NH bond length (Å)	1.060	1.050	1.045	1.042
NC bond length (Å)	_	1.504	1.498	1.496
NHO distance (Å)	1.636	1.690	1.729	1.750
OH bond length (Å)	0.968, 0.969 ^b	0.968	0.968	0.968
OHAr distance (Å)	2.528	2.725	2.894	2.894
NHO angle (°)	179.8	175.5	178.6	175.7
OHAr angle (°)	175.4	133.8	117.6	116.3
Argon–ammonium–water cluster (type 2)	ArNH4 ⁺ H2O	ArMA-H ⁺ H ₂ O	ArDMA-H ⁺ H ₂ O	ArTMA-H ⁺ H ₂ O
Free NH bond length (Å)	1.024, 1.026 ^b	1.025, 1.026 ^b	1.026	_
H-bonded NH bond length (Å)	1.056	1.048	1.043	_
NC bond length (Å)	_	1.503	1.497	_
NHO distance (Å)	1.660	1.710	1.741	_
OH bond length (Å)	0.968	0.968	0.968	_
NHAr distance (Å)	2.480	2.498	2.557	_
NHO angle (°)	180.0	174.2	172.8	_
NHAr angle (°)	179.3	162.2	140.8	_

Table S2. Selected geometric parameters related to NH and OH bonds of bare ammonium ions and ammonium–water clusters optimized at the MP2/aug-cc-pVDZ level.

^a All free NH bonds in each species have the same value of bond length to the third decimal place.

^b The bond pointing toward Ar is slightly elongated.

Ammonium ion ^b	$\mathrm{NH_{4}^{+}}$	$MA-H^+$	DMA-H ⁺	TMA-H ⁺
Free NH stretching	3391 (t)	3376 (d)	3358	3305
	3242	3272	3295	
NH ₂ bending	1649 (d)	1595 (d)	1586	1361 (d) °
		1227 (d)	1357	
			1334	
			1221	
NH ₃ umbrella	1401 (t)	1455	-	_
Ammonium-water	NH + HO	MA H ⁺ H O		ΤΜΑ Η+ Η Ο
cluster	MII ₄ II ₂ O	WIA-IIII ₂ O		
Free NH stretching	3420	3395	3343	_
	3418	3329		
	3307			
H-bonded NH stretching	2819	2949	3027	3060
NH ₂ bending	1683	1646	1610	1484 °
	1659	1606	1474	1455 °
		1241	1355	
		1233	1226	
NH ₃ umbrella	1460	1480	_	_
	1434			
	1359			
OH stretching	3734	3735	3736	3737
	3623	3624	3624	3624
OH ₂ bending	1573	1570	1570	1572

Table S3. Selected harmonic vibrational frequencies (in cm⁻¹) related to NH and OH vibrational modes of bare ammonium ions and ammonium–water clusters calculated at the MP2/aug-cc-pVDZ level.^a

Ammonium-water-argon				
cluster (type 1)	$N\Pi_4 \Pi_2 O AI$	$MA - \Pi \Pi_2 O AI$	$DMA-\Pi \dots \Pi_2 O \dots AI$	$\Pi WIA = \Pi \Pi_2 O AI$
Free NH stretching	3421	3398	3340	_
	3419	3329		
	3307			
H-bonded NH stretching	2786	2937	3020	3058
NH ₂ bending	1684	1614	1631	1479°
	1659	1612	1449	1455 °
		1241	1352	
		1239	1227	
NH ₃ umbrella	1462	1502	_	_
	1435			
	1357			
OH stretching	3724	3738	3739	3739
	3612	3624	3625	3625
OH ₂ bending	1573	1565	1566	1570
Argon–ammonium–water				
Argon-ammonium-water cluster (type 2)	ArNH4 ⁺ H ₂ O	ArMA-H ⁺ H ₂ O	ArDMA-H ⁺ H ₂ O	ArTMA–H ⁺ H ₂ O
Argon-ammonium-water cluster (type 2) Free NH stretching	ArNH ₄ ⁺ H ₂ O 3422	ArMA-H ⁺ H ₂ O 3391	ArDMA-H ⁺ H ₂ O 3343	ArTMA–H ⁺ H ₂ O
Argon-ammonium-water cluster (type 2) Free NH stretching	ArNH ₄ ⁺ H ₂ O 3422 3401	ArMA-H ⁺ H ₂ O 3391 3323	ArDMA–H ⁺ H ₂ O 3343	ArTMA–H ⁺ H ₂ O
Argon-ammonium-water cluster (type 2) Free NH stretching	ArNH ₄ ⁺ H ₂ O 3422 3401 3299	ArMA-H ⁺ H ₂ O 3391 3323	ArDMA–H ⁺ H ₂ O 3343	ArTMA–H ⁺ H ₂ O –
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching	ArNH ₄ ⁺ H ₂ O 3422 3401 3299 2848	ArMAH ⁺ H ₂ O 3391 3323 2968	ArDMA-H ⁺ H ₂ O 3343 3040	ArTMA-H ⁺ H ₂ O -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH ₂ bending	ArNH ₄ ⁺ H ₂ O 3422 3401 3299 2848 1687	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645	ArDMA-H ⁺ H ₂ O 3343 3040 1607	ArTMA-H ⁺ H ₂ O - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH ₂ bending	ArNH ₄ ⁺ H ₂ O 3422 3401 3299 2848 1687 1666	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471	ArTMA-H ⁺ H ₂ O - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH ₂ bending	ArNH ₄ ⁺ H ₂ O 3422 3401 3299 2848 1687 1666	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362	ArTMA-H ⁺ H ₂ O - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH ₂ bending	ArNH ₄ ⁺ H ₂ O 3422 3401 3299 2848 1687 1666	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227	ArTMA-H ⁺ H ₂ O - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH ₂ bending NH ₃ umbrella	ArNH ₄ +H ₂ O 3422 3401 3299 2848 1687 1666 1455	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236 1480	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227 -	ArTMA-H ⁺ H ₂ O - - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH2 bending NH3 umbrella	ArNH ₄ +H ₂ O 3422 3401 3299 2848 1687 1666 1455 1439	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236 1480	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227 -	ArTMA-H ⁺ H ₂ O - - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH2 bending NH3 umbrella	ArNH ₄ +H ₂ O 3422 3401 3299 2848 1687 1666 1455 1439 1366	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236 1480	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227 -	ArTMA-H ⁺ H ₂ O - - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH2 bending NH3 umbrella OH stretching	ArNH ₄ +H ₂ O 3422 3401 3299 2848 1687 1666 1455 1439 1366 3736	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236 1480 3736	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227 - - 3737	ArTMA-H ⁺ H ₂ O - - -
Argon-ammonium-water cluster (type 2) Free NH stretching H-bonded NH stretching NH2 bending NH3 umbrella OH stretching	ArNH ₄ +H ₂ O 3422 3401 3299 2848 1687 1666 1455 1439 1366 3736 3624	ArMA-H ⁺ H ₂ O 3391 3323 2968 1645 1608 1243 1236 1480 3736 3624	ArDMA-H ⁺ H ₂ O 3343 3040 1607 1471 1362 1227 - - 3737 3625	ArTMA-H ⁺ H ₂ O - - - -

Table S3 (continued)

^a Frequency scaled by 0.959; only modes most relevant to NH/OH vibrations above 1000 cm⁻¹ are listed.

 b (d) and (t) denote doubly and triply degenerate, respectively.

^c C–N–H bending mode.

Table S4. Hamiltonian matrix elements (in cm⁻¹) between NH bending overtones and stretching fundamentals involved in Fermi resonance and original IR intensities of vibrational quantum states (in km/mol) in TMA–H⁺ ion and clusters.^a

(a) TMA-H⁺

	Bend	ling over	tones	Str. fund	Original
	bl	b / bb' / b	'b'	S	IR int.
bb/	2807.3	0.0	0.0	0.0	0.5
bb'/	0.0	2813.9	0.0	0.1	0.5
b'b'	0.0	0.0	2830.2	137.0	0.0
s	0.0	0.1	3253.0	64.6	

(b) TMA-H⁺...H₂O

	Bend	ling over	tones	Str. fund	Original				
	b_2b_2	b_1b_2	b_1b_1	s IR i					
b_2b_2	2965.9	0.0	0.9	74.8	0.3				
b_1b_2	0.0	3000.3	0.0	0.0	0.4				
b_1b_1	0.9	0.0	3052.2	89.7	0.2				
s	74.8	0.0	89.7	3018.8	885.8				

(c) TMA-H⁺...H₂O...Ar

	Bend	ing over	tones	Str. fund	Original	
_	b_2b_2	b_1b_2	b_1b_1	S	IR int.	
b ₂ b ₂	2966.6	0.0	0.9	-73.6	0.3	
b_1b_2	0.0	2994.7	0.0	0.0	0.3	
b_1b_1	0.9	0.0	3040.5	-89.7	0.1	
S	-73.6	0.0	-89.7	3016.0	849.5	

^a Notations for NH vibrational modes: b: C–N–H bending, s: N–H stretching; see Fig. 3.

Table S5. Hamiltonian matrix elements (in cm⁻¹) between NH bending overtones and stretching fundamentals involved in Fermi resonance and original IR intensities of vibrational quantum states (in km/mol) in DMA–H⁺ ion and clusters.^a

(a) DMA-H⁺

			В	ending	overton	es			Stretch	Original	
	rw	tt	tw	ww	rx	tx	WX	xx	s _{sym}	Santi	IR int.
rw	2736.7	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	0.0
tt	0.0	2816.2	0.0	-1.0	0.0	0.0	0.0	-1.0	-45.4	0.0	0.0
tw	0.0	0.0	2868.0	0.0	3.7	0.0	0.0	0.0	0.0	77.0	0.1
ww	0.0	-1.0	0.0	2917.1	0.0	0.0	0.0	-0.6	69.1	0.0	0.1
rx	0.0	0.0	3.7	0.0	2931.0	0.0	0.0	0.0	0.0	53.7	0.0
tx	3.6	0.0	0.0	0.0	0.0	3045.4	0.0	0.0	0.0	0.0	0.0
wx	0.0	0.0	0.0	0.0	0.0	0.0	3092.7	0.0	0.0	0.0	0.5
XX	0.0	-1.0	0.0	-0.6	0.0	0.0	0.0	3280.2	-24.8	0.0	0.2
S _{sym}	0.0	-45.4	0.0	69.1	0.0	0.0	0.0	-24.8	3239.8	0.0	64.7
S _{anti}	0.0	0.0	77.0	0.0	53.7	0.0	0.0	0.0	0.0	3284.9	95.4

(b) DMA-H⁺...H₂O

			В	ending	overton	es			Stretcl	Original	
	rw	tt	rx	tw	ww	tx	WX	xx	$\mathbf{s}_{\mathbf{b}}$	$\mathbf{s}_{\mathbf{f}}$	IR int.
rw	2824.4	0.0	-4.0	-0.3	1.1	-1.7	10.6	0.4	-1.8	4.3	0.0
tt	0.0	2885.5	-2.5	0.7	-0.3	1.6	-0.3	1.0	-9.9	-71.6	0.1
rx	-4.0	-2.5	2951.8	1.6	-2.3	0.6	-1.4	-11.9	-36.6	42.1	0.0
tw	-0.3	0.7	1.6	2976.3	-1.8	4.7	-1.4	0.8	-13.8	35.6	0.0
ww	1.1	-0.3	-2.3	-1.8	3084.9	-0.2	7.5	-0.1	71.0	4.7	0.1
tx	-1.7	1.6	0.6	4.7	-0.2	3093.5	-0.7	-1.7	-2.5	2.2	0.1
WX	10.6	-0.3	-1.4	-1.4	7.5	-0.7	3195.3	6.8	10.2	-2.9	0.3
XX	0.4	1.0	-11.9	0.8	-0.1	-1.7	6.8	3315.4	18.4	9.6	0.5
s _b	-1.8	-9.9	-36.6	-13.8	71.0	-2.5	10.2	18.4	2954.4	3.0	967.9
\mathbf{s}_{f}	4.3	-71.6	42.1	35.6	4.7	2.2	-2.9	9.6	3.0	3280.5	72.9

(c) DMA-H⁺...H₂O...Ar (type 1)

			В	ending	overton	es			Stretcl	n. fund.	Original
	rw	tt	rx	tw	ww	tx	WX	xx	$\mathbf{s}_{\mathbf{b}}$	$\mathbf{s}_{\mathbf{f}}$	IR int.
rw	2835.9	0.0	0.0	0.0	0.0	2.4	-11.9	0.0	0.0	0.0	0.0
tt	0.0	2885.0	1.9	1.2	0.6	0.0	0.0	-1.3	12.1	63.6	0.1
rx	0.0	1.9	2956.6	2.5	-2.3	0.0	0.0	-14.2	-40.7	41.8	0.0
tw	0.0	1.2	2.5	2972.3	-0.3	0.0	0.0	0.4	-19.9	46.8	0.0
ww	0.0	0.6	-2.3	-0.3	3056.9	0.0	0.0	0.1	62.1	12.0	0.0
tx	2.4	0.0	0.0	0.0	0.0	3097.5	0.2	0.0	0.0	0.0	0.1
WX	-11.9	0.0	0.0	0.0	0.0	0.2	3195.6	0.0	0.0	0.0	0.4
XX	0.0	-1.3	-14.2	0.4	0.1	0.0	0.0	3323.7	24.1	7.1	0.4
s _b	0.0	12.1	-40.7	-19.9	62.1	0.0	0.0	24.1	2937.7	2.9	967.0
$\mathbf{s}_{\mathbf{f}}$	0.0	63.6	41.8	46.8	12.0	0.0	0.0	7.1	2.9	3280.9	72.4

(d) Ar...DMA-H⁺...H₂O (type 2)

			В	ending	overton	es			Stretch	Original	
	rw	tt	rx	tw	ww	tx	WX	xx	$\mathbf{s}_{\mathbf{b}}$	$\mathbf{s}_{\mathbf{f}}$	IR int.
rw	2823.9	-0.1	-4.4	-0.3	1.2	1.8	-9.9	-0.5	-2.1	5.0	0.0
tt	-0.1	2899.7	-2.5	0.6	-0.4	-1.8	0.3	-1.0	-9.9	-71.4	0.1
rx	-4.4	-2.5	2952.8	1.8	-2.3	-0.7	1.6	11.0	-37.6	42.6	0.0
tw	-0.3	0.6	1.8	2980.8	-1.8	-5.2	1.6	-0.8	-14.9	37.6	0.0
ww	1.2	-0.4	-2.3	-1.8	3079.2	0.2	-8.2	0.0	70.7	6.0	0.1
tx	1.8	-1.8	-0.7	-5.2	0.2	3099.4	-0.7	-1.9	3.0	-2.5	0.1
WX	-9.9	0.3	1.6	1.6	-8.2	-0.7	3191.0	7.5	-11.3	3.2	0.3
XX	-0.5	-1.0	11.0	-0.8	0.0	-1.9	7.5	3312.3	-20.1	-9.5	0.5
s _b	-2.1	-9.9	-37.6	-14.9	70.7	3.0	-11.3	-20.1	2972.9	3.2	962.2
$\mathbf{s}_{\mathbf{f}}$	5.0	-71.4	42.6	37.6	6.0	-2.5	3.2	-9.5	3.2	3290.9	136.2

^a Notations for NH vibrational modes: r: rocking, t: twisting, w: wagging, x: scissoring, s_b : H-bonded stretching, s_f : free stretching; see **Fig. 5**. "rw" means one vibrational quantum in rocking and one in wagging; "tt" means two vibrational quanta in twisting mode.

Table S6. Hamiltonian matrix elements (in cm⁻¹) between NH bending overtones and stretching fundamentals involved in Fermi resonance and original IR intensities of vibrational quantum states (in km/mol) in MA–H⁺ ion and clusters.^a

(a) MA–H⁺

		Bending overtones												Stretching fundamentals Original			
	wu	tu	tx'	WX	WX	tx	uu	ux'	ux	x'x'	x'x	XX	s _{sym}	Sasym	s' _{asym}	IR int.	
wu	2821.2	0.0	0.0	0.3	0.0	-0.4	-0.1	3.6	2.6	0.0	0.0	0.1	0.2	45.3	26.7	0.0	
tu	0.0	2821.3	0.3	-0.1	0.2	-0.1	0.0	-2.6	3.6	0.0	0.1	0.0	0.0	26.7	-44.8	0.0	
tx'	0.0	0.3	2914.0	0.0	0.0	0.1	0.0	0.0	0.0	0.5	-0.2	-0.1	-0.5	1.3	-1.7	0.0	
WX	0.3	-0.1	0.0	2914.2	0.0	0.0	0.5	0.1	0.0	-5.7	0.1	-0.2	5.8	1.9	1.2	0.1	
WX	0.0	0.2	0.0	0.0	2916.0	0.0	0.0	-0.2	0.2	-0.1	-5.8	-1.2	0.1	18.8	-43.8	0.0	
tx	-0.4	-0.1	0.1	0.0	0.0	2916.0	0.0	-0.1	-0.2	-0.2	-1.2	5.7	0.3	-44.3	-18.8	0.0	
uu	-0.1	0.0	0.0	0.5	0.0	0.0	3055.9	0.1	-0.1	-0.5	0.0	0.0	-48.1	0.0	0.2	0.1	
ux'	3.6	-2.6	0.0	0.1	-0.2	-0.1	0.1	3152.5	0.1	-0.2	-0.5	0.2	-0.2	5.7	12.3	0.2	
ux	2.6	3.6	0.0	0.0	0.2	-0.2	-0.1	0.1	3152.5	0.1	0.4	0.3	0.0	12.7	-5.1	0.2	
x'x'	0.0	0.0	0.5	-5.7	-0.1	-0.2	-0.5	-0.2	0.1	3248.2	0.0	0.0	25.9	0.0	-0.2	0.3	
x'x	0.0	0.1	-0.2	0.1	-5.8	-1.2	0.0	-0.5	0.4	0.0	3252.2	0.0	0.0	3.7	-19.2	0.1	
XX	0.1	0.0	-0.1	-0.2	-1.2	5.7	0.0	0.2	0.3	0.0	0.0	3252.9	0.0	19.2	3.7	0.1	
s _{sym}	0.2	0.0	-0.5	5.8	0.1	0.3	-48.1	-0.2	0.0	25.9	0.0	0.0	3227.3	0.1	-0.5	58.1	
s _{asym}	45.3	26.7	1.3	1.9	18.8	-44.3	0.0	5.7	12.7	0.0	3.7	19.2	0.1	3302.6	0.0	131.7	
s' _{asym}	26.7	-44.8	-1.7	1.2	-43.8	-18.8	0.2	12.3	-5.1	-0.2	-19.2	3.7	-0.5	0.0	3302.6	131.6	

Table S6. (continued)

(b) MA–H⁺...H₂O

					E	Bending	overtone	es					Stretchi	ng funda	amentals	Original
	wu	tu	wx'	tx'	WX	tx	uu	ux'	ux	x'x'	x'x	XX	s _b	s _{f,sym}	s _{f,asym}	IR int.
wu	2847.7	0.0	-0.7	0.0	0.0	0.1	0.7	-5.9	0.0	0.1	0.0	0.0	32.7	-35.0	0.0	0.0
tu	0.0	2860.3	0.0	-1.3	0.0	0.0	0.0	0.0	2.9	0.0	0.1	0.0	0.0	0.0	54.0	0.0
wx'	-0.7	0.0	2927.1	0.0	0.0	0.2	0.5	-0.7	0.0	-7.1	0.0	0.2	24.4	-26.1	0.0	0.1
tx'	0.0	-1.3	0.0	2937.8	-0.1	0.0	0.0	0.0	-0.1	0.0	2.5	0.0	0.0	0.0	-29.0	0.0
WX	0.0	0.0	0.0	-0.1	2973.9	0.0	0.0	0.0	-0.3	0.0	-5.2	0.0	0.0	0.0	34.8	0.0
tx	0.1	0.0	0.2	0.0	0.0	2985.9	0.1	0.1	0.0	0.2	0.0	-3.4	-29.8	20.2	0.0	0.0
uu	0.7	0.0	0.5	0.0	0.0	0.1	3099.7	1.0	0.0	-0.5	0.0	-0.4	30.5	29.8	0.0	0.0
ux'	-5.9	0.0	-0.7	0.0	0.0	0.1	1.0	3181.3	0.0	-1.5	0.0	0.3	-10.1	14.8	0.0	0.4
ux	0.0	2.9	0.0	-0.1	-0.3	0.0	0.0	0.0	3227.6	0.0	-0.4	0.0	0.0	0.0	3.8	0.1
x'x'	0.1	0.0	-7.1	0.0	0.0	0.2	-0.5	-1.5	0.0	3263.6	0.0	0.4	-0.6	-21.2	0.0	0.2
x'x	0.0	0.1	0.0	2.5	-5.2	0.0	0.0	0.0	-0.4	0.0	3313.3	0.0	0.0	0.0	15.7	0.0
XX	0.0	0.0	0.2	0.0	0.0	-3.4	-0.4	0.3	0.0	0.4	0.0	3357.9	-23.6	-0.2	0.0	0.3
Sb	32.7	0.0	24.4	0.0	0.0	-29.8	30.5	-10.1	0.0	-0.6	0.0	-23.6	2845.5	6.1	0.0	1163.7
s _{f,sym}	-35.0	0.0	-26.1	0.0	0.0	20.2	29.8	14.8	0.0	-21.2	0.0	-0.2	6.1	3274.1	0.0	88.4
s _{f,asym}	0.0	54.0	0.0	-29.0	34.8	0.0	0.0	0.0	3.8	0.0	15.7	0.0	0.0	0.0	3324.7	94.8

Table S6. (continued)

(c) MA-H⁺...H₂O...Ar (type 1)

					E	Bending	overtone	es					Stretching fundamentals Origin				
	wu	tu	tx'	wx'	WX	tx	uu	ux'	ux	x'x'	XX	x'x	s _b	s _{f,sym}	s _{f,asym}	IR int.	
wu	2874.3	0.0	0.0	1.9	0.0	0.9	1.2	7.8	0.0	0.0	0.1	0.0	-29.1	28.3	-0.1	0.0	
tu	0.0	2880.8	1.7	0.0	-0.1	0.0	0.0	0.0	4.8	0.0	0.0	-0.2	0.1	-0.1	-56.4	0.0	
tx'	0.0	1.7	2950.8	0.0	-1.6	0.0	0.0	0.0	-0.2	-0.1	0.0	-2.8	-0.3	0.3	12.8	0.0	
wx'	1.9	0.0	0.0	2948.6	0.0	0.7	0.5	1.6	0.0	-9.4	-1.7	0.0	-22.4	20.5	0.0	0.2	
WX	0.0	-0.1	-1.6	0.0	2946.3	0.0	0.0	0.0	-0.8	0.0	-0.1	7.8	-0.3	0.3	-43.1	0.0	
tx	0.9	0.0	0.0	0.7	0.0	2950.2	0.0	0.9	0.0	-1.6	-6.8	-0.1	-37.6	31.4	0.2	0.0	
uu	1.2	0.0	0.0	0.5	0.0	0.0	3141.3	3.2	0.0	-0.6	-0.1	0.0	-31.2	-30.8	0.0	0.1	
ux'	7.8	0.0	0.0	1.6	0.0	0.9	3.2	3216.6	0.0	-2.8	-1.0	0.0	-25.6	15.5	0.0	0.3	
ux	0.0	4.8	-0.2	0.0	-0.8	0.0	0.0	0.0	3212.5	0.0	0.0	-2.5	0.1	0.0	-1.0	0.1	
x'x'	0.0	0.0	-0.1	-9.4	0.0	-1.6	-0.6	-2.8	0.0	3289.2	3.4	0.0	14.3	15.2	0.0	0.3	
xx	0.1	0.0	0.0	-1.7	-0.1	-6.8	-0.1	-1.0	0.0	3.4	3288.2	0.0	-8.6	2.7	-0.1	0.3	
x'x	0.0	-0.2	-2.8	0.0	7.8	-0.1	0.0	0.0	-2.5	0.0	0.0	3291.7	-0.1	0.0	15.0	0.1	
Sb	-29.1	0.1	-0.3	-22.4	-0.3	-37.6	-31.2	-25.6	0.1	14.3	-8.6	-0.1	2831.7	6.0	0.0	1158.2	
s _{f,sym}	28.3	-0.1	0.3	20.5	0.3	31.4	-30.8	15.5	0.0	15.2	2.7	0.0	6.0	3274.3	0.0	90.1	
s _{f,asym}	-0.1	-56.4	12.8	0.0	-43.1	0.2	0.0	0.0	-1.0	0.0	-0.1	15.0	0.0	0.0	3326.9	95.3	

Table S6. (continued)

(u) ArNIA-nn20 (type 2	(d)	Ar.	MA	-H+.	H ₂ O	(type	2)
------------------------	-----	-----	----	------	------------------	-------	----

					E	Bending	overtone	es					Stretching fundamentals Origi					
	wu	tu	wx'	tx'	WX	tx	uu	ux'	ux	x'x'	xx'	XX	s _b	s _{f,sym}	s _{f,asym}	IR int.		
wu	2851.7	0.7	-0.5	0.2	0.3	0.0	-0.7	5.8	-1.4	-0.1	0.0	0.1	33.1	-34.2	11.3	0.0		
tu	0.7	2863.2	-0.2	0.9	-0.2	-0.1	0.4	-1.3	-2.9	0.0	-0.1	0.0	-6.2	9.0	53.7	0.0		
wx'	-0.5	-0.2	2934.0	-0.8	0.1	0.2	-0.5	0.9	0.0	6.9	-1.2	-0.2	24.1	-25.6	-1.5	0.1		
tx'	0.2	0.9	-0.8	2943.1	0.0	0.1	-0.1	0.3	-0.1	1.7	2.4	0.0	3.1	-2.1	29.3	0.0		
WX	0.3	-0.2	0.1	0.0	2977.1	0.7	-0.1	0.0	-0.3	0.0	-5.2	1.8	-1.3	-1.6	-35.1	0.0		
tx	0.0	-0.1	0.2	0.1	0.7	2988.1	-0.1	-0.2	0.3	-0.2	1.2	3.3	-30.6	21.2	3.6	0.0		
uu	-0.7	0.4	-0.5	-0.1	-0.1	-0.1	3100.7	0.6	0.2	-0.5	0.0	-0.4	-30.5	-30.3	0.8	0.0		
ux'	5.8	-1.3	0.9	0.3	0.0	-0.2	0.6	3183.6	0.0	-1.1	0.0	0.4	10.5	-14.3	-0.2	0.5		
ux	-1.4	-2.9	0.0	-0.1	-0.3	0.3	0.2	0.0	3227.8	0.1	-0.1	-0.2	-1.7	0.6	-4.2	0.2		
x'x'	-0.1	0.0	6.9	1.7	0.0	-0.2	-0.5	-1.1	0.1	3269.4	-0.1	0.4	0.9	21.0	-2.4	0.2		
x'x	0.0	-0.1	-1.2	2.4	-5.2	1.2	0.0	0.0	-0.1	-0.1	3315.8	0.0	1.9	-2.7	-15.8	0.0		
XX	0.1	0.0	-0.2	0.0	1.8	3.3	-0.4	0.4	-0.2	0.4	0.0	3357.6	23.5	0.5	1.8	0.2		
s _b	33.1	-6.2	24.1	3.1	-1.3	-30.6	-30.5	10.5	-1.7	0.9	1.9	23.5	2870.7	6.1	-0.3	1122.3		
s _{f,sym}	-34.2	9.0	-25.6	-2.1	-1.6	21.2	-30.3	-14.3	0.6	21.0	-2.7	0.5	6.1	3274.0	-0.8	144.0		
S _{f,asym}	11.3	53.7	-1.5	29.3	-35.1	3.6	0.8	-0.2	-4.2	-2.4	-15.8	1.8	-0.3	-0.8	3324.0	165.8		

^a Notations for NH vibrational modes: t: twisting, w: wagging, u: umbrella, x: scissoring, s_b : H-bonded stretching, $s_{f,sym}$: symmetric free stretching; see **Fig. 7**.

Table S7. Hamiltonian matrix elements (in cm⁻¹) between NH bending overtones and stretching fundamentals involved in Fermi resonance and original IR intensities of vibrational quantum states (in km/mol) in NH_4^+ ion and clusters.^a

(a) NH₄⁺

		Bending overtones														Stretching fundamentals					
		uu/ı	.uu'/uu''/u	ı'u''/u'u'/	u"u"			u	x/ut/u't/ı	u'x/u''t/u	"x			xx/xt/tt		s _{sym}	s _{asym}	s' _{asym}	s" _{asym}	IR int.	
uu/	2875.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0	69.7	-0.3	0.1	0.0	0.0	
uu'/	0.0	2877.0	0.0	0.0	0.0	0.0	0.3	-0.7	-0.7	-1.0	-1.4	-1.4	0.0	0.0	0.0	-0.1	-19.4	-15.2	45.2	0.0	
uu"/	0.0	0.0	2877.0	0.0	0.0	0.0	-0.5	-0.7	-1.0	1.2	0.8	-0.9	0.0	0.0	0.0	0.2	7.8	-49.2	-13.2	0.0	
u'u''/	0.0	0.0	0.0	2877.0	0.0	0.0	-1.8	0.7	-0.5	-1.0	0.3	-0.4	0.0	0.0	0.0	-0.4	-47.1	-1.9	-20.9	0.0	
u'u'/	0.0	0.0	0.0	0.0	2878.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.7	-0.2	0.0	-0.1	-0.4	-1.0	0.0	
u"u"	0.0	0.0	0.0	0.0	0.0	2878.0	0.1	0.0	0.0	0.0	0.0	0.0	0.0	-0.2	-1.6	-0.2	0.6	1.0	0.7	0.0	
ux/	0.0	0.3	-0.5	-1.8	0.0	0.1	3108.5	-0.2	0.5	0.3	-0.5	0.1	0.0	0.0	0.0	0.0	26.9	9.6	21.6	0.2	
ut/	0.0	-0.7	-0.7	0.7	0.0	0.0	-0.2	3107.9	0.3	-0.5	0.1	0.5	0.0	0.0	0.0	0.0	-8.7	19.8	-11.7	0.1	
u't/	0.0	-0.7	-1.0	-0.5	0.0	0.0	0.5	0.3	3107.9	-0.1	0.0	0.5	0.0	0.0	0.0	0.0	10.9	21.1	-1.0	0.1	
u'x/	0.0	-1.0	1.2	-1.0	0.0	0.0	0.3	-0.5	-0.1	3108.5	0.5	0.0	0.0	0.0	0.0	0.0	28.7	-18.5	-12.0	0.2	
u"t/	0.0	-1.4	0.8	0.3	0.0	0.0	-0.5	0.1	0.0	0.5	3108.2	0.3	0.0	0.0	0.0	0.0	5.5	-6.1	-30.1	0.2	
u"x/	0.0	-1.4	-0.9	-0.4	0.0	0.0	0.1	0.5	0.5	0.0	0.3	3108.2	0.0	0.0	0.0	0.0	10.4	23.9	-15.0	0.2	
xx/	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3339.5	0.0	0.0	-14.1	0.0	0.0	0.0	0.0	
xt/	0.0	0.0	0.0	0.0	1.7	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3343.6	0.0	0.0	0.0	0.0	0.0	0.0	
tt	0.0	0.0	0.0	0.0	-0.2	-1.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3344.1	0.4	0.0	0.0	0.0	0.0	
S _{sym}	69.7	-0.1	0.2	-0.4	0.0	-0.2	0.0	0.0	0.0	0.0	0.0	0.0	-14.1	0.0	0.4	3209.3	0.0	0.0	0.0	0.0	
Sasym	-0.3	-19.4	7.8	-47.1	-0.1	0.6	26.9	-8.7	10.9	28.7	5.5	10.4	0.0	0.0	0.0	0.0	3320.9	0.0	0.0	200.9	
s' _{asym}	0.1	-15.2	-49.2	-1.9	-0.4	1.0	9.6	19.8	21.1	-18.5	-6.1	23.9	0.0	0.0	0.0	0.0	0.0	3320.9	0.0	201.0	
s" _{asym}	0.0	45.2	-13.2	-20.9	-1.0	0.7	21.6	-11.7	-1.0	-12.0	-30.1	-15.0	0.0	0.0	0.0	0.0	0.0	0.0	3321.0	201.0	

Table S7. (continued)

(b) NH₄⁺...H₂O

							Bend	ing over	tones							Stre	Original			
	uu	uu'	uu"	u'u'	u'u"	u"u"	ux	ut	u'x	u't	u"x	u"t	XX	xt	tt	s _b	s _{f,sym}	S _{f,asym}	s' _{f,asym}	IR int.
uu	2793.0	0.1	0.0	-0.3	0.0	-0.3	0.0	0.0	1.3	0.0	0.0	-1.3	-0.3	0.0	-0.5	21.9	-62.4	0.0	0.7	0.3
uu'	0.1	2866.2	0.0	0.0	0.0	-0.1	-0.3	0.0	-0.4	0.0	0.0	-0.4	0.9	0.0	-0.9	1.1	-0.7	0.0	-24.7	0.0
uu"	0.0	0.0	2893.2	0.0	-0.2	0.0	0.0	5.0	0.0	-0.3	0.0	0.0	0.0	-0.8	0.0	0.0	0.0	-17.2	0.0	0.0
u'u'	-0.3	0.0	0.0	2941.7	0.0	0.5	-0.8	0.0	-1.4	0.0	0.0	-0.8	0.9	0.0	1.1	30.5	20.5	0.0	-27.2	0.0
u'u"	0.0	0.0	-0.2	0.0	2969.8	0.0	0.0	-1.0	0.0	-3.9	-1.4	0.0	0.0	0.1	0.0	0.0	0.0	42.0	0.0	0.0
u"u"	-0.3	-0.1	0.0	0.5	0.0	2996.9	1.0	0.0	0.8	0.0	0.0	-6.3	1.1	0.0	0.6	31.9	20.2	0.0	31.5	0.0
ux	0.0	-0.3	0.0	-0.8	0.0	1.0	3075.4	0.0	0.9	0.0	0.0	0.4	-0.4	0.0	0.2	0.0	0.1	0.0	31.8	0.1
ut	0.0	0.0	5.0	0.0	-1.0	0.0	0.0	3100.8	0.0	-0.6	0.4	0.0	0.0	-0.2	0.0	0.0	0.0	-31.9	0.0	0.1
u'x	1.3	-0.4	0.0	-1.4	0.0	0.8	0.9	0.0	3149.9	0.0	0.0	0.7	1.8	0.0	0.1	13.0	-17.5	0.0	20.2	0.5
u't	0.0	0.0	-0.3	0.0	-3.9	0.0	0.0	-0.6	0.0	3175.8	0.7	0.0	0.0	-1.0	0.0	0.0	0.0	14.6	0.0	0.1
u"x	0.0	0.0	0.0	0.0	-1.4	0.0	0.0	0.4	0.0	0.7	3178.3	0.0	0.0	-3.8	0.0	0.0	0.0	-17.6	0.0	0.0
u"t	-1.3	-0.4	0.0	-0.8	0.0	-6.3	0.4	0.0	0.7	0.0	0.0	3203.5	0.2	0.0	5.3	-25.5	18.0	0.0	14.1	0.2
XX	-0.3	0.9	0.0	0.9	0.0	1.1	-0.4	0.0	1.8	0.0	0.0	0.2	3361.7	0.0	0.4	0.7	-8.9	0.0	0.3	0.1
xt	0.0	0.0	-0.8	0.0	0.1	0.0	0.0	-0.2	0.0	-1.0	-3.8	0.0	0.0	3389.0	0.0	0.0	0.0	0.8	0.0	0.0
tt	-0.5	-0.9	0.0	1.1	0.0	0.6	0.2	0.0	0.1	0.0	0.0	5.3	0.4	0.0	3412.1	-7.4	-4.5	0.0	0.7	0.0
s _b	21.9	1.1	0.0	30.5	0.0	31.9	0.0	0.0	13.0	0.0	0.0	-25.5	0.7	0.0	-7.4	2659.5	10.9	0.0	0.0	1528.8
S _{f,sym}	-62.4	-0.7	0.0	20.5	0.0	20.2	0.1	0.0	-17.5	0.0	0.0	18.0	-8.9	0.0	-4.5	10.9	3264.2	0.0	0.0	91.2
S _{f,asym}	0.0	0.0	-17.2	0.0	42.0	0.0	0.0	-31.9	0.0	14.6	-17.6	0.0	0.0	0.8	0.0	0.0	0.0	3352.2	0.0	145.4
s' _{f,asym}	0.7	-24.7	0.0	-27.2	0.0	31.5	31.8	0.0	20.2	0.0	0.0	14.1	0.3	0.0	0.7	0.0	0.0	0.0	3353.2	142.2

Table S7. (continued)

(c) NH₄⁺...H₂O...Ar (type 1)

	Bending overtones														Stre	ntals	Original			
	uu	uu'	uu"	u'u'	u'u"	u"u"	ut	ux	u't	u'x	u"t	u"x	tt	tx	XX	s _b	s _{f,sym}	s _{f,asym}	s' _{f,asym}	IR int.
uu	2786.5	-0.1	0.0	-0.3	0.0	-0.3	0.0	0.1	-1.3	0.0	0.0	1.3	0.3	0.0	0.5	-23.1	-62.6	-0.4	-0.3	0.4
uu'	-0.1	2864.0	0.1	0.0	0.2	0.1	0.2	0.0	-0.2	-0.3	0.3	-0.2	0.4	0.8	-0.4	0.5	0.3	-0.6	-24.3	0.0
uu"	0.0	0.1	2892.1	0.0	0.1	-0.1	0.0	-5.2	0.2	-0.1	0.0	0.1	-0.7	0.4	0.7	-0.7	-0.3	17.0	-0.2	0.0
u'u'	-0.3	0.0	0.0	2943.5	0.0	0.5	-0.4	-0.6	1.6	0.0	0.0	0.8	-0.9	0.0	-1.1	-29.4	20.7	24.5	12.3	0.0
u'u"	0.0	0.2	0.1	0.0	2973.2	0.0	1.0	-0.5	-0.1	4.0	1.5	0.0	0.0	0.1	0.0	0.0	0.0	19.0	-37.2	0.0
u"u"	-0.3	0.1	-0.1	0.5	0.0	3001.8	0.5	0.8	-0.7	0.0	0.0	6.5	-1.1	0.0	-0.6	-31.2	20.5	-28.0	-14.3	0.0
ut	0.0	0.2	0.0	-0.4	1.0	0.5	3071.6	0.0	-0.5	-0.3	0.7	-0.2	0.2	0.3	-0.1	0.0	0.0	-0.6	-31.7	0.1
ux	0.1	0.0	-5.2	-0.6	-0.5	0.8	0.0	3098.7	-0.3	0.2	-0.2	-0.6	0.2	-0.1	-0.3	0.0	-0.1	-32.2	0.3	0.1
u't	-1.3	-0.2	0.2	1.6	-0.1	-0.7	-0.5	-0.3	3150.4	0.0	0.0	0.6	1.8	0.1	0.1	11.8	17.4	17.2	9.1	0.6
u'x	0.0	-0.3	-0.1	0.0	4.0	0.0	-0.3	0.2	0.0	3178.2	0.6	0.1	0.0	1.1	0.1	0.1	0.0	-6.4	13.1	0.1
u"t	0.0	0.3	0.0	0.0	1.5	0.0	0.7	-0.2	0.0	0.6	3180.1	-0.1	-0.1	3.9	0.0	0.0	0.1	7.9	-16.5	0.0
u"x	1.3	-0.2	0.1	0.8	0.0	6.5	-0.2	-0.6	0.6	0.1	-0.1	3206.8	0.2	-0.1	5.4	-25.1	-17.7	12.5	6.2	0.3
tt	0.3	0.4	-0.7	-0.9	0.0	-1.1	0.2	0.2	1.8	0.0	-0.1	0.2	3360.5	0.0	0.4	1.5	9.1	0.2	0.2	0.1
tx	0.0	0.8	0.4	0.0	0.1	0.0	0.3	-0.1	0.1	1.1	3.9	-0.1	0.0	3389.4	0.0	0.0	-0.1	0.4	-0.4	0.0
XX	0.5	-0.4	0.7	-1.1	0.0	-0.6	-0 .1	-0.3	0.1	0.1	0.0	5.4	0.4	0.0	3414.7	-7.2	4.4	0.9	0.3	0.1
s _b	-23.1	0.5	-0.7	-29.4	0.0	-31.2	0.0	0.0	11.8	0.1	0.0	-25.1	1.5	0.0	-7.2	2612.7	-11.0	0.0	0.0	1614.3
s _{f,sym}	-62.6	0.3	-0.3	20.7	0.0	20.5	0.0	-0.1	17.4	0.0	0.1	-17.7	9.1	-0.1	4.4	-11.0	3265.1	0.4	0.0	86.1
s _{f,asym}	-0.4	-0.6	17.0	24.5	19.0	-28.0	-0.6	-32.2	17.2	-6.4	7.9	12.5	0.2	0.4	0.9	0.0	0.4	3354.0	0.0	139.0
s' _{f,asym}	-0.3	-24.3	-0.2	12.3	-37.2	-14.3	-31.7	0.3	9.1	13.1	-16.5	6.2	0.2	-0.4	0.3	0.0	0.0	0.0	3354.9	141.8

Table S7. (continued)

(d) Ar...NH₄⁺...H₂O (type 2)

	Bending overtones														Stre	Original				
	uu	uu'	uu"	u'u'	u'u"	u"u"	ut	ux	u't	u'x	u"t	u"x	tt	tx	XX	Sb	s _{f,sym}	S _{f,asym}	s' _{f,asym}	IR int.
uu	2804.6	0.0	0.2	-0.3	0.0	-0.3	0.0	-0.7	-1.3	0.0	0.0	1.3	-0.4	0.0	-0.6	21.1	61.3	7.6	0.0	0.4
uu'	0.0	2876.5	0.0	0.0	0.0	0.0	0.3	0.0	0.0	-0.9	0.4	0.0	0.0	-0.8	0.0	0.0	0.0	0.0	-24.1	0.0
uu"	0.2	0.0	2894.1	0.0	0.0	-0.4	0.0	-4.6	0.4	0.0	0.0	-0.5	0.8	0.0	-0.7	-1.7	-3.8	18.7	0.0	0.1
u'u'	-0.3	0.0	0.0	2949.8	0.0	0.7	0.0	-0.6	1.2	0.0	0.0	1.0	1.0	0.0	1.2	31.5	-23.8	24.6	0.0	0.0
u'u"	0.0	0.0	0.0	0.0	2969.2	0.0	1.2	0.0	0.0	3.4	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-41.5	0.0
u"u"	-0.3	0.0	-0.4	0.7	0.0	2987.6	0.0	1.0	-0.8	0.0	0.0	5.7	1.1	0.0	0.5	32.4	-15.2	-34.4	0.0	0.0
ut	0.0	0.3	0.0	0.0	1.2	0.0	3087.1	0.0	0.0	-0.3	0.9	0.0	0.0	-0.9	0.0	0.0	0.0	0.0	-31.0	0.1
ux	-0.7	0.0	-4.6	-0.6	0.0	1.0	0.0	3109.5	-0.3	0.0	0.0	-0.5	-0.3	0.0	-0.8	1.5	4.8	-31.7	0.0	0.1
u't	-1.3	0.0	0.4	1.2	0.0	-0.8	0.0	-0.3	3159.8	0.0	0.0	0.5	-1.3	0.0	-0.1	-13.7	-19.6	17.1	0.0	0.6
u'x	0.0	-0.9	0.0	0.0	3.4	0.0	-0.3	0.0	0.0	3183.1	0.5	0.0	0.0	-0.8	0.0	0.0	0.0	0.0	14.6	0.1
u"t	0.0	0.4	0.0	0.0	1.2	0.0	0.9	0.0	0.0	0.5	3179.1	0.0	0.0	-3.2	0.0	0.0	0.0	0.0	-18.0	0.0
u"x	1.3	0.0	-0.5	1.0	0.0	5.7	0.0	-0.5	0.5	0.0	0.0	3201.4	-0.2	0.0	-4.6	25.9	16.2	17.5	0.0	0.3
tt	-0.4	0.0	0.8	1.0	0.0	1.1	0.0	-0.3	-1.3	0.0	0.0	-0.2	3372.2	0.0	0.4	0.2	8.8	0.6	0.0	0.1
tx	0.0	-0.8	0.0	0.0	0.0	0.0	-0.9	0.0	0.0	-0.8	-3.2	0.0	0.0	3397.2	0.0	0.0	0.0	0.0	0.4	0.0
XX	-0.6	0.0	-0.7	1.2	0.0	0.5	0.0	-0.8	-0.1	0.0	0.0	-4.6	0.4	0.0	3418.1	-7.4	4.4	-0.7	0.0	0.0
s _b	21.1	0.0	-1.7	31.5	0.0	32.4	0.0	1.5	-13.7	0.0	0.0	25.9	0.2	0.0	-7.4	2699.2	-10.7	-1.3	0.0	1425.8
s _{f,sym}	61.3	0.0	-3.8	-23.8	0.0	-15.2	0.0	4.8	-19.6	0.0	0.0	16.2	8.8	0.0	4.4	-10.7	3258.5	1.9	0.0	142.9
S _{f,asym}	7.6	0.0	18.7	24.6	0.0	-34.4	0.0	-31.7	17.1	0.0	0.0	17.5	0.6	0.0	-0.7	-1.3	1.9	3337.4	0.0	269.7
s' _{f,asym}	0.0	-24.1	0.0	0.0	-41.5	0.0	-31.0	0.0	0.0	14.6	-18.0	0.0	0.0	0.4	0.0	0.0	0.0	0.0	3356.6	136.9

^a Notations for NH vibrational modes: u: umbrella, x: scissoring, t: twisting, s_b : H-bonded stretching, $s_{f,sym}$: symmetric free stretching, $s_{f,asym}$: asymmetric free stretching; see **Fig. 9**.