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1 One-dimensional model for the CC stretch exci-
tation cross section

This supplement discusses the details of the one-dimensional pseu-
dodihalogen model used to compute the contribution of the CC-
mode to the vibrational excitation cross section. Here, the focus
is on technical aspects of the model. The computed cross section
as such is discussed is the main text.

To be specific, we model the cross section for electron-impact
excitation of the CC stretch mode (ν2)
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with a one-dimensional pseudodihalogen picture. In oher words,
we assume that the 0→ 1 excitation of ν2;c. f .Tab.1 decouples
from all other vibrational degrees of freedom; only CC-stretch
excitations of the resonance can contribute to the CC-stretch ex-
citation cross section of the neutral.

In this one-dimensional picture the cross section can be ap-
proximated as
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see eq.(46) of Ref. 1. The cross section σ depends on the energy
of the incoming electron, E. To compute it, we have to evaluate
the matrix element of a resolvent with respect to the initial and
final vibrational states
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of the target, where ε1

is the excitation energy corresponding to the first excited state.
The vibrational states are associated with the potential energy
curve (PEC) of the neutral, V0(q2), and both states are dressed
by an entry or exit amplitude, f , defined as | f |2 = Γ/

√
Er before

the matrix element of the resolvent is taken. The resolvent itself
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depends on E, the nuclear kinetic energy operator, T̂ , and the
complex potential energy curve (PEC) of the resonance V0 +Er−
i
2 Γ.

As an input, the model needs the neutral PEC. After com-
puting minimal energy structure and harmonic frequency using
CCSD(T) and the cc-pVTZ basis set, the PEC was evaluated using
the same computational method at eleven displacements along
the CC stretch mode (q2 values in the range -0.15 to 0.08 Å). The
results were then fit to a Morse oscillator.

At the same geometries, the resonance parameters Er and
Γ of the 2Πu resonance were computed using the CAP/SAC-CI
method2,3 and the AUG-cc-pVTZ basis augmented with an even-
scaled (4p1d) set of additional diffuse functions. The resonance
position turns out to be almost a linear function of q2, and it was
fit to a quadratic function. In the q2 range investigated, the reso-
nance width is small (between 5 and 0.2 meV) and, in particular,
for very small widths, the results are noisy owing to limitations
of our Gaussian basis set representing a long-lived state close to
threshold. Guided by the highly robust results for the resonance
position, we first identified the crossing point, q(c)2 , of the neutral
and anion PECs, where Γ(q2) must vanish. Using this informa-
tion, Γ(q2) was modeled as a function rising exponentially from
threshold

Γ(q2) = c
(

e−k(q2−q(c)2 )−1
)
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where c and k are free parameters that were fit to our ab initio
data. The resulting PEC of the CC stretch and the associated com-
plex PEC of the 2Πu resonances are displayed in Fig. 1.

Note the seemingly different behavior of the 12Πu curve shown
in Fig. 1 here and Fig. 4 of the main text. The 12Πu PEC shown
in the main text shows a minimum at a shorter bond length than
the neutral. Moreover, in the RAC calculations, no crossing of the
12Πu resonance with the neutral ground state is observed, while
Fig. 1 shows a clear crossing.

We would like to point out that these differences are not caused
by the different quantum chemistry methods, nor by the different
approaches for the determination of the resonance parameters,
but are due to the different choices of the nuclear coordinates. In
the RAC calculations the independent variable is the C–C bond
length while the remaining geometry parameters are fixed. Such
a coordinate is more suitable for larger C–C bond distances since
the equilibrium and the asymptotic C–N distances are similar. In
contrast to this, the data in Fig. 1 employ the C–C stretch normal
mode coordinate, which is more is suitable for the region around
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Fig. 1 Potential energy surfaces along the CC stretch mode of neutral
NCCN (blue) and the 2Πu resonance (orange). The resonance width,
Γ, is indicated as the width of the potential energy curve and it is also
given in the inset (green) together with the original noisy CAP results
(see text). For the resonance position, Er, the CAP results show no
discernable noise on the scale of the plot and are omitted.

the equilibrium geometry. The C–C stretch normal mode simul-
taneously stretches the C–C and C–N bond lengths in a ratio of
roughly 4:1.

To evaluate the cross section, we employed a discreet variable
representation (DVR) of all relevant quantities4. In the kinetic
energy operator, the reduced mass associated with the harmonic
frequency ν2 from neutral NCCN was used (13.33 amu).

The computed cross section for exciting the CC stretching mode
from its ground to the first excited state, σ0→1(E), is shown in
Fig. 5 of the main text. In the model, the excitation cross section
shows a three-peak boomerang structure that is dominated by its
central peak (note the logarithmic intensity scale). Each peak can
be interpreted as 0→ 1 vibrational excitation of the neutral pro-
ceeding through a particular vibrational state of the resonance
(see below). Thus, according to the computed peak at at 0.21
eV, vibrational excitation is predicted to be most efficient, if it
proceeds via the first excited state of the resonance.

In order to arrive at this interpretation, we slightly rewrite the
expression for the cross section eq.(2). Suppose the Hamiltonian
in the resolvent, Ĥr = T̂ +V0+Er− i

2 Γ, which describes the motion
on the complex PEC of the resonance, is expressed in term of its
eigenstates,
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Then the cross section in eq.(2) can be written as an energy-
dependent prefactor,

√
(E− ε1)/E, as before, times a sum of terms

that consist of the product of two Franck-Condon-like factors,〈ν(1)
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As the 2Πu resonance is very narrow and Γ(q2) remains very

small in and beyond the Franck-Condon zone, the energy de-
nominators cause the sharp lines of the boomerang structure,
and each energy denominator—or each vibrational level of the
resonance—can be associated with a particular line. Yet, the de-
nominators have little impact on the relative intensities.

In contrast, the prefactor has a marked effect on the low en-
ergy region. At the first peak (E = 105 meV) it is less than 0.25
suppressing a potentially intensive peak. However, then it reaches
very quickly its asymptotic value. At the second peak (E = 210
meV) the prefactor is about 0.7, and for the third peak the pref-
actor is almost 1.

Thus, the intensity pattern of the boomerang structure as such
is determined by the product of Franck-Condon-like factors. For
both excitation through the ground and second excited state of
the resonance one of these factors is large while the other is
much smaller resulting in a relatively small product and there-
fore a small intensity. In contrast, for excitation through the first
excited state, both factors are reasonably large making for a sub-
stantially larger intensity.
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