Supporting Information

Photophysical and spectroscopic features of 3,4-dihydro-β-carbolines: A combined experimental and theoretical approach

Fernando Villarruel,^a M. Paula Denofrio,^a Rosa Erra-Balsells,^{b,c} Ezequiel Wolcan,^{d,*} and Franco M. Cabrerizo^{a,*}

^a Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM) - Consejo
 Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino Km 8.2, CC 164
 (B7130IWA), Chascomús, Argentina. E-mail: <u>fcabrerizo@intech.gov.ar</u>

^b Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica. Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires, Argentina.

^c CONICET, Universidad de Buenos Aires. Centro de Investigación en Hidratos de Carbono (CIHIDECAR).
 Facultad de Ciencias Exactas y Naturales. Pabellón II, 3er P., Ciudad Universitaria, (1428) Buenos Aires,
 Argentina.

^d INIFTA - CONICET, Universidad Nacional de La Plata, Diag. 113 y 64 (1900), La Plata, Argentina. Email: <u>ewolcan@inifta.unlp.edu.ar</u>

* To whom correspondence should be addressed (<u>fcabrerizo@intech.gov.ar</u> and <u>ewolcan@inifta.unlp.edu.ar</u>)

Contents:

Page

1.	UV-visible spectroscopic titration of 3 and 4	SI.3
2.	Mulliken charges of neutral species (N) of compounds 1 to 6	SI.4
3.	Mulliken charges of 7N, 7Z(II), 8N, 8Z(I) and 8Z(II)	SI.5
4.	General features of HOMO–1, HOMO and L MOs of $1 - 8$.	SI.6
5.	Self-Consistent Field energies	SI.9
6.	Frontier orbital diagram of anionic species of 1 to 6	SI.10
7.	Singlet oxygen phosphorescence signal (at 1270 nm)	SI.11

(b)

Figure SI.1. Acid-base equilibria and UV-visible absorption spectrum pH-evolution and titration curves of (a) 3 and (b) 4.

2. Mulliken charges of neutral species (N) of compounds 1 to 6

Figure SI.2. Chemical formula of **1N**, **2N**, **3N**, **4N**, **5N** and **6N**. In all the cases, the corresponding Mulliken charges are depicted in the center of each atom representation.

7N

7Z(II)

8N

Figure SI.3. Chemical formula of neutral and zwitterionic species of **7** and **8**. In all the cases, the corresponding Mulliken charges are depicted in the center of each atom representation.

4. General features of HOMO–1, HOMO and LUMO MOs of 1 – 8.

Based on **Figures 4 - 6** a detailed description of the general features of HOMO–1, HOMO and LUMO MOs is provided herein:

HOMO and HOMO–1 of 1N, 3N, 5N and 7N. The HOMO of the neutral species of the four compounds share similar features and thus they will be discussed together. They have a significant amount of electron density connecting C8-C8a-C5a-C4a-C9a-C1 in a distorted bell-shaped form. In addition, there are two bonding regions between C3 and C4 and between C5 and C6 and an isolated significant amount of electron density around N9, with minor contributions of the pyridinic-CH₃ group to the total electron density of H. In **3N, 5N** and **7N** there are in addition contributions from the O-CH₃ and OH substituent groups. HOMO of **5N** has some significant differences to HOMO of **1N, 3N** and **7N**. Besides having the same bonding regions C3-C4, C5-C6 and an isolated significant amount of electron density around N9, HOMO in **5N** has electron density between C7-C8 and between C4a-C9a-C1, with no contributions of C5a and C8a to that MO. HOMO–1 of **1N** consist of four lobes of electron density connecting C6-C7-C8; C4-C4a-C9a; C5-C5a-C8a and N2-C3. HOMO–1 of **3N** is very similar to HOMO–1 of **1N** with some additional electron density residing in the O-CH₃ substituent group. HOMO–1 of **5N** consist of four lobes of electron density residing in the O-CH₃ substituent group. HOMO–1 of **7N** is very similar to HOMO–1 of **5N**.

HOMO and HOMO–1 of 1C, 3C, 5C, 7C, 7Z(I) and 7Z(II). The spatial features of HOMO in **1C** are almost the same as those of HOMO in **1N**. The spatial features of HOMO–1 in **1C** are very similar to the ones of HOMO–1 in **1N**: four lobes of electron density connecting C6-C7-C8, C4-C4a-C9a-C1, C5-C5a-C8a and N2. Moreover, HOMO and HOMO–1 of **3C** are very similar to HOMO and HOMO–1 of **1C** with the addition of some electron density residing in the O-CH₃ substituent group. HOMO of **5C** is very similar to HOMO of **3C**, excepting the difference being the 6 or 7 positions in the phenyl cycle of the electron density residing in the O-CH₃ substituent group. On the other hand, HOMO–1 of **5C** is nearly identical to HOMO of **3C**, excepting the difference arising from the 6 or 7 positions in the aryl cycle of the electron density residing in the O-CH₃ substituent group. HOMO of **5C** is very similar to HOMO of **3C**, excepting the difference arising from the 6 or 7 positions in the aryl cycle of the electron density residing in the O-CH₃ substituent group. HOMO of **5C** is very similar to HOMO of **3C**, excepting the difference arising from the 6 or 7 positions in the aryl cycle of the electron density residing in the O-CH₃ substituent group. HOMO of **5C** is very similar to HOMO of **7C** as well as HOMO–1 of the former is very similar to HOMO–1 of **7N**, respectively. HOMO and HOMO–1 of **7Z(II)** are very similar to HOMO and HOMO–1 of **7C**, respectively.

HOMO and HOMO–1 of 2N, 4N, 6N and 8N. HOMO of **2N** has a significant amount of electron density in the centers C7-C8, C6-C5-C5a-C8a-N9, C4a-C9a, C1-N2 and C3-C4. HOMO–1 of **2N** has a significant amount of electron density in the centers C5-C6-C7, C8-C8a-C5a-C4a, N9-C9a and C1-N2. HOMO and HOMO–1 of **4N** resemblance some similarities with HOMO–1 and HOMO of **2**, respectively. HOMO of **6**

and HOMO of **8** are very similar to HOMO of **2**, the only significant difference being the electron density residing in the O-CH₃ or OH substituent. HOMO–1 of **6N** and HOMO–1 of **8N** are very similar to HOMO–1 of **2N**, the only significant difference being the electron density residing in the O-CH₃ or OH substituent.

HOMO and HOMO–1 of 2C, 2IC, 4C, 6C, 8C, 8Z(I) and 8Z(II). The spatial features of HOMO and HOMO–1 in **2C** are very similar to those of HOMO and HOMO–1 in **2N**, respectively. HOMO of **2IC** is very similar to HOMO–1 of **2C**. HOMO–1 of **2IC** has a significant amount of electron density connecting the centers C5a-C5-C6, C7-C8-C8a and C4-C4a. The spatial features of HOMO in **4C** consist of a significant amount of electron density in the centers C5-C6-C7, C8-C8a-C5a-C4a, N9, O-CH₃ substituent, and a very small amount of electron density on C4. The spatial features of HOMO–1 in **4C** consist of a significant amount of electron density in the centers C6-C7-C8, C5-C5a-C8a-N9, C4a-C9a-C1, N2, C3-C4 and O-CH₃ substituent. HOMO of **6C** and HOMO of **8C** are very similar to HOMO of **2C**, the only significant difference being the electron density residing in the O-CH₃ or OH substituent group. HOMO–1 of **6C** and HOMO–1 of **8C** are very similar to HOMO–1 of **8Z(I)** and **8Z(II)** are very similar to HOMO and HOMO–1 of **8C**, respectively.

HOMO and HOMO-1 of 1A to 6A, 7A(II), 8A(I), and 8A(II). The spatial features of HOMO-1 of 1A, 3A, 5A and 7A(I) can be described in terms of electron density connecting the centers C6-C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C3 and O (for 3A, 5A and 7A(I)). HOMO of 1A, 3A, 5A and 7A(I) has a significant amount of electron density connecting the centers C3-C4, C5-C6, C7-C8-C8a-C5a-C4a-C9a-C1, N9 and O (for 3A, 5A and 7A(I)). HOMO-1 of 2A, 4A, 6A and 8A(I) can be described in terms of electron density connecting the centers C5-C6-C7, C4a-C5a-C8a-C8, N9-C9a, N2 and O (for 4A, 6A and 8A(I)). HOMO of 2A, 4A, 6A and 8A(I) can be described in terms of electron density connecting the centers C5-C6, C7-C8, C8a-N9, C4a-C5a-C9a, C3-C4, N2 and O (4A, 6A and 8A(I)). HOMO-1 of 7A(II) has a significant amount of electron density connecting the centers C3-C4, C5-C6, C7-C8-C8a-C5a-C4a-C9a-C1 and N9. HOMO of 7A(II) has a significant amount of electron density connecting the centers C6-C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C3. HOMO-1 of 8A(II) has a significant amount of electron density connecting the centers C5-C6, C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C3. HOMO-1 of 8A(II) has a significant amount of electron density connecting the centers C5-C6, C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C3. HOMO-1 of 8A(II) has a significant amount of electron density connecting the centers C5-C6, C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C3. HOMO-1 of 8A(II) has a significant amount of electron density connecting the centers C5-C6, C7-C8, C5-C5a-C8a-N9, C4-C4a-C9a-C1, N2-C5a-C8a-C8, C2-C3, N9 and O. HOMO of 8A(II) has a significant amount of electron density connecting the centers C6-C7-C8, N2 and O.

LUMOs. All the LUMOs for 1N - 8N, 1C - 8C, 1A to 6A, 7A(II), 8A(I), 8A(II), 2IC, 7Z(II), 8Z(I) and 8Z(II) compounds are nearly identical. Those LUMOs can be described as an antibonding orbital consisting mainly of electron density over the centers C9a-C1, N2, C3-C4, C4a-C5a, C5, C6-C7 and C8-C8a.

The preceding description of HOMO, HOMO–1 and LUMO for 1N to 8N, 1C to 8C, 1A to 6A, 7A(II), 8A(I), 8A(II), 2IC, 7Z(II), 8Z(I) and 8Z(II) compounds is summarized in Tables SI.1 and SI.2.

Table SI.1: Compositions of HOMO–1 and HOMO for neutral (N), cationic (C), zwitterionic (Z) and anionic (A) species of 1, 3, 5, 7. The running number i on the sum represents each of the different bonded group of atoms contributing with a significant amount of electron density to the particular MO.

Compound	HOMO-1 description	HOMO description
1N	$\Psi_{H-1}^{1} = \sum_{i=1}^{4} \Psi_{H-1}^{1}(i)$	$\Psi^1_H = \sum_{i=1}^4 \Psi^1_H(i)$
3N	$\Psi_{H-1}^{3} \cong \Psi_{H-1}^{1} + \Psi_{H-1}^{3, C(6)}(0 - CH_{3})$	$\Psi_{H}^{3} \cong \Psi_{H}^{1} + \Psi_{H}^{3, C(6)}(0 - CH_{3})$
5N	$\Psi_{H-1}^{5} = \sum_{i=1}^{5} \Psi_{H-1}^{5}(i)$	$\Psi_H^5 = \sum_{i=1}^5 \Psi_H^5(i)$
7N	$\Psi_{H-1}^{7} \cong \Psi_{H-1}^{5}$	$\Psi_{H}^{7} \cong \Psi_{H}^{1} + \Psi_{H}^{7, C(7)}(O - H)$
7Z(I)	$\Psi_{H-1}^{7Z(I)} \cong \Psi_{H-1}^{7N}$	$\Psi_{H}^{7Z(I)} \cong \Psi_{H}^{7N}$
7Z(II)	$\Psi_{H-1}^{7Z(II)} \cong \Psi_{H-1}^{7C}$	$\Psi_{H}^{7Z(II)} \cong \Psi_{H}^{7C+}$
1C	$\Psi_{H-1}^{1\mathcal{C}} \cong \Psi_{H-1}^{1}$	$\Psi_H^{1\mathcal{C}} \cong \Psi_H^1$
3C	$\Psi_{H-1}^{3C} \cong \Psi_{H-1}^{1C} + \Psi_{H-1}^{3C,C(6)}(O - CH_3)$	$\Psi_{H}^{3C} \cong \Psi_{H}^{1C} + \Psi_{H0}^{3C,C(6)}(0 - CH_{3})$
5C	$\Psi_{H-1}^{5C} \cong \Psi_{H}^{1C} + \Psi_{H-1}^{5C,C(7)} (O - CH_3)$	$\Psi_{H}^{5C} \cong \Psi_{H-1}^{1C} + \Psi_{H}^{5C,C(7)} (0 - CH_{3})$
7C	$\Psi_{H-1}^{7C} \cong \Psi_{H-1}^{5C}$	$\Psi_{H}^{7C} \cong \Psi_{H}^{5C}$
1A	$\Psi_{H-1}^{1A} = \sum_{i=1}^{4} \Psi_{H-1}^{1A}(i)$	$\Psi_H^{1A} = \sum_{i=1}^4 \Psi_H^{1A}(i)$
3A	$\Psi_{H-1}^{3A(I)} = \Psi_{H-1+}^{1A} \Psi_{H-1(O)}^{3A}$	$\Psi_{H}^{3A} = \Psi_{H+}^{1A} \Psi_{H}^{3A}(O)$
5A	$\Psi_{H-1}^{5A(I)} = \Psi_{H-1+}^{1A} \Psi_{H-1(O)}^{5A}$	$\Psi_{H}^{5A} = \Psi_{H+}^{1A} \Psi_{H}^{5A}(O)$
7A(I)	$\Psi_{H-1}^{7A(I)} = \Psi_{H-1+}^{1AI)} \Psi_{H-1}^{7A(I)}$	$\Psi_{H}^{7A(I)} = \Psi_{H}^{1A(I)} + \Psi_{H}^{7A(I)} $ (O)
7A(II)	$\Psi_{H-1}^{7A(II)} = \sum_{i=1}^{4} \Psi_{H-1}^{7A(II)}(i)$	$\Psi_{H}^{7A(II)} = \sum_{i=1}^{4} \Psi_{H}^{7A(II)}(i)$

Table SI.2: Compositions of HOMO–1 and HOMO for neutral (N), cationic (C), zwitterionic (Z) and anionic (A⁻) species of 2, 4, 6, 8. The running number *i* on the sum represents each of the different bonded group of atoms contributing with a significant amount of electron density to the particular MO.

Compound	HOMO-1 description	HOMO description
2N	$\Psi_{H-1}^{2} = \sum_{i=1}^{4} \Psi_{H-1}^{2}(i)$	$\Psi_H^2 = \sum_{i=1}^5 \Psi_H^2(i)$
4N	$\Psi_{H-1}^{4} \sim \Psi_{H-1}^{2} + \Psi_{H-1}^{4,C(6)}(O - CH_{3})$	$\Psi_{H}^{4} \sim \Psi_{H}^{2} + \Psi_{H}^{4, C(6)}(0 - CH_{3})$
6N	$\Psi_{H-1}^{6} \sim \Psi_{H-1}^{2} + \Psi_{H-1}^{6, C(6)}(O - CH_{3})$	$\Psi_{H}^{6} \sim \Psi_{H}^{2} + \Psi_{H}^{6, C(6)}(0 - CH_{3})$
8N	$\Psi_{H-1}^{8} \cong \Psi_{H-1}^{6}$	$\Psi_H^8 \cong \Psi_H^6$
8Z(I)	$\Psi_{H-1}^{8Z(I)} \cong \Psi_{H-1}^{8C}$	$\Psi_{H}^{8Z(l)} \cong \Psi_{H}^{8C}$
8Z(II)	$\Psi_{H-1}^{8Z(II)} \cong \Psi_{H-1}^{8C}$	$\Psi_{H}^{8Z(II)} \cong \Psi_{H}^{8C}$
2C	$\Psi_{H-1}^{2C} \cong \Psi_{H-1}^{2}$	$\Psi_H^{2C} \cong \Psi_H^2$
2IC	$\Psi_{H-1}^{2lC} = \sum_{i=1}^{3} \Psi_{H-1}^{2lC}(i)$	$\Psi_{H}^{2lC} \cong \Psi_{H-1}^{2C}$
4C	$\Psi_{H-1}^{4C} = \sum_{i=1}^{6} \Psi_{H-1}^{2}(i)$	$\Psi_H^{4\mathcal{C}} = \sum_{i=1}^5 \Psi_H^{4\mathcal{C}}(i)$
6C	$\Psi_{H-1}^{6C} \cong \Psi_{H-1}^{2C} + \Psi_{H-1}^{6C,C(7)} (O - CH_3)$	$\Psi_{H}^{6C} \cong \Psi_{H}^{2C} + \Psi_{H}^{6C,C(7)} (O - CH_{3})$
8C	$\Psi_{H-1}^{8C} \cong \Psi_{H-1}^{2C} + \Psi_{H-1}^{8C,C(7)}(O-H)$	$\Psi_{H}^{6C} \cong \Psi_{H}^{2C} + \Psi_{H}^{8C,C(7)}(O-H)$
2A	$\Psi_{H-1}^{2A} = \sum_{i=1}^{4} \Psi_{H-1}^{2A}(i)$	$\Psi_{H}^{1A} = \sum_{i=1}^{4} \Psi_{H}^{1A}(i)$
4A	$\Psi_{H-1}^{4A} = \Psi_{H-1+}^{2A} \Psi_{H-1(O)}^{4A}$	$\Psi_{H}^{4A} = \Psi_{H+}^{2A} \Psi_{H(\mathbf{O})}^{4A}$
6A	$\Psi_{H-1}^{6A} = \Psi_{H-1+}^{2A(I)} \Psi_{H-1}^{6A}(\Omega)$	$\Psi_{H}^{6A} = \Psi_{H+}^{2A} \Psi_{H(Q)}^{6A}$
8A(I)	$\Psi_{H-1}^{8A(l)} = \Psi_{H-1+}^{2A(l)} \Psi_{H-1+}^{8A(l)} (O)$	$\Psi_{H}^{8A(l)} = \Psi_{H}^{2A(l)} + \Psi_{H}^{8A(l)}(O)$

$\Psi_{H-1} - \sum_{i=1}^{r} \Psi_{H-1}(i)$ $\Psi_{H}^{i} - \sum_{i=1}^{r} \Psi_{H}^{i}(i)$

5. **Self-Consistent Field energies**

DHβCs	E/eV	Tautomer	E/eV	$\Delta E = E(C) - E(IC), eV$
2C	-15634.1915	2IC	-15633.4178	-0.773720485
4C	-18750.8849	4IC	-18750.2577	-0.627203232
6C	-18750.9812	6IC	-18750.1759	-0.805274307
8C	-17681.6267	8IC	-17680.8010	-0.82574792
				$\Delta \mathbf{E} = \mathbf{E}(\mathbf{N}) \mathbf{-} \mathbf{E}(\mathbf{Z}), \mathbf{eV}$
2N	-15621.6174	2Z	-15621.3387	-0.278700057
4N	-18738.3080	4Z	-18738.0215	-0.286499524
6N	-18738.3484	6Z	-18738.0650	-0.283411303
8N	-17668.9929	8Z(I)	-17668.7331	-0.259799127
		8Z(II)	-17668.8795	-0.113425306
8A(III)	-17655.5749	8A(III)	-17655.5749	
8A(II)	-17655.8992	8A(II)	-17655.8992	
8A(I)	-17655.6704	8A(I)	-17655.6704	
βCs	E/eV	Tautomer	E/eV	$\Delta \mathbf{E} = \mathbf{E}(\mathbf{C}) - \mathbf{E}(\mathbf{IC}), \mathbf{eV}$
βCs 1C	E/eV -15601.8235	Tautomer 1IC	E/eV -15599.8171	ΔE = E(C)-E(IC), eV -2.006393422
βCs 1C 3C	E/eV -15601.8235 -18718.5208	Tautomer 1IC 3IC	E/eV -15599.8171 -18716.6794	ΔE = E(C)-E(IC), eV -2.006393422 -1.841402459
βCs 1C 3C 5C	E/eV -15601.8235 -18718.5208 -18718.6315	Tautomer 1IC 3IC 5IC	E/eV -15599.8171 -18716.6794 -18716.5761	ΔE = E(C)-E(IC), eV -2.006393422 -1.841402459 -2.055455875
βCs 1C 3C 5C 7C	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668	Tautomer 11C 31C 51C 71C	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018	ΔE = E(C)-E(IC), eV -2.006393422 -1.841402459 -2.055455875 -2.065041499
βCs 1C 3C 5C 7C	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668	Tautomer 11C 31C 51C 71C	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018	ΔE = E(C)-E(IC), eV -2.006393422 -1.841402459 -2.055455875 -2.065041499 ΔE = E(N)-E(Z), eV
βCs 1C 3C 5C 7C 1N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485	Tautomer 11C 31C 51C 71C 1Z	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408	ΔE = E(C)-E(IC), eV -2.006393422 -1.841402459 -2.055455875 -2.065041499 ΔE = E(N)-E(Z), eV -0.407702501
βCs 1C 3C 5C 7C 1N 3N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367	Tautomer 11C 31C 51C 71C 1Z 3Z	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408 -18705.7107	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427
βCs 1C 3C 5C 7C 1N 3N 5N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408 -15589.0408 -18705.7107 -18705.8044	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734
βCs 1C 3C 5C 7C 1N 3N 5N 7N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132 -17636.8529	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z 7Z(I)	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408 -15589.0408 -18705.7107 -18705.8044 -17636.4624	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734 -0.390483780
βCs 1C 3C 5C 7C 1N 3N 5N 7N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132 -17636.8529	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z 7Z(I) 7Z(II)	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408 -15589.0408 -18705.7107 -18705.8044 -17636.4624 -17636.5168	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734 -0.390483780 -0.336116492
βCs 1C 3C 5C 7C 1N 3N 5N 7N	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132 -17636.8529	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z 7Z(1) 7Z(11)	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 - -15589.0408 -15589.0408 -18705.7107 -18705.8044 -17636.4624 -17636.5168	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734 -0.390483780 -0.336116492
βCs 1C 3C 5C 7C 1N 3N 5N 7N 7N 7A(III)	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132 -17636.8529 -17636.8529	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z 7Z(I) 7Z(II) 7A(III)	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 -15589.0408 -15589.0408 -18705.7107 -18705.8044 -17636.4624 -17636.5168 -17623.3580	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734 -0.390483780 -0.336116492
βCs 1C 3C 5C 7C 1N 3N 5N 7N 7A(III) 7A(II)	E/eV -15601.8235 -18718.5208 -18718.6315 -17649.2668 -15589.4485 -18706.1367 -18706.2132 -17636.8529 -17623.3580 -17623.3580	Tautomer 11C 31C 51C 71C 1Z 3Z 5Z 7Z(I) 7Z(II) 7A(III) 7A(II)	E/eV -15599.8171 -18716.6794 -18716.5761 -17647.2018 - -15589.0408 -15589.0408 -18705.7107 -18705.8044 -17636.4624 -17636.5168 - 17623.3580 -17623.3580	$\Delta E = E(C)-E(IC), eV$ -2.006393422 -1.841402459 -2.055455875 -2.065041499 $\Delta E = E(N)-E(Z), eV$ -0.407702501 -0.426032427 -0.408869734 -0.390483780 -0.336116492

Table SI.3: Self-Consistent Field (E) energies of different tautomeric species calculated at the B3LYP/aug-cc-pVDZ/PCM(water) level of theory. The difference of energy between C and IC and N and Z is computed for the DH β Cs and β Cs, respectively.

Figure SI.4. Molecular orbital diagram of anionic species of compounds 1 to 6 (isocontour value = 0.02). HOMO \rightarrow LUMO and HOMO-1 \rightarrow LUMO are the main transitions involved in the low energy absorption bands (300 nm > λ > 450 nm) of the compounds in H₂O. The vertical transition energies were calculated at the optimized ground-state geometry using TD-DFT calculations (see text for details).

Figure SI.5. Representative example of the phosphorescence emission signal recorded from an irradiated sample of compound **3** (pD = 7.1) under three different atmospheres (N₂-sat, air and O₂-sat).