Assessing counterion effects in gold-catalyzed Domino Spirocyclization: An Industrial Perspective on Hydrogen Bonding

Yunhe Li, Xiang Zhao*

Institute for Chemical Physics & Department of Chemistry, School of Science, State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an710049, China

Table of contents

1. Hydrogen bonding important parameters in Fig. 1 are given in Table S1S1
2. Optimized structures of the intermediates in Fig. 1 in Fig. S1S1
3. Hydrogen bonding important parameters in Fig. 2 are given in Table S2 S2.
4. Optimized structures of the intermediates in Fig. 2 in Fig. S2S2
5. Hydrogen bonding important parameters in Fig. 3 are given in Table S3 S3.
6. Optimized structures of the intermediates in Fig. 3 in Fig. S3
7. Hydrogen bonding important parameters in Fig. 4 are given in Table S4 S4.
8. Optimized structures of the intermediates in Fig. 4 in Fig. S4S4
9. Hydrogen bonding important parameters in Fig.5 are given in Table S5 S5.

9. Hydrogen bonding important parameters in Fig.6 are given in Table S6..... S5.

X -	Species	R _{N-H}	R _{X-H}	$\theta_{\text{N-H-X}}$	R _{X-N}	U _{N-H}	Yield %	∆G (kcal/mol)	$\Delta\Delta G^{\dagger}_{(kcal/mol)}$
_	A-int1	1.013	_	_	_	3629.46	0	-6.2	26.1
	A-ts3	1.029	_	_	_	3508.67			
	A-int3	1.031	_	_	_	3340.47			
SbF6 ⁻	B-int1	1.031	1.742	154.0	2.707	3354.16	75	-8.3	21.0
	B-ts3	1.029	1.787	143.1	2.682	3390.98			
	B-int3	1.047	1.606	168.7	2.641	3108.08			
OTf [−]	C-int1	1.055	1.646	161.9	2.669	2957.52	61	-7.2	25.5
	C-ts3	1.049	1.715	170.7	2.752	3100.59			
	C-int3	1.073	1.578	172.6	2.646	2663.62			
BF4 -	D-int1	1.046	1.603	173.1	2.645	3107.45	0	-6.1	25.9
	D-ts3	1.039	1.674	175.9	2.712	3224.60			
	D-int3	1.043	1.689	154.4	2.668	3161.11			

Table S1. Key optimized bond lengths[Å], stretching vibrational frequencies[cm⁻], and Gibbs free energy and Gibbs energy barrier[kcal/mol] in Fig.1.

Fig. S1. Optimized TSs and intermediate structures in Fig. 1.

X -	Species	R _{o-H}	R _{X-H}	Θ _{O-H-X}	R _{x-0}	υ _{Ο-Η}	character	Yield %	∆G (kcal/mol)	$\Delta\Delta G^{\dagger}_{(kcal/mol)}$
_	A-int1	0.968	_	_	_	3827.01	_	trace	-12.5	30.5
	A-ts3	0.967	_	_	_	3843.74	_			
	A-int3	0.971	_	_	_	3794.99	_			
OTf ⁻	B-int1	1.192	1.200	178.4	2.391	1762.27		95	-13.7	33.3
	B-ts3	1.002	1.642	170.5	2.636	3202.42				
	B-int3	1.535	1.026	167.9	2.547	2763.17				
BF4 ⁻	C-int1	1.016	1.501	164.8	2.496	2988.38		12	-11.7	32.4
	C-ts3	1.002	1.562	173.2	2.560	3226.12				
	C-int3	1.060	1.347	174.9	2.404	2226.52				

Fig. S2. Optimized TSs and intermediate structures in Fig. 2.

 Table S3. Key optimized bond lengths[Å], stretching vibrational frequencies[cm -],

 and Gibbs free energy and Gibbs energy barrier[kcal/mol] in Fig.3 .

	Species	R _{o-H}	R _{X-H}	θ _{О-Н-} х	R _{X-O}	υ _{Ο-Η}	Yield %	∆G (kcal/mol)	$\Delta\Delta G^{\dagger}_{(kcal/mol)}$
OMs ⁻	A-1	0.984	1.738	157.4	2.673	3498.38	≥95	4.5	20.5
	A-ts1	1.020	1.531	165.3	2.531	2794.72			
	A-int1	1.564	1.016	162.6	2.551	2869.99			
OTf [−]	B-1	0.978	1.818	152.5	2.570	3632.44	≤5	11.4	20.9
	B-ts1	0.987	1.709	159.0	2.654	3414.94			
	B-int1	1.325	1.103	172.2	2.422	1867.00			
NTf ₂ ⁻	C-1	0.975	1.792	155.3	2.709	3693.41	≪5	11.4	21.7
	C-ts1	0.980	1.792	162.0	2.740	3580.96			
	C-int1	1.036	1.472	172.7	2.503	2553.60			
_	D-1	0.965	_	_	-	3884.21	≪5	11.5	21.0
	D-ts1	0.965	_	_	_	3879.87			
	D-int1	0.969	_	_	-	3832.58			

Fig. S3. Optimized TSs and intermediate structures in Fig. 3.

	Species	R _{X-Au}	Yield %	∆G (kcal/mol)	$\Delta\Delta G^{\dagger}_{(kcal/mol)}$
OTf [−]	A-1	2.672	92	-24.6	28.0
	A-ts1	2.554			
	A-int1	2.144			
NTf ₂ [–]	B-1	2.162	0	-15.2	35.1
	B-ts1	2.788			
	B-int1	2.853			
Phenolic <i>Ugi</i>	C-1	2.676	0	-21.2	29.8
adduct as substrate	C-ts1	2.548			
	C-int1	2.160			

Table S4. Key optimized bond lengths [Å], stretching vibrational frequencies [cm $\overline{}$],

and Gibbs free energy and Gibbs energy barrier[kcal/mol] in Fig.4 .

Fig. S4. Optimized TSs and intermediate structures in Fig.4.

Table S5. Key optimized bond lengths[Å], stretching vibrational frequencies[cm⁻],

Substrate	Species	R _{o-H}	R _{x-H}	Θ _{O-H-X}	R _{x-0}	υ _{Ο-Η}	Yield %	∆G (kcal/mol)	$\Delta\Delta G^{\dagger}_{(kcal/mol)}$
2	2-int1	1.192	1.200	178.4	2.391	1762.27	95	-13.7	33.3
	2-ts3	1.002	1.642	170.5	2.636	3202.42			
	2-int3	1.535	1.026	167.9	2.547	2763.17			
5	5-int1	1.205	1.185	177.1	2.389	1769.64	26	-11.3	41.2
	5-ts3	1.002	1.638	171.4	2.634	3201.12			
	5-int3	1.534	1.025	168.5	2.546	2773.98			
6	6-int1	1.250	1.152	177.3	2.401	1779.59	35	-22.7	49.2

and Gibbs free energy and Gibbs energy barrier[kcal/mol] in Fig.5.

Fig. S5. Optimized TSs and intermediate structures in Fig. 5.

Table S6. Key optimized bond lengths[Å], stretching vibrational frequencies[cm⁻], and Gibbs free energy and Gibbs energy barrier[kcal/mol] in Fig.6.

X -	Species	R _{O-H}	R _{X-H}	Θ _{O-H-X}	R _{x-0}	U _{O-H}	∆G ^{gas} (kcal/mol)	$\Delta\Delta G^{\pm gas}_{(kcal/mol)}$
	A-int1	0.968	_	_	_	3835.86	-6.3	23.0
	A-ts3	0.968	_	_	_	3830.12		
	A-int3	0.972	_	_	_	3761.68		

OTf [−]	B-int1	1.178	1.214	175.5	2.391	1731.44	-11.6	33.0
	B-ts3	1.015	1.551	155.9	2.512	2944.27		
	B-int3	1.484	1.035	161.2	2.487	2530.17		
BF4 ⁻	C-int1	1.016	1.494	170.4	2.501	2976.85	-21.0	23.2
	C-ts3	1.001	1.589	167.4	2.575	3264.00		
	C-int3	1.022	1.454	166.2	2.459	2867.15		
NTf2 -	D-int1	1.035	1.578	176.6	2.611	2473.82	-23.8	20.9
	D-ts3	1.014	1.652	168.4	2.653	2899.23		
	D-int3	1.646	1.057	172.5	2.698	2918.73		
OMs ⁻	E-int1	1.541	1.024	178.6	2.564	2773.04	-19.3	34.7
	E-ts3	1.188	1.205	173.3	2.389	1707.33		
	E-int3	1.628	1.005	173.5	2.628	3153.98		
SbF6 [−]	F-int1	0.999	1.577	173.6	2.573	3286.17	-9.5	22.1
	F-ts3	0.995	1.575	160.0	2.552	3351.81		
	F-int3	1.013	1.511	163.0	2.498	3045.72		

Fig. S6. Optimized TSs and intermediate structures in Fig. 6.