Supporting Information: Solvent Oligomerization Pathways Facilitated by Electrolyte Additives During Solid-Electrolyte Interphase Formation

Luke D. Gibson,[†] and Jim Pfaendtner^{*,†,‡}

[†]Department of Chemical Engineering, University of Washington, Seattle, Washington 98195 [‡]Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352

*Email: jpfaendt@uw.edu

Figure S1: Reaction network of 1 FEC molecule, 3 EC molecules, and 1 Li⁺ with an extra electron. The boxed molecules indicate the node in the reaction network that contains the open-shell S_N1 adduct with FEC, as well as two intact EC molecules and CO₂. Constructed from ~50 separate reactive MD trajectories using *mdstates*. Although Li⁺ was included in the simulations, it is not pictured in the reaction network.

Figure S2: Reaction network of 1 VC molecule, 3 EC molecules, and 1 Li^+ with an extra electron. The boxed molecules indicate the node in the reaction network that contains the open-shell S_N1 adduct with VC, as well as two intact EC molecules and CO₂. Constructed from ~50 separate reactive MD trajectories using *mdstates*. Although Li⁺ was included in the simulations, it is not pictured in the reaction network.

Figure S3: S_N1 mechanisms for combinations of EC and VC electrophiles and ethoxide and o-EC nucleophiles.

Figure S4: Reaction diagram of VC-3 structure oligomerizing with an EC via S_N1 (green) and S_N2 (gray) mechanisms. The S_N1 and S_N2 states along the reaction path correspond to the stable structures in Figure 1a and 1b in the main text, respectively.

Figure S5: $S_N 2$ mechanisms for EC with both ethoxide and o-EC nucleophiles.

TS Description	XYZ coordinates			
Decarboxylation step during ethenolate formation in Figure 3 in main text	C -2.36093 -2.41900 -3.36309 O -3.62781 -3.29322 -4.80691 O -2.00266 -1.44127 -3.90460 C -3.77018 -2.66120 -5.94483 C -4.51189 -3.04148 -7.01135 O -2.47108 -3.23595 -2.52607 H -4.54152 -2.41746 -7.89772 H -3.21283 -1.71598 -6.01868 H -5.08889 -3.96265 -7.01159 Li -4.31786 -4.91547 -4.16552			
EC-5 in Figure 4 in main text	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			

Table S1: Transition state (TS) structures with XYZ coordinates in Å.

FEC-5 in Figure 4 in main text	C 0 0 C C 0 H H H C 0 0 C C 0 H H H L I F	0.85644 1.28926 1.72812 2.00006 2.56939 0.54648 2.77198 1.32207 2.68117 -1.59387 -0.48796 -1.68907 -1.68907 -1.17436 -2.27638 -1.92632 -1.54354 -0.42132 -2.14690 -3.14753 -0.94586 3.85318	-0.05395 -1.10050 1.04181 -0.53707 0.73457 -0.28179 -1.23331 -0.30700 1.57582 -0.99149 0.42485 -1.16036 1.53194 2.00145 -1.36908 1.25546 2.32174 2.04871 2.46682 -1.24403 0.48973	$\begin{array}{c} -0.65468\\ 0.13843\\ -0.40737\\ 1.23980\\ 0.64313\\ -1.84100\\ 1.56431\\ 2.06554\\ 1.32567\\ 0.45605\\ 0.21561\\ 1.62064\\ -0.39050\\ 0.47283\\ -0.64158\\ -1.38596\\ -0.53546\\ 1.54872\\ 0.02554\\ -2.28209\\ 0.11702\end{array}$
VC-5 in Figure 4 in main text	C O C C O C C O C C O H H H H H H H	0.85225 1.24470 1.77436 2.14630 2.45951 0.52451 -1.62242 -0.46953 -1.71351 -1.13742 -2.19383 -1.95377 -1.55138 -0.36684 -2.02902 -3.06163 -0.99608 3.13329 2.47889	-0.07900 -1.13477 0.95871 -0.59621 0.63849 -0.34550 -0.94264 0.45882 -1.03195 1.54939 2.10740 -1.36669 1.23047 2.30576 2.20574 2.58081 -1.29235 1.37384 -1.21244	-0.65368 0.19802 -0.43834 1.09052 0.71459 -1.82860 0.54252 0.21113 1.71375 -0.43833 0.42951 -0.53567 -1.40388 -0.65685 1.49710 -0.01610 -2.19787 1.12390 1.91035

EC-9 in Figure 5 in main text	0 С С Н Н Н С О О С С О Н Н Н Ц 1 Н Н Н Н Н Н Н Н Н	-0.62501 0.20318 0.49212 1.18901 -0.21469 1.14989 -0.01033 -0.88041 0.70427 -0.73758 0.28881 0.21093 -0.42317 -1.77306 1.18288 -0.12175 -0.48703 0.97673 -0.43897	-0.76477 -0.05759 -0.79654 0.16936 0.94074 -0.21145 0.51457 1.02422 -0.49188 0.21840 -0.79670 0.86788 1.08992 -0.06640 -0.76047 -1.80409 2.32622 -1.75849 -0.99479	-2.12132 -2.96403 -4.27217 -2.49017 -3.23187 -4.92677 2.05209 1.25884 1.52998 -0.27458 0.16937 3.21208 -0.82868 -0.35560 -0.44845 0.17428 4.27160 -4.07223 -4.81446
FEC-9 in Figure 5 in main text	O C H H C O C C O H H F L i H H	-1.00321 -0.05740 -0.06886 0.96673 -0.22462 0.68453 -0.12391 -1.08900 0.57267 -0.99422 -0.07129 0.24831 -0.57587 -2.05515 0.68043 -0.82686 -2.05668 0.14597 -1.04831	1.21907 1.84837 1.32644 1.71564 2.94327 1.83705 2.26754 2.74616 1.27475 2.00583 0.90825 2.56898 2.89148 1.83622 0.63173 -0.23589 -0.27635 0.25280 1.48826	-0.10000 -0.90129 -2.33435 -0.49533 -0.92919 -2.94410 4.09570 3.40598 3.41071 1.76925 2.23388 5.21047 1.31745 1.71395 1.50074 2.50301 -0.37622 -2.35739 -2.79636

EC-13 in Figure 5 in main text	С 0 0 С С 0 H H H C 0 0 С С 0 H H H L i H	-0.90500 -1.23626 0.27955 -0.15117 0.28025 -1.93795 -0.52026 0.65591 0.45809 -5.52389 -4.96841 -4.67331 -3.60112 -2.88148 -6.74038 -3.52633 -3.16988 -2.45704 -3.02745 -2.21959 0.54018	0.12480 1.37502 -0.04662 2.18822 1.75726 -0.50460 3.21538 2.11305 0.70833 1.75651 1.89083 1.80149 2.27773 1.56943 1.59896 3.36191 1.99849 2.11651 0.50736 -2.08214 2.49325	-0.98772 -0.26684 -1.20371 0.26325 1.60890 -1.24497 0.25687 -0.47296 1.81474 0.62353 -0.64404 1.56069 -0.59591 0.52626 0.67655 -0.46660 -1.55526 1.35308 0.64534 -2.31598 2.35950
FEC-13 in Figure 5 in main text	С О С С О Н Н Н С О О С С О Н F Н Н Ц І І І	-0.64842 -1.25358 0.56007 -0.35941 0.00489 -1.53241 -0.87386 0.51468 0.31433 -5.37106 -4.63287 -4.80400 -3.59171 -2.95709 -6.41251 -2.87669 -4.06438 -2.63041 -3.03099 -1.77632 0.09621	0.07917 1.30184 0.11534 2.27362 1.92265 -0.72901 3.23547 2.32264 0.91331 2.12315 2.91859 1.02974 2.24246 1.21868 2.60922 2.98244 1.57347 1.52304 0.17088 -2.30353 2.69796	-0.97464 -0.35760 -1.08127 0.25392 1.64216 -1.26876 0.19715 -0.40373 1.88667 0.92991 0.00959 1.19256 -0.57954 0.33778 1.33346 -0.93541 -1.71419 1.32084 0.10086 -2.34766 2.39262