Probing the structural and electronic response of Magnus green salt

compounds $[Pt(NH_2R)_4][PtCI_4]$ (R=H, CH₃) to pressure.

Jonathan G. Richardson,^{*a*} Helen Benjamin,^{*a*} Stephen A. Moggach,^{*b**} Lisette R. Warren,^{*a*} Mark R. Warren,^{*c*} David R. Allan,^{*c*} Lucy Saunders,^{*c*} Carole A. Morrison,^{*a**} and Neil Robertson^{*a**}

^a EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK

^b Centre for Microscopy, Characterisation and Analysis, University of Western Australia, Australia ^c Diamond Light Source, Diamond House, Harwell Science & Innovation Campus, Didcot, Oxfordshire, OX11 0DE, UK

Contents	Page
X-Ray Diffraction	S1
Solid state calculations	S4
References	S12

All crystallographic data have been deposited with the CCDC (CCDC 2009951-2009968) and can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (fax +441223336033; email deposit@ccdc.cam.ac.uk).

X-ray diffraction

Table S1: Crystallographic information for all the $MagNH_3$ structures in the pressure series.

	$MagNH_3$ at ambient conditions	$MagNH_3$ at 0.37 GPa	MagNH₃ at 0.74 GPa	MagNH₃ at 1.06 GPa	MagNH₃ at 1.65 GPa
Unit cell parameters	a = 8.97809(14) Å	a = 8.9435(5) Å	a = 8.8963(4) Å	a = 8.8591(6) Å	a = 8.7949(6) Å
	b = 8.97809(14) Å	b = 8.9435(5) Å	b = 8.8963(4) Å	b = 8.8591(6) Å	b = 8.7949(6) Å
	c = 6.4585(3) Å	c = 6.4253(7) Å	c = 6.3753(6) Å	c = 6.3339(8) Å	c = 6.2730(8) Å
	α = 90°	α = 90°	α = 90°	$\alpha = 90^{\circ}$	α = 90°
	β = 90°	β = 90°	β = 90°	β = 90°	β = 90°
	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	γ = 90°
	V = 520.59(3) Å ³	V = 513.93(6) Å ³	V = 504.57(4) Å ³	V = 497.11(6) Å ³	V = 485.22(6) Å ³
Space Group	P4/mnc	P4/mnc	P4/mnc	P4/mnc	P4/mnc
Wavelength [Å]	1.54178 (Cu Kα)	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)
Completeness	99.7%	82.9%	75.4%	81.0%	82.6%
Resolution [Å]	0.84	0.85	0.85	0.85	0.85
R1	0.056	0.039	0.111	0.125	0.101
	MagNH₃ at 1.96 GPa	MagNH₃ at 2.28 GPa	MagNH₃ at 2.71 GPa	$MagNH_3$ at 3.73 GPa	$MagNH_3$ at 4.62 GPa
Unit cell parameters	a = 8.7712(8) Å	a = 8.7425(7) Å	a = 8.7220(11) Å	a = 8.6538(10) Å	a = 8.6076(14) Å
-	b = 8.7712(8) Å	b = 8.7425(7) Å	b = 8.7720(11) Å	b = 8.6538(10) Å	b = 8.6076(14) Å

Unit cell parameters	a = 8.7712(8) Å	a = 8.7425(7) Å	a = 8.7220(11) Å	a = 8.6538(10) Å	a = 8.6076(14) Å	
	b = 8.7712(8) Å	b = 8.7425(7) Å	b = 8.7720(11) Å	b = 8.6538(10) Å	b = 8.6076(14) Å	
	c = 6.2436(9) A	c = 6.2161(8) Å	c = 6.1933(11) Å	c = 6.1220(12) Å	c = 6.0602(17) Å	
	α = 90°					
	$\beta = 90^{\circ}$	β = 90°	β = 90°	β = 90°	β = 90°	
	γ = 90°					
	V = 480.35(7) Å ³	V = 475.10(6) Å ³	V = 471.14(8) Å ³	V = 458.47(9) Å ³	V = 449.01(12) Å ³	
Space Group	P4/mnc	P4/mnc	P4/mnc	P4/mnc	P4/mnc	
Wavelength [Å]	0.4859 (synchrotron)					
Completeness	83.2%	82.9%	82.8%	82.4%	83.1%	
Resolution [Å]	0.85	0.85	0.85	0.85	0.85	
R1	0.089	0.095	0.087	0.110	0.086	

Table S2: Crystallographic information for all the MagNH₂Me structures in the pressure series.

MagNH ₂ Me at ambient	MagNH₂Me at 0.16 GPa	MagNH₂Me at 0.25 GPa	MagNH ₂ Me at 0.58 GPa	MagNH ₂ Me at 0.90 GPa

	conditions				
Unit cell parameters	a = 10.35151(12) Å	a = 10.3266(8) Å	a = 10.3078(8) Å	a = 10.2482(7) Å	a = 10.1964(7) Å
	b = 10.35151(12) Å	b = 10.3266(8) Å	b = 10.3078(8) Å	b = 10.2482(7) Å	b = 10.1964(7) Å
	c = 6.4977(2) Å	c = 6.4805(10) Å	c = 6.4712(10) Å	c = 6.4309(9) Å	c = 6.3876(9) Å
	α = 90°	α = 90°	α = 90°	α = 90°	α = 90°
	β = 90°	β = 90°	β = 90°	β = 90°	β = 90°
	γ = 90°	γ = 90°	γ = 90°	γ = 90°	γ = 90°
	V = 1281.43(7) Å ³	V = 691.06(10) Å ³	V = 687.57(11) Å ³	V = 675.41(10) Å ³	V = 664.10(9) Å ³
Space Group	P4/mnc	P4/mnc	P4/mnc	P4/mnc	P4/mnc
Wavelength [Å]	1.54178 (Cu Kα)	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)
Completeness	96.7%	89.5%	93.1%	92.0%	97.2%
Resolution [Å]	0.80	0.84	0.84	0.84	0.84
R1	0.050	0.056	0.050	0.057	0.029

	MagNH ₂ Me at 1.23 GPa	MagNH₂Me at 1.61 GPa	MagNH₂Me at 1.92 GPa	MagNH₂Me at 2.33 GPa
Unit cell parameters	a = 10.1452(13) Å	a = 10.0908(14) Å	a = 10.056(2) Å	a = 14.160(9) Å
	b = 10.1452(13) Å	b = 10.0908(14) Å	b = 10.056(2) Å	b =14.179(3) Å
	c = 6.3581(11) Å	c = 6.3306(17) Å	c = 6.320(3) Å	c =6.274(1) Å
	α = 90°	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	β = 90°	β = 90°	β = 90°	β = 92.13(3)°
	γ = 90°	γ = 90°	γ = 90°	$\gamma = 90^{\circ}$
	V = 654.41(11) Å ³	V = 644.60(18) Å ³	V = 639.1(3) Å ³	V = 1258.79 ų
Space Group	P4/mnc	P4/mnc	P4/mnc	C2/c
Wavelength [Å]	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)	0.4859 (synchrotron)
Completeness	96.6%	98.4%	82.8%	58.0 %
Resolution [Å]	0.84	0.84	0.84	0.80
R1	0.043	0.050	0.041	Structure Unsolved

Pressure (GPa)	Pt–N bond length (Å)	Pt–Cl bond length (Å)	Cl–Pt…Pt–N torsion angle (°)
Ambient	2.068(10)	2.330(4)	-29.1(2)
0.37	2.058(8)	2.332(3)	-28.4(2)
0.74	2.064(12)	2.324(4)	-28.1(3)
1.06	2.069(13)	2.329(4)	-28.9(3)
1.65	2.061(14)	2.320(4)	-28.5(4)
1.96	2.079(18)	2.321(6)	-28.6(4)
2.28	2.066(18)	2.315(5)	-28.9(5)
2.71	2.069(17)	2.323(5)	-29.0(4)
3.73	2.074(18)	2.318(6)	-30.1(5)
4.62	2.050(30)	2.321(9)	-29.3(7)

Table S3: Selected bond length and torsion angles in MagNH₃ throughout the pressure series.

Table S4: Selected bond lengths, bond angles, and torsion angles in MagNH₂Me throughout the pressure series.

Pressure (GPa)	Pt–N bond length (Å)	Pt–Cl bond length (Å)	∠Pt–N–C angle (°)	Cl—Pt…Pt—N torsion angle (°)
Ambient	2.059(10)	2.320(3)	124.0(8)	31.3(2)
0.16	2.089(11)	2.329(3)	124.2(8)	32.5(3)
0.25	2.087(9)	2.325(3)	123.2(7)	32.3(2)
0.58	2.079(12)	2.326(4)	124.5(9)	33.5(3)
0.90	2.095(14)	2.321(4)	122.7(12)	32.6(3)
1.23	2.066(13)	2.309(5)	124.0(11)	33.4(3)
1.61	2.059(11)	2.303(5)	125.6(10)	33.8(3)
1.92	2.109(19)	2.316(6)	124.2(14)	33.4(4)

Figure S1: Graph of unit cell volume compression of MagNH₃ (left) and MagNH₂Me (right) (prior to the phase transition), with their respective 3^{rd} order Birch-Murnaghan equation of state plots.¹

Solid state calculations

LUCO+6: 4.66 eV

LUCO+1: 1.74 eV

LUCO+5: 4.14 eV

LUCO: 1.56 eV

HOCO-3: -1.64 eV

HOCO-4: -1.85 eV

LUCO+4: 3.93 eV

HOCO: 0.00 eV

LUCO+3: 3.85 eV

HOCO-1: -0.04 eV

HOCO-6: -2.09 eV

LUCO+2: 3.82 eV

HOCO-7: -2.25 eV

Figure S2: Crystalline orbitals of bands either side of the band gap for MagNH₃, obtained at the Γ k-point. Atoms are coloured: Cl, green; Pt, grey; N, blue; H, white.

Figure S3: Crystalline orbitals representing band either side of the band gap for MagNH₂Me, obtained at the Γ k-point. Atoms are coloured: Cl, green; Pt, grey, N; blue, C, dark grey; H, white.

While, as illustrated in the main text (Figures 3 and 5), the majority of the LUCO band for both MagNH₃ and MagNH₂Me consists of contributions from anti-bonding Pt…Cl and, to a much lesser extent, Pt…N interactions, weak Pt…Pt interactions were also observed. Figures S4 and S5 show the COHP plot of only the Pt…Pt interaction contribution to the LUCO band for MagNH₃ and MagNH₂Me respectively throughout their respective pressure series; the ambient position of the LUCO and LUCO+1 bands are provided alongside the related electronic band structure to act as a reference point. The Pt…Pt interaction in MagNH₃ LUCO is weakly bonding whilst the interaction in the LUCO band of MagNH₂Me is weakly anti-bonding. The difference in nature of this interaction stems from the subtle difference in the Pt orbital overlap caused by the different intra-chain Cl-Pt…Pt-N dihedral angles in the two compounds, and thus is attributed as a cause for the slightly larger band gap at ambient conditions for MagNH₂Me, decreasing or increasing the LUCO energy for MagNH₃ and MagNH₂Me respectively from its average position if there was no Pt…Pt interaction.

The magnitude of this interaction gets stronger throughout the pressure series for both compounds. Therefore, for MagNH₃, the result of the strengthening this Pt…Pt interaction results in a slight stabilisation of the LUCO, whereas it causes a slight destabilisation of the LUCO of MagNH₂Me; these can be seen in Figures S4, S5 and S8.

Figure S4: -COHP plot of Pt...Pt interaction in $MagNH_2Me$, ranging from low to high pressure (signified by the increasing transparency of the line plots) structures throughout the pressure series, in the energy range associated with the LUCO and LUCO+1 bands.

Figure S5: -COHP plot of Pt···Pt interaction in MagNH₃, ranging from low to high pressure (signified by the increasing transparency of the line plots) structures throughout the pressure series, in the energy range associated with the LUCO and LUCO+1 bands.

Figure S6: LEFT: Electronic band structure, projected density of states (PDOS) and COOP plot of the structure of MagNH₃ obtained experimentally at 4.62 GPa. RIGHT: Real space (grey) and reciprocal (light blue) lattices of MagNH₂Me, with the Brillouin zone path used in the electronic band structure coloured in red. $E_{Fermi} = -4.141 \text{ eV}$.

Figure S7: LEFT: Electronic band structure, projected density of states and -COHP plot (left) of the 1.61 GPa structure of MagNH₂Me. RIGHT: Real space (grey) and reciprocal (light blue) lattices of MagNH₂Me, with the Brillouin zone path used in the electronic band structure coloured in red. $E_{Fermi} = -4.348 \text{ eV}$.

Figure S8: Absolute energies of the HOCO (triangle) and LUCO (square) across the entire pressure series for both $MagNH_3$ (red) and $MagNH_2Me$ (blue). The open circles indicate the band gap size for the two compounds, which is obtained by a subtraction of the HOCO and LUCO energy values.

Figure S9: Absolute energies of the ambient pressure described HOCO (triangle) and LUCO (square) across the entire pressure series for $Pt(bqd)_{2}$.² The open circles indicate the band gap size for the two compounds, which is obtained by a subtraction of the HOCO and LUCO energy values.

Table S5: Calculated	l Pt-N and I	Pt-Cl bond	lengths, I	with	comparison	to	experimental	values	obtained	in ambient	pressure
structure of MagNH ₃	₃ for range c	of functiona	ils tested	using	g atom only a	ana	l full (atom an	d unit c	ell) optimi	sation metl	hods.

Functional	Optimisation Method	Pt–N distance (Å)	% difference vs experimental	Pt–Cl distance (Å)	% difference vs experimental
DDE	Atom only	2.079	+4.4 %	2.417	+3.8 %
PDL	Full	2.075	+4.2 %	2.464	+5.9 %
	Atom only	2.101	+5.5 %	2.455	+5.5 %
DLTP	Full	2.094	+5.1 %	2.498	+7.3 %
DDEO	Atom only	2.064	+3.6 %	2.394	+2.9 %
PBEU	Full	2.058	+3.3 %	2.390	+2.7 %
ם עוכם	Atom only	2.084	+4.6 %	2.424	+4.2 %
BSLIP	Full	2.078	+4.3 %	2.420	+4.0 %
	Atom only	2.067	+3.7 %	2.396	+3.0 %
пзеоо	Full	2.060	+3.4 %	2.391	+2.8 %

Table S6: Calculated unit cell parameters from full (atom and until cell) geometry optimisations of the ambient structure of $MagNH_3$ for a range of functionals, compared to the experimental unit cell parameters.

Functional	a (Å)	% diff vs experimental	<i>c</i> (Å)	% diff vs experimental	Volume	% diff vs experimental
PBE	8.939128	-0.4 %	5.974672	-7.5 %	477.4241	-8.3 %
BLYP	8.919282	-0.7 %	5.994223	-7.2 %	476.862	-8.4 %
PBEO	8.839227	-1.6 %	6.201572	-4.0 %	484.5408	-6.9 %
B3LYP	8.851605	-1.4 %	6.232133	-3.5 %	488.2933	-6.2 %
HSE06	8.842312	-1.5 %	6.208547	-3.9 %	485.4244	-6.8 %

Table S7 Calculated electronic band gaps calculated for the structures of $MagNH_3$ (obtained at ambient conditions and 4.62 GPa) and $MagNH_2Me$ (obtained at ambient conditions and 1.61 GPa)

	Structure	Functional	Optimisation	Ambient Pressure	Calculated	Average of	Predicted
--	-----------	------------	--------------	------------------	------------	------------	-----------

		Method	Calculated Band Gap (eV)	High Pressure Band Gap (eV)	Rate of Band Gap Compression (eV GPa ⁻¹)	Pressure of Metallic State Formation (GPa)
MagNH₃	PBE	Atom-Only	0.029	0.000	-	-
		Full	0.000	-	-	-
	PBEO	Atom-Only	2.296	1.485	-0.18	13.08
		Full	1.805	-	-	-
	BLYP	Atom-Only	0.000	0.000	-	-
		Full	0.000	-	-	-
	B3LYP	Atom-Only	1.715	0.972	-0.16	10.66
		Full	1.315	-	-	-
	HSE06	Atom-Only	1.560	0.821	-0.16	9.75
		Full	1.116	-	-	-
MagNH₂Me	PBE	Atom-Only	0.153	0.000	-	-
	PBEO	Atom-Only	2.441	2.169	-0.17	-
	B3LYP	Atom-Only	1.851	1.646	-0.13	-
	HSE06	Atom-Only	1.709	1.458	-0.16	-

References

- 1. F. Birch, *Phys. Rev.*, 1947, **71**, 809-824.
- 2. H. Benjamin, J. G. Richardson, S. A. Moggach, S. Afanasjevs, L. Warren, M. R. Warren, D. R. Allan, C. A. Morrison, K. V. Kamenev and N. Robertson, *Phys. Chem. Chem. Phys.*, 2020, **22**, 6677-6689.