Electronic Supplementary Information for

Tunable Valley Polarization, Magnetic Anisotropy and Dzyaloshinskii-Moriya Interaction in Two-Dimensional Intrinsic Ferromagnetic Janus 2H-VSeX(X=S,

Te) Monolayers

Shengmei Qi, Jiawei Jiang, Wenbo Mi*

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology,

School of Science, Tianjin University, Tianjin 300354, China

^{*}Author to whom all correspondence should be addressed.

E-mail: miwenbo@tju.edu.cn

Table S1 Lattice constant *a* (Å), V-Se bond length L_{V-Se} (Å), V/Se magnetic moment $M_{V/Se}$ (μ_B), total magnetic moment of unit cell M_{total} (μ_B), magnetic anisotropic energy MAE (meV), band gap E_g (eV) and valley splitting ΔV (meV) with SOC of the unit cell 2H-VSe₂ monolayer with different U_{eff} (eV).

$U_{\rm ef}$	а	L _{V-Se}	$M_{ m V}$	M _{Se}	M _{total}	MAE	E_g	ΔV
0	3.319	2.497	1.070	-0.066	0.939	0.599	0.197 (K→M)	78.4
0.5	3.328	2.500	1.123	-0.084	0.956	0.538	0.344 (K→M)	78.3
1	3.335	2.505	1.181	-0.104	0.973	0.506	0.497 (K→M)	78.1
1.5	3.342	2.509	1.244	-0.126	0.993	0.545	0.649 (K→K)	78
2	3.349	2.514	1.317	-0.150	1.016	0.513	0.627 (Γ→K)	77.6

Fig. S1 (a) Top and side views of 2H-VSe₂ monolayer. (b)-(f) Band structure of 2H-VSe₂ monolayer with SOC and different U_{eff} (eV). The circles represent $V-d_{x^2-y^2}$ and $V-d_{xy}$ orbitals. The circle size is proportional to the contribution of the orbital components. The color scale represents the spin projection. Fermi level is set to zero.

Magnetie	VSSe	VSeTe		
		[001]	0.431	1.479
FM		[100]	0	0
		$[00\overline{1}]$	0.432	1.478
		out-of-plane	95.117	103.945
stripy-AF	Μ	in-plane	95.345	104.234
		out-of-plane	98.823	100.876
zigzag-AF	FM	in-plane	99.309	101.146
	FM	out-of-plane		
frustrated-spin	AFM1	out-of-plane	53.195	50.1
	AFM2	in-plane	129.547	140.186

Table S2Calculated total energy (meV/f.u.) relative to the in-plane FM configuration among allmagnetic configurations of Janus 2H-VSeX (X = S, Te) monolayers.

Table S3 Lattice constant *a* (Å), V-S bond length L_{V-S} (Å), V-Se bond length L_{V-Se} (Å), S-V-Se bond angle θ (°), V/S/Se magnetic moment $M_{V/S/Se}$ (μ_B), band gap E_g (eV), valley splitting ΔV (meV) with SOC of Janus VSSe monolayer at in-plane biaxial strain (%).

					Magr				
Strai	a	L_{V-S}	L_{V-Se}	θ	$M_{ m S}$	$M_{ m V}$	$M_{\rm Se}$	E_g	ΔV
-8	2.997	2.298	2.464	86.6	-0.010	0.940	-0.006		66.6
-6	3.062	2.311	2.465	84.3	-0.026	1.004	-0.053		69.3
-4	3.127	2.327	2.477	82.3	-0.038	1.050	-0.077	0.222	70.1
-2	3.192	2.345	2.492	80.5	-0.049	1.087	-0.095	0.324	69.7
0	3.257	2.363	2.508	78.7	-0.058	1.120	-0.110	0.322	68.6
2	3.322	2.383	2.526	77.0	-0.067	1.153	-0.124	0.303	66.9
4	3.387	2.404	2.546	75.4	-0.077	1.187	-0.138	0.096	64.6
6	3.453	2.424	2.567	73.7	-0.089	1.228	-0.152		61.6
8	3.518	2.439	2.591	72.0	-0.109	1.286	-0.171		56

Table S4 Lattice constant *a* (Å), V-Se bond length L_{V-Se} (Å), V-Te bond length L_{V-Te} (Å), Te-V-Se bond angle θ (°), V/Se/Te magnetic moment $M_{V/Se/Te}$ (μ_B), band gap E_g (eV), valley splitting ΔV (meV) with SOC of Janus VSeTe monolayer at in-plane biaxial strain (%).

					Mag	netic mo			
Strai	а	$L_{\text{V-Se}}$	L_{V-Te}	θ	$M_{ m V}$	$M_{\rm Se}$	M_{Te}	E_g	ΔV
-8	3.186	2.453	2.698	88.4	0.962	-0.043	0.015		78.1
-6	3.255	2.455	2.689	85.6	1.049	-0.048	-0.050		83.3
-4	3.325	2.469	2.692	83.5	1.094	-0.055	-0.082		92.6
-2	3.394	2.486	2.704	81.5	1.139	-0.065	-0.105	0.057	90.6
0	3.463	2.505	2.720	79.7	1.183	-0.075	-0.123	0.232	86
2	3.532	2.525	2.737	78.0	1.226	-0.086	-0.140	0.184	79.7
4	3.602	2.547	2.756	76.3	1.270	-0.096	-0.155	0.013	70.5
6	3.671	2.561	2.779	74.5	1.334	-0.116	-0.174		52.8
8	3.740	2.575	2.804	72.6	1.424	-0.146	-0.200		0.8

Fig. S2 Band structure of Janus VSeTe monolayer with SOC and M//z at different biaxial strains from -8% to 8%. The circles represent $V-d_{x^2-y^2}$ and $V-d_{xy}$ orbitals. The circle size is proportional to the contribution of the orbital components. The color scale represents the spin projection. Fermi level is set to zero.

Fig. S3 Orbital-resolved DOS with SOC of Janus VSSe monolayer at different biaxial strains from - 8% to 8%.

Fig. S4 Orbital-resolved DOS with SOC of Janus VSeTe monolayer at different biaxial strains from -8% to 8%.