Supplementary Information (SI)

Insights into the mechanism of the enhanced visible-light photocatalytic activity of MoS$_2$/BiOI heterostructure under interfacial coupling

Jisong Hu,a Jie Liu,a Zhangze Chen,a Xinguo Ma,*a Yang Liu,*b Shiqi Wang,a Zhifeng Liu,a Chuyun Huang*$_c$

a School of Science, Hubei University of Technology, Wuhan 430068, China. E-mail: maxg2013@sohu.com
b Hubei Engineering Technology Research Center of Energy Photoelectric Device and System, Hubei University of Technology, Wuhan 430068, China
c Key Laboratory of River Regulation and Flood Control of MWR, Wuhan, 430010, China. E-mail: fxffans@163.com

Figure S1. Energy band structure of bulk BiOI using PBE method.
The state-of-the-art hybrid DFT approach based on the Heyd-Scuseria-Ernzerhof functional (HSE06) was used to calculate the electronic structures of MoS$_2$ after geometric optimization. In the default hybrid functional HSE06, the screening parameter μ and the mixing parameter α are set as 0.21 Å$^{-1}$ and 0.25, respectively. And norm-conserving pseudopotentials were used for all-electron HSE06 calculations. The calculated band gap of monolayer MoS$_2$ is 2.23 eV at the high symmetry K point, which is larger than the experimental band gap of about 1.9 eV1,2.