Supplementary Information

Atomic-scale insights into electro-steric substitutional chemistry of

cerium oxide

Haiwu Zhang, Ivano E. Castelli*, Simone Santucci, Simone Sanna, Nini Pryds, and Vincenzo Esposito*

Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 411, DK-2800 Kgs. Lyngby, Denmark *Corresponding authors: Ivano E. Castelli (<u>ivca@dtu.dk</u>), Vincenzo Esposito (<u>vies@dtu.dk</u>)

1. Potential parameters for classical simulations.

	Buckingham para	Shell model parameters				
M-0 ²⁻	M-O ²⁻ A/eV		C∕eV Å ⁶	Y/e	K/eV Å⁻²	
Ce ⁴⁺ -O ²⁻	1986.83	0.3511	20.40	7.7	291.75	
O ²⁻ -O ²⁻	22764.3	0.149	27.89	-2.077	27.29	

Table S1. Interatomic potential parameters for CeC	${\mathfrak O}_2.$ The cutoff of the short-range potential is set at 15 Å.
--	--

The potential parameters for Ce⁴⁺-O²⁻ and O²⁻-O²⁻ were directly taken from previous work on reduction and oxygen migration in ceria based oxides by G. Balducci *et al.*¹ The potential parameters for Cd²⁺, Gd³⁺, Nd³⁺, Y³⁺, Ni²⁺, Yb³⁺ and Lu³⁺ are taken from Ref2, which are derived by Lewis and Catlow by fitting the properties (lattice parameters, elastic constants, dielectric constant, etc) of simple oxides (M₂O, MO, M₂O₃, and MO₂) with the same set of O²⁻-O²⁻ interaction.^{2, 3} The potential parameters for Hf⁴⁺-O²⁻ and Zr⁴⁺-O²⁻ were also taken from Ref1. Potential parameters for Li⁺, K⁺, Rb⁺, Fe²⁺, Co²⁺, Zn²⁺, Ca²⁺, Sr²⁺, Ba²⁺, Al³⁺, Sc³⁺, Si⁴⁺, Ge⁴⁺ and Sn⁴⁺ were taken from J. R. Tolchard and M. S. Islam's previous work on doping effects in apatite silicate ionic conductors.⁴ For Na⁺ and Ti⁴⁺, the potential parameters for other cations were taken from other related works: Mg²⁺, In³⁺ and La³⁺ from Ref 6; Mn²⁺ from Ref 7; Fe³⁺ from Ref 8; Eu³⁺ and Pr³⁺ from Ref 9. For classical simulations, the valence state of all the cations and oxide ions are specified in the potential parameters. This is different from DFT-based calculations.

2. Lattice parameters

Table S2.	Comparison of ex	perimental lattice constant (a, Å	.) and bond of Ce-O (d _{Ce-O} , Å	Å) o	f pure CeO	₂ with	simulated resul	ts
-----------	------------------	-------------------------------	------	--	------	------------	-------------------	-----------------	----

	Ехр	Classical Simulations	LDA	GGA	GGA+U
a <i>,</i> Å	5.412, ¹⁰ 5.407 ¹¹	5.429	5.546	5.406	5.445
<i>d</i> _{Се-О} , Å	2.34346, ¹⁰ 2.3413 ¹¹	2.35096	2.40149	2.34079	2.3581

3. Full list of defect equations

1) Monovalemt (M⁺) cations: $M_2O + 2Ce_{Ce}^{\times} + 3O_0^{\times} \rightarrow 2M_{Ce}^{'''} + 3V_0^{\bullet\bullet} + 2CeO_2$

$$E_{sol, mono} = (2E_{CeO_2} + 3E_{def}(V_0^{\bullet\bullet}) + 2E_{def}(M_{Ce}^{\bullet\bullet}) - E_{M_2O})/2$$

2) Divalent (M²⁺) cations: $MO + Ce_{Ce}^{\times} + O_{O}^{\times} \rightarrow M_{Ce}^{"} + V_{O}^{\bullet\bullet} + CeO_{2}$

$$E_{sol, div} = E_{CeO_2} + E_{def} \left(V_O^{\bullet \bullet} \right) + E_{def} \left(M_{Ce}^{''} \right) - E_{MO}$$

3) Trivalent (M³⁺) cations: $M_2O_3 + 2Ce_{Ce}^{\times} + O_0^{\times} \rightarrow 2M_{Ce}^{+} + V_0^{\bullet \bullet} + 2CeO_2$

$$E_{sol, tri} = (2E_{CeO_2} + E_{def}(V_0^{\bullet\bullet}) + 2E_{def}(M_{Ce}) - E_{M_2O_3})/2$$

4) Tetravalent (M⁴⁺) cations: $MO_2 + Ce_{Ce}^{\times} \rightarrow M_{Ce}^{\times} + CeO_2$

$$E_{sol, tetr} = E_{CeO_2} + E_{def} \left(M_{Ce}^{\times} \right) - E_{MO_2}$$

4. Energy profile obtained by classical simulations

Fig. S1 Defect site energy as a function of reaction coordinate for oxygen ion migration within pure CeO₂ obtained by the MS simulations using GULP. Colors: Ce⁴⁺, yellow; oxygen, red.

5. Mean-squared displacements for 'pure' system

Fig. S2. Temperature dependent MSDs of (a) oxygen ions and (b) Ce⁴⁺ cations of 'pure' CeO₂. Oxygen ions show significant diffusion. The MSDs for cations converge quickly after equilibrate, indicating that no cation diffusion has taken place in the simulation cells on the simulation time scale.

6. Oxygen ion diffusion in co-substituted systems

Fig. S3. Inverse temperature dependent oxygen tracer diffusion coefficients $\binom{D^*_0}{0}$ for (a) Gd³⁺/Ca²⁺; (c) Nd³⁺/Ca²⁺; (e) Lu³⁺/Ca²⁺ cosubstituted systems. Oxygen tracer diffusion coefficients $\binom{D^*_0}{0}$ for (b) Gd³⁺/Ca²⁺; (d) Nd³⁺/Ca²⁺; (f) Lu³⁺/Ca²⁺ co-substituted systems as a function of Ca²⁺ concentration (*N* is the number of substituent cations). The lines in (b), (d) and (f) represent the expected D^*_0 based on a weighted average. The oxygen vacancy concentration ($\binom{x}{V_0^*}$) is 2.5% for all the co-substituted systems.

7. Traced trajectories for various cations substituted systems

Fig. S4. Traced trajectories for oxygen ion of (a) pure CeO₂; and CeO₂ substituted by (b) Na⁺; (c) Ca²⁺; (d) Gd³⁺; (e) K⁺, and (f) Si⁴⁺ at *t*=80 ps at 2400 K projected onto the *ab* plane. The Ce⁴⁺ and O²⁻ ions are omitted for clarify. Note that the radii of the cations does not correspond to the real size. Colors: Na, orange; Ca, purple; Gd, violet; K, olive; Si, green.

8. Oxygen ion migration

Table S3. Energy barrier for blocking (E_{block} , eV) and trapping (E_{trap} , eV) mechanisms for oxide-ion migration with various diffusion pathways. The values for E_{trap} correspond to an oxygen ion jumping from the nearest-neighboring site to the next nearest-neighboring site, whereas the values in the brackets correspond to the reverse process. Energy difference (E_{diff} , eV) of E_{trap} compared to the oxygen ion migration within pure CeO₂.

	K+	Ni ²⁺	Ba ²⁺	Al ³⁺	K+/Ca ²⁺ *	Ni ²⁺ /Ca ²⁺ *	Cd ²⁺ /Ca ²⁺ *	Sr ²⁺ /Ca ²⁺ *
Eblock	1.26	0.27	1.57	0.51	1.18	0.21	0.67	1.07
$E_{\rm trap}$	0.13(0.58)	0(0.97)	0.15(0.36)	0.60(1.18)	0.32(0.55)	0.0(0.81)	0.17(0.78)	0.40(0.54)
$E_{\rm diff}$	-0.40(0.05)	-0.53(0.44)	-0.38(-0.17)	0.07(0.65)	-0.21(0.02)	0.56(0.25)	-0.36(0.25)	-0.13(0.01)

*Oxygen ion diffusion with a fixed saddle point configuration of $Ca_{Ce}^{''}$

References

- 1 G. Balducci, M. S. Islam, J. Kaspar, P. Fornasiero, M. Graziani, Chem. Mater. 2000, 12, 677-681.
- 2 G. V. Lewis, C. R. A. Catlow, J. Phys. C Solid State Phys. 1985, 18, 1149-1161.
- 3 C. R. A. Catlow, Proc. R. Soc. Lond. A. 1977, 353, 533-561.

- 4 J. Tolchard, P. R. Slater, M. S. Islam, Adv. Funct. Mater. 2007, 17, 2564-2571.
- 5 H. Zhang, A. H. H. Ramadan, R. A. De Souza, J. Mater. Chem. A. 2018, 6, 9116-9123.
- 6 J. M. Clark, S. Nishimura, A. Yamada, M. S. Islam, Angew. Chem. Int. Ed. 2012, 51, 13149-13153
- 7 M. S. Islam, and C. R. A. Catlow, J. Phys. Chem. Solids, 1988, 49, 119-123
- 8 M. Cherry, M. S. Islam, and C. R. A. Catlow, J. Solid. State. Chem, 1995, **118**, 125-132.
- 9 M. V. dos S. Rezende, M. E. G. Valerio, R. A. Jackson, J. Solid. State. Chem, 2011, 184, 1903-1908.
- 10 M. Wolcyrz, L. Kqpinski, J. Solid State Chem. 1992, 99, 409-413.
- 11 M. Yashima, S. Kobayashi, T. Yasui, Solid State Ionics. 2006, 177, 211-215.