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S1. Definition of the three coordinates used to define the grid for quantum dynamics 

The 3-dimensional grid used to describe the isomerization process of norbornadiene to 

quadricyclane is defined as follows. The equilibrium geometries of the norbornadiene and 

quadricyclane isomers on the ground state were determined at the SA(14)-CASSCF(4,8)/AUG-cc-

pVDZ level of theory; see Tables S1 and S2 for the cartesian coordinates and section S2 for the 

details on the electronic structure computations. Since the coordinates of the C3H4 bridge (atoms 

C1, C2, C3, H4, H5, H6 and H7 in Figure S1A) do not vary significantly in the two isomers, they 

were frozen at their values in the equilibrium geometry of the GS of norbornadiene to define the 

3D grid, see Figure S1 A, B, C for the labeling of the atoms and Table S1 for the values.  

The motions of the atoms of the C4H4 ring are described using a system of three coordinates. As 

discussed in the main text, we define two angles,  and  which describe the ring closure. These 

angles can be qualitatively related to two normal modes of both norbornadiene and quadricyclane. 

The angle  corresponds to the symmetric bending mode that modifies the C11-C10 and C8-C9 

distances (‘new’ bonds formed in quadricyclane) and  to the symmetric stretching C11-C8 and 

C10-C9 distances ( ‘old’  bonds that are present in norbornadiene). The third coordinate, , 

parametrizes the distortion of the geometry at the minimum of the S0/S1 conical intersection (CI), 

see Figure S3.  

 

θ γ

θ
γ

π ϕ



 4 

 
  

Figure S1. Reduced set of three coordinates A) The 7 frozen atoms, C1, C2, C3, H4, H5, H6 and 

H7, of the C3H4 bridge and the Cartesian frame. B) Atom labels: the frozen atoms of the bridge 

are labeled in orange and the atoms of the C4H4 ring (C8,C9,C10,C11, H12,H13,H14,H15) whose 

motions are described by the coordinates   in black. C) The three lengths, L, C and H, that 

are kept constant in defining the coordinates . L is the distance between the origin of the 

Cartesian frame and the atoms C2 or C3, C is the length of the four bonds: C2-C10, C2-C11, C3-

C8 and C3-C9. H is the length of the four C-H bonds of the ring : C10-H14, C9-H13, C8-H12 and 

C11-H15. The values of L, C and H are fixed at their values at the norbornadiene equilibrium 

geometry. D) Definition of the Cartesian coordinates of the atoms C10 and H14 in terms of the 

coordinates . When  and  are equal to zero, the C10 Cartesian coordinates are at point U 

θ ,γ ,ϕ
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with coordinates (0,-L,-C). The H14 coordinates are obtained by adding the same displacement 

from the atom C10 as in the norbornadiene equilibrium geometry. E) The  coordinate 

corresponds to a linear displacement applied to the Cartesian coordinates of the H and C atoms of 

the ring that are defined by the values of the  and . The expressions of the Cartesian 

coordinates of the 8 atoms of the C4H4 ring in terms of the coordinates ,  and  are given in  

Eqs. S2 and S3 below. 

 

The cartesian frame orientation is shown in Figure S1A. The y axis passes through the C2 and C3 

atoms of the frozen bridge, with its origin in the middle of the C2-C3 distance. This distance is a 

constant that we constrain to be equal to 2L, with L = 1.116Å since the bridge is frozen. The z axis 

contains the C1 atom of the bridge. The atoms C1, C2, C3 and H6 and H7 are in the (z,y) plane. 

The coordinates of the frozen atoms of the bridge in this cartesian frame correspond to the first 7 

atoms of Table S1. 

 

Table S1. Cartesian coordinates of the atoms at the equilibrium geometry of norbornadiene in Å 

computed at the SA(14)-CASSCF(4,8)/AUG-cc-pVDZ. The first 7 atoms are the atoms of the 

frozen C3H4 bridge. 

 

atom x y z 

C1 0.000 0.000 1.078 

C2 0.000 -1.116 0.000 

C3 0.000 1.116 0.000 

H4 0.895 0.000 1.699 

H5 -0.895 0.000 1.699 

H6 0.000 -2.149 0.337 

H7 0.000 2.149 0.337 

C8 -1.240 0.662 -0.794 

C9 1.240 0.662 -0.794 

C10 1.240 -0.662 -0.794 

C11 -1.240 -0.662 -0.794 

ϕ

θ γ
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H12 -1.935 1.324 -1.288 

H13 1.935 1.324 -1.288 

H14 1.935 -1.324 -1.288 

H15 -1.935 -1.324 -1.288 

 

Two other groups of 4 distances equal by symmetry in the equilibrium geometry of the 

norbornadiene GS are kept fixed in order to define the  coordinates: the four C3-C8, C3-C9, 

C2-C10 and C2-C11 distances, labeled C in Figure S1C, are fixed to 1.541 Å and the four C8-H12, 

C9-H13, C10-H14 and C11-H15 distances, labeled H in Figure S1C are fixed to 1.077 Å. These 

distances do not differ much from the quadricyclane equilibrium geometry ones, see Tables S1 and 

S2. 

 

  

θ ,γ ,ϕ
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Table S2: Cartesian coordinates of the atoms at the equilibrium geometry of quadricyclane in Å 

computed as the SA(14)-CASSCF(4,8)/AUG-cc-pVDZ. 

atom x y z 

C1 0.000 0.000 1.078 

C2 0.000 -1.116 0.000 

C3 0.000 1.116 0.000 

H4 0.895 0.000 1.699 

H5 -0.895 0.000 1.699 

H6 0.000 -2.149 0.337 

H7 0.000 2.149 0.337 

C8 -0.785 0.733 -1.270 

C9 0.785 0.733 -1.270 

C10 0.785 -0.733 -1.270 

C11 -0.785 -0.733 -1.270 

H12 -1.480 1.395 -1.764 

H13 1.480 1.395 -1.764 

H14 1.480 -1.395 -1.764 

H15 -1.480 -1.395 -1.764 

 

The three coordinates,  are defined in the Cartesian frame as shown in Figure S1D-S1E for 

the atoms C10 and H14. Technically, the  and  are defined as rotations and  parametrizes a 

displacement vector. 

As shown in Figure S1D for C10, since the distance C is constant,  is the angle between the 

projection of the position vector of C10 in the (x, z) plane translated by -L along y to the C2 atom 

of the bridge and the z axis. When θ =0 C10 is in the (z, y) plane. A positive  value corresponds 

to clockwise rotation of C9 and C11 in the (x,z) plane and to counterclockwise one of C8 and C10. 

For C10, γ is the angle between the position vector of the atom and its projection in the (x, z) plane 

translated by -L along y to the C2 atom of the bridge. As the positions of the carbon atoms C2 and 

C3 of the bridge are kept fixed along the y axis, it is helpful to visualize the γ angle as a 

complementary angle of C3-C2-C10. 

θ ,γ ,ϕ
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φ parametrizes a linear displacement vector defined to reach distorted geometries close to the 

geometry of the minimum energy S1/S0 conical intersection determined by keeping the coordinates 

of the C3H4 frozen as explained above. The Cartesian components of the displacement vector are 

added to the Cartesian components of the atoms of the C4H4 ring at the geometry defined by the 

values of  and as shown in Figure S1E. It is defined by the following transformations: 

• The geometry corresponding to the minimum energy conical intersection S1/S0 is 

determined by relaxing the coordinates of the unfrozen atoms only. This geometry is 

labeled DA. 

• The closest geometry to DA is generated on the 2dimensional grid using the coordinates θ 

and γ. This geometry is labeled DB. 

• The displacement vector D = DB − DA is calculated by subtracting the Cartesian coordinates 

of the atoms at the geometry DA from the ones of DB. The first 7x 3 Cartesian components 

of D are 0 since they correspond to the atoms of the frozen bridge. The Cartesian 

coordinates of the displacement vector D of the 8 atoms of the ring are given in Table S3. 

 

Table S3: Cartesian coordinates of the displacement vector D in Å for the 8 atoms of the ring 

atom x y z 

C8 -0.166 0.067 0.016 

C9 -0.145 -0.096 -0.144 

C10 0.165 -0.068 0.016 

C11 0.146 0.096 0.144 

H12 0.521 0.086 0.317 

H13 0.450 0.048 0.245 

H14 0.520 0.087 0.317 

H15 0.452 0.047 0.246 

 

The displacement Df corresponding to a value of φ is defined as: 

   (S1) 

θ ϕ

D f =
ϕ
ϕCI

D
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The constant φCI is chosen to be -0.06 so that the three coordinates (θ, γ, φ) are commensurable 

with each other, for the stability of the numerical integration. When φ= φCI, the displacement Df is 

equal to D and the conical intersection geometry DA is then spanned by the 3D grid. 

In terms of the three coordinates (θ, γ, φ) and of the frozen distances L and C, the Cartesian 

coordinates of the 4 unfrozen C atoms of the C4H4 ring take the form: 

  

 (S2) 

 

 

Since the four C8-H12, C9-H13, C10-H14 and C11-H15 distances are kept frozen to the value H, 

for φ	 = 0, the cartesian coordinates of the hydrogen atoms are obtained by adding a fixed 

displacement to the coordinates of the carbon atoms: xH	= +0.695 Å, yH	= +0.661 Å, zH	= +0.494 Å. 

They are then modified by the displacement vector that corresponds to the φ	coordinate.  
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 (S3) 

 

 

In total, 65000 points are included in the grid: 100 in θ, 26 in γ and 25 in φ. The range in each 

coordinate is [1.08:0.7] for θ, [0.21:0.34] for γ and [-0.070: 0.05] for φ. dθ=-0.386, dγ = 0.134, and 

dφ=0.12. γ and θ are given in radians and φ is dimensionless.  

For each of the 65000 grid points, the electronic structure has been computed at the SA(14)-

CASSCF(4,8)/AUG-cc-pVDZ level, see section 2, and the energies, transition dipoles and non 

adiabatic vectors stored. 

The values of θ, γ and φ for the equilibrium geometries of norbornadiene, quadricyclane and the 

minimum energy S0/S1 conical intersection are (1.001, 0.299, 0.0) for norbornadiene, (0.553, 

0.251, 0.0) for quadricyclane and (0.763, 0.208, -0.066) for the S0/S1 minimum energy along the 

conical intersection seam. In order to keep the number of grid points manageable from a 

computational resources point of view when running the quantum dynamics, the range of the θ 

coordinate does not allow to reach the quadricyclane equilibrium geometry in the grid.  

The deformations induced by the displacement that corresponds to the three coordinates preserve 

a C2 symmetry of the nuclear frame for all the 65000 grid points. In the plane φ	= 0, a C2v 

geometry of the nuclear frame is preserved. We show in figure S2 the atom displacements that 

correspond to  and  respectively. As explained above, θ corresponds to a symmetric bending 

motion and belongs to the totally symmetric representation of the C2v group for the nuclear frame, 

as well as γ which corresponds to a symmetric stretching of the C8-C11 and C9-C10 bonds and 

θ ,γ ϕ
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belongs to A1 irreducible representation of C2v. The φ distortion belongs to the A irreducible 

representation of the C2 point group. 

 

 
Figure S2. Atomic displacements corresponding to the three coordinates A) θ, B) γ and C) φ. Left, 

view in the (x,y) plane. Middle, view in the (y,z) plane. Right, view in the (x,z) plane. Note that in 

this view, the atoms H12 and H15 are perfectly in front of H13 and H14, making it seem like there 

are two arrows on H12 and H15. Right, view in the (x,z) plane. In this view, H13 and H12 

superimpose H14 and H15, making it seem like there are two arrows on H13 and H12.  

 

  



 12 

S2. Electronic structure 

S2.1 Electronic states and transition dipoles 

The electronic structure was computed using the OpenMOLCAS software, version 8.11. The 

changes in the electronic structure that accompany the isomerization process involve valence and 

Rydberg excited states, which continuously exchange character. We therefore use the diffuse 

atomic basis set CC-PVDZ for the hydrogen atoms and AUG-CC-PVDZ for the carbon atoms in 

order to correctly describe Rydberg states. We determined that the level of theory SA(14)-

CASSCF(4,8) is a good compromise to converge the electronic structure calculation for the 65000 

geometries corresponding to the grid points and obtain the potential energies, transition dipole 

moments and nonadiabatic couplings vectors that are the inputs of the quantum dynamical 

computations. The active space has been chosen to consistently describe several excited states 

across the geometries spanned by our coordinates; 4 electrons, 23 inactive molecular orbitals (MO) 

and 8 active MO’s are used. The set of active MO orbitals includes 4 valence bonding/antibonding 

MO’s and 4 Rydberg MO’s (see Figure S3). The choice of active MO’s is based on a Walsh diagram 

analysis from the open form to the closed form using as reference the Hartree-Fock SCF orbitals. 

The equilibrium geometries of the norbornadiene and quadricyclane belong to the C2v point group. 

Three active MO’s belong to the A1 irreducible representation, one to A2, two to B1 and two to B2. 

We include 14 excited states in the state average procedure with equal weights in order to get a 

proper description of the lowest 7 excited states for all the geometries spanned by the 3D grid.  
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Figure S3. Active MO’s and dominant electronic configurations. The 8 active MO’s (3 A1, 1 A2, 2 

B1 and 2 B2) in the norbornadiene (A) and quadricyclane (B) forms used in the SA(14) 

CASSCF(4,8)/AUG-CC-PVDZ electronic structure computations. Isocontour values of 0.04 Bohr-

3. Valence orbitals are shown in the top row and Rydberg ones in the bottom row. C Main 

configurations of the 7 lowest excited states at the norbornadiene equilibrium geometry computed 

at the SA(14) CASSCF(4,8)/AUG-CC-PVDZ level. 

 

The excitation energies of the electronic states at the equilibrium geometries of norbornadiene, 

quadricyclane and of the MECI S0/S1 CI are given in Table S4.  
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Table S4. Energies in eV at the equilibrium geometries of norbornadiene, quadricyclane and at the 

minimum energy S0/S1 conical intersection.  

 norbornadiene MECI 

S0/S1 

quadricyclane 

S0 0.000 4.313 2.732 

S1 5.815 4.318 7.484 

S2 6.153 6.558 7.733 

S3 6.321 7.078 7.892 

S4 6.656 7.306 8.014 

S5 7.537 7.674 8.504 

S6 7.619 9.384 8.544 

S7 7.694 9.650 9.171 

 

There is a gap of about 6 eV in the norbornadiene Franck Condon region and 5 eV for the 

quadricyclane form between the ground state and a dense manifold of excited states of Rydberg 

and mixed valence-Rydberg character which are very close in energy in a range of 2-3 eV. Overall, 

the UV absorption averaged over the Franck-Condon region is in agreement with experimental 

results,2, 3 as can be seen from the computed absorption spectrum (Figure 2E) shown in the method 

section of the main text. The determinantal composition of the 7 lowest excited states taken into 

account in the dynamical computations at the minimum energy of the norbornadiene form on the 

grid is reported in Figure S3C. The relative energetical order of Rydberg and valence states is very 

sensitive to the details of the electronic structure method. The determinantal composition of low 

lying excited states and their relative energetical order obtained at the SA-CASSCF level is 

different from that reported using CAS-SCF or CASPT2 with smaller active spaces. 2-5 Our active 

space was chosen so that we get a proper description of the band of 7 electronic states over the 

geometries span by the entire grid, including the quadricyclane product. The SA-CASSCF 

approach with uniform weights on the electronic states is known to overestimate the energies of 

the excited states and to have at best an accuracy in relative energies of 0.2-0.5 eV. In our 
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computations, the S1(B1) and S2 (A1) states have a mixed 3p and 3s Rydberg character and are 

optically active. Their excitation energies (5.85 eV and 6.15 eV) are in reasonable agreement with 

previous results.2, 5 On the other hand, S3 (A2, 6.321 eV) has a mixed Rydberg - valence excitation 

character and is dark. In agreement with previous computations, we observed a low lying state 

formed with doubly excited determinants, the S5 state (A1, 7.537 eV). The diffuse lower excited 

valence (V2) state resulting from excitations from A1 to B2 MO’s reported in refs. 2-4 is not present 

at the equilibrium geometry on our grid. We note however that we get low absorption below 5.85 

eV in the absorption spectrum when we average over the grid points of the Franck Condon region 

(Figure 2E in the main text) as was observe experimentally.2, 3, 6 In the open norbornadiene 

equilibrium geometry, and in general in the Franc-Condon region, S3 , S5 and S6 (7.619 eV) exhibit 

excitations to the B2 valence orbital which becomes the HOMO in the electronic configuration of 

the GS of quadricyclane, see Figure S3C. When the geometry is distorted along the θ and the γ 

coordinates, this excitation is transferred to lower excited states via non adiabatic interactions all 

the way down so that the corresponding configuration becomes the dominant one in the ground 

state of the closed quadricyclane form. Therefore, the quadricyclane configuration appears in the 

intermediate adiabatic excited states involved in the simulations (S1, S2, S3 and S4 (6.656 eV)) as 

the various conical intersections are approached by the wavepacket on the way to the quadricyclane 

region.  

An approximate symmetry C2v is preserved in the Franck Condon region of the open 

norbornadiene form. At the norbornadiene equilibrium geometry, the lower excited states can be 

assigned a symmetry based on the symmetry of the main configurations, as shown in Figure S3C. 

Optical selection rules of the C2v group are therefore reflected in the values of the cartesian 

components of the transition dipoles gathered in Table S5. The x direction of the laboratory frame 

belongs to the B1 irreducible representation, y to B2 and z to A1. The closed shell ground state 

belongs to A1.  

It would be ideal to access the S3, S5 or S6 to obtain an efficient isomerization process. However, 

S3 and S6 have a A2 symmetry which makes them dark upon UV excitation and they remain not 

very efficiently coupled to lower excited by transition dipoles in the Franck-Condon region. The 

state S5 consists of double or quadruple excitations at the C2v geometry of the norbornadiene 

equilibrium geometry. In the Franck-Condon region, its electronic structure remains complex. 

Outside of the Franck-Condon region, transition dipoles in the y direction are allowed because of 
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the geometry distortion as can be seen from Table S6 which gives the values of the transition and 

permanent dipoles at the minimum energy of the S0/S1 conical intersection on the grid. 

 

Table S5: x, y and z components of the transition dipole in a.u. between the excited states computed 

on the norbornadiene equilibrium geometry on the grid.  

x S0 S1(B1) S2 (A1) S3 (A2) S4 (B1) S5 (A1) S6(A2) S7 (B2) 

S0 0.00 -0.56 0.00 0.00 -0.14 0.00 0.00 0.00 

S1 -0.56 0.00 -3.26 0.00 0.00 -0.05 0.00 0.00 

S2 0.00 -3.26 0.00 0.00 0.12 0.00 0.00 0.00 

S3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -2.11 

S4 -0.14 0.00 0.12 0.00 0.00 -0.06 0.00 0.00 

S5 0.00 -0.05 0.00 0.00 -0.06 0.00 0.00 0.00 

S6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 

S7 0.00 0.00 0.00 -2.11 0.00 0.00 0.13 0.00 

y S0(A1) S1(B1) S2(A1) S3(A2) S4 (B1) S5 (A1) S6 (A2)  S7 (B2) 

S0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.23 

S1 0.00 0.00 0.00 3.91 0.00 0.00 -1.06 0.00 

S2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -1.79 

S3 0.00 3.91 0.00 0.00 -0.35 0.00 0.00 0.00 

S4 0.00 0.00 0.00 -0.35 0.00 0.00 0.60 0.00 

S5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.16 

S6 0.00 -1.06 0.00 0.00 0.60 0.00 0.00 0.00 

S7 0.23 0.00 -1.79 0.00 0.00 -0.16 0.00 0.00 

z S0(A1) S1(B1) S2(A1) S3(A2) S4(B1) S5(A2) S6(A2) S7(B2) 

S0 0.28 0.00 -0.47 0.00 0.00 -0.05 0.00 0.00 

S1 0.00 0.94 0.00 0.00 3.33 0.00 0.00 0.00 

S2 -0.47 0.00 0.97 0.00 0.00 0.01 0.00 0.00 

S3 0.00 0.00 0.00 0.45 0.00 0.00 0.29 0.00 

S4 0.00 3.33 0.00 0.00 -2.04 0.00 0.00 0.00 

S5 -0.05 0.00 0.01 0.00 0.00 0.35 0.00 0.00 
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S6 0.00 0.00 0.00 0.29 0.00 0.00 0.08 0.00 

S7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.53 

 

Table S6. x, y and z components of the transition dipole in a.u. between the excited states computed 

at the geometry of the minimum energy S0/S1 CI on the grid.  

x S0 S1 S2 S3 S4 S5 S6 S7 

S0 0.00 0.00 -0.62 0.00 0.64 0.00 -0.01 0.04 

S1 0.00 0.00 -0.93 0.00 0.52 0.01 0.00 0.01 

S2 -0.62 -0.93 0.01 -0.62 0.02 -3.08 -0.97 -0.40 

S3 0.00 0.00 -0.62 -0.01 -0.25 0.00 0.00 0.00 

S4 0.64 0.52 0.02 -0.25 -0.01 1.44 0.03 0.16 

S5 0.00 0.01 -3.08 0.00 1.44 0.01 0.00 0.00 

S6 -0.01 0.00 -0.97 0.00 0.03 0.00 -0.01 -0.04 

S7 0.04 0.01 -0.40 0.00 0.16 0.00 -0.04 0.18 

y S0 S1 S2 S3 S4 S5 S6 S7 

S0 0.00 0.00 -0.04 0.00 0.38 0.00 -0.01 -0.02 

S1 0.00 0.00 0.01 0.00 0.15 0.00 -0.01 -0.01 

S2 -0.04 0.01 -0.01 3.83 0.01 -0.77 0.10 -0.08 

S3 0.00 0.00 3.83 0.03 -1.54 -0.01 0.00 0.00 

S4 0.38 0.15 0.01 -1.54 -0.10 0.58 -0.21 -0.02 

S5 0.00 0.00 -0.77 -0.01 0.58 -0.02 -0.01 0.00 

S6 -0.01 -0.01 0.10 0.00 -0.21 -0.01 0.00 0.04 

S7 -0.02 -0.01 -0.08 0.00 -0.02 0.00 0.04 -0.11 

z S0 S1 S2 S3 S4 S5 S6 S7 

S0 -0.26 -0.04 -0.01 0.20 0.00 -0.17 0.32 -0.19 

S1 -0.04 -0.07 0.00 0.01 0.00 -0.09 0.10 -0.08 

S2 -0.01 0.00 2.47 -0.01 2.83 0.02 -0.01 -0.01 

S3 0.20 0.01 -0.01 1.14 -0.02 -0.05 0.01 0.03 

S4 0.00 0.00 2.83 -0.02 -2.09 -0.02 0.00 0.00 

S5 -0.17 -0.09 0.02 -0.05 -0.02 0.29 0.23 -0.05 
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S6 0.32 0.10 -0.01 0.01 0.00 0.23 -0.62 -0.03 

S7 -0.19 -0.08 -0.01 0.03 0.00 -0.05 -0.03 2.75 

 

 

Based on the C2v selection rules, as explained in the main text, we have chosen to use an excitation 

by a UV fs pulse polarized along x and resonant with the S1 (B1) which we call UV(x) and a UV 

fs pulse polarized along z and resonant with the S2 (A1) state which we call UV(z). For the UV(x) 

pulse, the S1 wavepacket that is formed upon excitation exhibits a Rydberg character, and the 

conical intersection S1/S0 is reached after a large oscillation along the coordinates θ and γ. 

The UV(z) is tuned to excite S2 which is strongly coupled to the dark S3 state in the Franck-Condon 

region. The UV(z) excitation therefore builds a wavepacket that is a superposition of two Rydberg 

states that exhibit densities along x (S2, see Figure S3C) and y (S3 see Figure S3C), which are the 

directions of the new and the old bonds respectively. Compared to the UV(x) excitation, the UV(z) 

excitation lead to a very different path for the quantum dynamics. The electronic density resulting 

from a superposition of the S2 (x Rydberg) and S3 (y Rydberg) states is delocalized along the x and 

y spatial directions, leading to a weakening of the old bond (along y) and formation of the new one 

(along x). At the exit of the Franck-Condon region the potentials of the S2 and the S3 states are 

such that the electronic coherence moves along θ, rapidly approaching the region of the grid where 

the product determinantal character of higher states begins to mix with the S2 and the S3 states.  

 
2.2 Non Adiabatic Couplings 

The spatial localization of the Non Adiabatic Coupling (NAC) elements in the three-dimensional 

grid is quite different for different pairs of coupled electronic states. The spatial extent and the 

strength of the NAC depend on how well the geometry distortions at the conical intersection seams 

is captured by the three coordinates that we selected. Obviously, we cannot capture all the NAC 

regions equally well with only three coordinates. Our coordinates system allows to capture well 

the S0/S1 and S2/S3 non adiabatic interactions (see Figure S4A and B for the displacements 

corresponding to the gradient difference and the NAC vectors 7 at the geometry of the minimum 

energy conical intersection for S0/S1 and S2/S3 respectively). Isocontours of their magnitude on the 

3D grid are shown in Figure S5 in grey shadings. One can see that their localization patterns are 

quite different. The S0/S1 intersection is very localized on a diagonal in the region of positive 
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values for ,  and . On the other hand, the S3/S2 NAC coupling is instead present in a very 

large region that goes all the way from the Franck-Condon region to the center of the cube. As 

explained in the main text, the S2/S1 non adiabatic interactions are not well captured in our 

coordinate system, as can be seen for the displacements of the NAC vector shown in Figure S4C. 

 
Figure S4: Gradient difference (left) and NAC (right) vectors for important conical intersections. 

A: S0/S1 minimum energy conical intersection, B: S2/S3 minimum energy conical intersection. C: 

S1/S2 minimum energy conical intersection 

 

 

γ θ ϕ
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Figure S5. Isocontours of important non adiabatic couplings. A) Isocontours (±0.00001 bohr-3, 

grey shading) of the S0/S1 non adiabatic coupling. The isocontour (0.0001 bohr-3) of the spatial 

localization of the wavepacket on S0 (blue) and on S1 (green) computed for the UV(x) simulation 

at 90 fs is also shown. The non adiabatic coupling region is very localized in the positive corner 

of the ,  and  grid. B) Isocontour (±0.00001 bohr-3) of the S2/S3 non adiabatic coupling; it is 

worth remarking how much more spread it is compared to the S0/S1 one. Also shown is an 

isocontour (0.0001 bohr-3) of the spatial localization of the wavepacket on S2 (red) and on S3 

(turquoise) computed for the UV(z) simulation at 55fs. 

 
2.3 Consistency of the phase of the electronic state wave functions across the grid. 
 
In the matrix diagonalization of the SA-CASSCF, the eigenvector wave function is defined up to 

a sign at every grid point since the wave function is real. This is usually not a problem for the 

potential energies and in general diagonal values of operators. However, for the transition dipole 

and the non adiabatic coupling elements which depend on the wave function of two eigenstates, 

the sign needs to be consistent across the grid. We implemented a sign correction procedure in 

order to impose consistency of the sign of the wavefunction and avoid purely numerical jumps of 

 in their phase between adjacent points . The algorithm is based on state overlaps between two 

neighboring geometries to detect root swaps and correct the phase changes, taking as a reference 

the minimum energy structure and propagating the correction along the three coordinates. 

γ θ ϕ

π
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S3 Quantum dynamics  

3.1 Hamiltonian and integration of the TDSE in  and  coordinates 

The kinetic energy and momentum operator in the  and  coordinates have been derived 

starting from Cartesian coordinates using the general expression.8, 9} The kinetic energy operator 

is a sum of nine terms: 

 (S4) 

Each element in Eq. (S4) takes the form  

     (S5) 

where w and u =  and .  is the determinant of the 3x3 matrix  of the mass weighted 

Cartesian coordinates derivatives obtained from Eqs. (S2) and (S3) with respect to  and  

and G is its inverse. The matrix elements of g can be computed analytically from Eqs. (S2) and 

(S3) and g is of rank 3, so that its inverse G is non singular. , u= ,  is the 

momentum operator. 

 

In order to keep the simulation numerically stable, we extended the system boundaries by adding 

30 points at each side along the θ coordinate (leading to a total of 30+100+30=160 points), 15 

along each side of γ (15+26+15=56 points in total) and 15 along each side of φ (15+25+15=55 

points in total). In the extended grid region, the values of the potential energies have been 3D 

extrapolated, and all the NAC elements and transition dipole moments are set to 0. The time 

dependent Schrödinger equation is integrated numerically for N=8 coupled electronic states and 

Ng = 492800 grid points. 

       (S6) 

 

Atomic units are used throughout. The Hamiltonian includes the non adiabatic coupling between 

the electronic states and the dipole coupling. Its matrix elements between two basis wave functio 

 and  take the form: 

θ ,γ ϕ

θ ,γ ϕ

T̂ = T̂θθ + T̂γγ + T̂ϕϕ + T̂θγ + T̂γθ + T̂θϕ + T̂ϕθ + T̂γϕ + T̂ϕγ

T̂wu =
1
2
!g−1 4 p̂w

† Gwu !g
1 2 p̂u !g

−1 4⎡
⎣⎢

⎤
⎦⎥( )

θ ,γ ϕ !g g

θ ,γ ϕ

p̂u =
!
i
∇̂u θ ,γ ϕ

i
dcig t( )
dt

=
j=1

N
∑

g '=1

Ng

∑ Hig, jg ' c jg ' t( )

ig jg '
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   (S7) 

where i and j stand for the electronic state index and g and g’ for the grid index, that is a value of 

 and .  are the matrix elements of the kinetic energy operator defined in Eq. S4 and 

S5 above, which are diagonal in the electronic state index. The momentum operator, , is a 

Hermitian operator. The matrix elements of the momentum operator (see definition below Eq. 

S5), are also diagonal in the electronic state index when it operates on the grid nuclear 

coordinate. They are computed using a finite difference algorithm10, 11 as explained below. The 

matrix elements of the momentum operator acting on the nuclear coordinate of the adiabatic 

electronic state, , are off diagonal in the electronic index and diagonal in the grid index. The 

matrix elements  are computed at each grid point, using the quantum 

chemistry program OpenMolcas. We neglect in Eq. S7 the second derivative matrix elements 

with respect to the nuclear coordinate of the electronic wave function.  are the matrix 

elements of the potential energy, diagonal in both the electronic and grid indexes. The potential 

energy is computed for each grid point as described in Section S2. As stated above, the 

equilibrium quadricyclane form on S0 is not inside the 3D grid. In order to estimate 

quadricyclane yield, we add an absorbing potential, -iAg, on the quadricyclane side for high 

values of the  coordinate (see Figure S6D below), on each electronic state whose dependence 

on  is parametrized as: 

  (S8) 

where a is the highest value of the potential (set to 0.5 a.u. or 15 eV), b=1000 is the steepness 

factor for the arctan function, c=-0.7 is the flex position with respect to θ and d=-1.55548 is the 

shifting factor that we chose to make the function larger than zero only in the extrapolation part of 

the cube. 

In Eq. (S7),  is the dipole moment vector, diagonal in grid points, in the three Cartesian 

coordinates of the laboratory frame. The terms diagonal in the electronic index represents the 

Hig , j ′g t( ) = − 12Tig , j ′g δ ii +Vig , jg 'δ ijδ g ′g −E t( ) ⋅µig , jg 'δ g ′g +
1
i
τ ig , jgδ gg '

⎛
⎝⎜

⎞
⎠⎟
.p jgg '

θ ,γ ϕ Tig, jg '

p̂u

1
i
∇̂u

τ ig, jg = i ∇̂u j g

Vig, jg '

θ

θ

Ag = a −arctan b θ + c( )+ d( )( )

µig, jg '
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permanent dipole moments and the off diagonal ones the transition dipoles.  is the time-

dependent vector of the electric field of the pulse in the laboratory frame.  is defined from the 

time-derivative of the vector potential to ensure that the time integral of the electric field is zero.  

 (S9) 

where  is the carrier frequency,  the field strength,  the pulse duration (FWMH=2.35 ), 

 is the polarization vector and  is the carrier envelope phase (CEP), i.e. the phase between the 

electric field of the pulse and the gaussian envelope.  

The last term in Eq. (S7) is the non adiabatic coupling between electronic states i and j.  is 

the non adiabatic coupling vector expressed in the coordinates  and , diagonal in grid points 

and pjgg’ is the matrix of the vector of the momentum operator on state j in the coordinates  

and , , u= , . We neglect the second derivative terms of the non adiabatic 

coupling in the dynamical computations. 

In order to be able to numerically implement the integration of the time-dependent Schrödinger 

equation for a vector of amplitudes of 8 x 492800 complex numbers, we compute the action of the 

non local kinetic energy and momentum operators using a finite difference scheme with  

error.10, 11 

 

The first-order derivatives are computed as 12 

   (S10) 

where u, v, w represents the three coordinates corresponding to a grid point g; the electronic 

indexes are omitted since the momentum and kinetic energy operators are diagonal in the electronic 

index. The second order derivatives are given by: 
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 (S11) 

 and the cross derivatives between two internal coordinates v and u: 

 

 

The amplitudes  are propagated using Eq. (S6) using a time step of 10 as, and a 4th order 

Runge-Kutta scheme for the time integration.  

The dynamics is started from the ground vibrational state of the ground electronic state, which is 

determined using a harmonic approximation for each coordinate. The numerically determined 

harmonic frequencies and the corresponding periods in the three coordinates are 479.5 cm-1 (69.5 

fs) for θ, 1550.7 cm-1(21.5 fs) for γ and 936.5 cm-1 (35.6 fs) for φ. 

The population in each electronic state, i, is computed by summing the square modulus of the 

amplitudes  over all the Ng = 492800 grid points: 

  (S12) 

 

S4 Additional details on the quantum dynamics 

 

4.1 Partitioning of the grid space  

The configurational space spanned by the 3D grid on the ground state is partitioned in three regions 

based on the localization of the S0/S1 coupling shown in Figure S6C below. We define a ‘reactant’ 

region which corresponds to an overall norbornadiene geometry, a ‘product’ region that 

corresponds to a quadricyclane one and a ‘undecided’ region where the distortion of the geometry 

does not allow to attribute a norbornadiene or a quadricyclane character. After its transition from 

S1 to S0, a wavepacket localized in the green portion of the cube will eventually get absorbed by 

the imaginary potential and is defined as a ‘product’. A wavepacket on S0 localized in the yellow 

region will never reach the absorbing potential and is counted as ‘reactant’. A large fraction of the 

d2cu,v,w
du2

= 1

12du2
−cu−2,v,w +16cu−1,v,w + 30cu,v,w −16cu+1,v,w − cu+2,v,w( )
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S0 wavepacket typically remains localized in the Franck-Condon region and is counted as 

“undecided”. 

 

4.2 Dynamics in the vicinity of the S0/S1 conical intersection 

The dynamics on the S1 state in the vicinity of the S1/S0 conical intersection region determines the 

yields on S0 of ‘product’ or ‘reactant’ configurations. In order to better understand how to control 

this yield, we have carried out five simulations of a wavepacket defined as the norbornadiene 

ground vibrational wavepacket on S0 but localized on S1 at five different initial localizations 

around the S0/S1 conical intersection, see Figure S6A. We obtain quite different final yields that 

clearly depend on how the wavepacket on S1	approaches the conical intersection region. This 

analysis allowed us to determine by back integration from the most advantageous position in 

product yield what are the ideal initial conditions in the Franck- Condon region and consequently 

design the UV(z) pulse. We summarize below the essential features of the dynamics resulting from 

the five different initial localizations. A schematic initial localization of the 5 initial wavepackets 

is shown in Figure S6A and isocontours of the wavepacket on S1 at t=0 and on S1 and S0 at t=50 

fs in Figure S7. The population time evolution of the populations on S0 and S1 is shown and the 

yields in reactants and products in Figure 6D. 

Localization 1 corresponds to an initial wavepacket on S1 very close to the conical intersection, 

with same θ and φ values and a slightly larger value of γ (i.e. less double bond character), see 

Figure S6A and Figure S7. Consequently, 15% of the population is transferred to S0 in the first 10 

fs.; then the wavepacket quickly leaves the conical intersection region. The product/reactant ratio 

of this simulation is extremely low. In the first passage through the conical intersection, virtually 

the entire population goes back to the reactant, see Figure 7B. 

Localization 2 also corresponds to an initial wavepacket very close to the conical intersection with 

same θ and φ values, but with smaller values of γ (more double bond character), so that it is 

localized on the other side of the conical intersection, see Figure S6A and Figure S7. The amount 

of population transfer is not as immediate as in 1, but it is slowly increasing, without a particularly 

high product/reactant ratio, Figure S6D. At the end of the 50 fs, these initial conditions are the 

ones leading to the smallest transfer of population and smallest product yields (3:1 

reactants/products) because the wavepacket remains trapped in the vicinity of the initial region, 

see Fig. S7. 
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Localization 3 corresponds to an initial wavepacket with smaller values of θ (closer to the open 

quadricyclane form), smaller values of γ and smaller values of φ, see Figure S6A and Figure S7. 

Most of the population in S1 moves to high value of γ and approaches the conical intersection with 

an angle similar to 1. The population transfer is (at least in the first 20 fs) very selective towards 

the product (90%) and it has a second passage which is also very selective towards products (70%), 

see Figure S7B. 

Localization 4 corresponds to an initial wavepacket in a region where the NAC between S1/S2 is 

high, see Figure S6A and Figure S7A. The θ values are the same as 1 and 2, the wavepacket is 

basically localized at the CI, but γ and φ are both closer to zero. In the first passage the population 

transfer is very selective towards the product, with a first passage that goes in the direction of 

elongating γ which gives basically 100% selectivity, see Figs. S6D and S7B. 

Localization 5 corresponds to an initial wavepacket on S1 gliding in a way similar to the one 

followed by the wavepacket in the UV(x) simulation. It has not a good selectivity towards the 

product in the first passage and the second one (2:1 reactants/products), see Figs. S6D and S7B.  

In summary, as shown in Figs. S6 and S7, at the first passage of the wave packet through the 

conical intersection region, the best efficiency to the product is found to be from initial position 4. 

We then back-integrated the wave packet on S1 from this position to the reactant region, obtaining 

in the Franck Condon region a coherent superposition of the S2 and S3 electronic states, which can 

only be accessed by a UV pulse polarized on the z direction. On the other hand, initial position 1 

(see Figs. S6 and S7) essentially corresponds to the path followed by a vibronic wave packet 

produced on S1 by a short UV pulse polarized on the x direction and is less efficient for population 

transfer to the quadricyclane region. 
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Figure S6: Paths around the S0/S1 conical intersection. A) The 5 different initial localizations of 

the wavepacket on S1 around the S0/S1 conical intersection. The red line corresponds to the path 

followed by the non stationary wavepacket corresponds to an excitation of the norbornadiene 

ground state by the UV(z) pulse and passes by localization 4. The green line corresponds to the 

wavepacket followed by the UV(x) excitation of the norbornadiene ground state and passes by 

position 5. B) The partition of the 3D grid into a ‘product’ region (green), a ‘reactant’ region 

(yellow) and an ‘undecided’ region (blue). C) the  planes of the absorbing imaginary potential 

at large values of the  coordinate, see Eq. (S8). D) Population on the S1 state for the 5 simulations. 

γ ,ϕ( )
θ
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Figure S7: Selectivity of different paths around the conical intersection. A) The initial (t=0 fs, left 

panel) and final (t=50 fs, right panel) localization of the wavepacket on S1 (green) and on S0 (blue) 

for the 5 initial positions as indicated. B) Population in reactants and products for the five initial 

conditions. 
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Figure S8: Complementary snapshots of the wave packet localization for the UV(x) and UV(z) 

excitation. Panels A, B, and C: snapshots of longer time evolution of the S1 wave packet created 

by the UV(x) pulse as it revisits the conical intersection region with a period of 50 fs: isocontour 

of the S0/S1 coherence at the second passage (t=100 fs, panel a) and third passage (t=150 fs, panel 

b). Panel c shows the localization of the S1 and S0 wavepackets. Isocontour values (0.0001 bohr-

3 for a,b and 0.001 for c). panels D and E: snapshots of the coherences resulting from the UV(z) 

excitation at 85 fs when the S2/S3 coherence (panel F of Figure 3 of the main text) reaches the S2/S1 

CI which leads to a S2/S1 coherence (panel E) in addition to the S2/S3 one and at 95 fs (panel D) to 

a transfer to S0 from S1 in the product region. Isocontour values of 0.0001 bohr-3. 

 

4.3: Computation of the non stationary electronic density along the four C-C bonds  

For each grid point g, there is a molecular geometry and corresponding one electron stationary 

electronic densities for each electronic state, , and electronic transition density 

 where x, y and z are the three Cartesian electronic coordinates and i and j the index 

of the electronic states. For each grid point g, one can therefore define non-overlapping volumes 

around the old bonds, i.e. the C-C of the ethylene moiety in the open norbornadiene form and 

around the new C-C bonds, i.e. the two new bonds formed by the ring closure to get quadricyclane. 

These volumes are shown in Figure 5 panel C. Integration of the total electronic density at a given 

time t gives the amount of electronic density on the ‘old’ and ‘new’ bonds along the quantum 

dynamics. The electronic density in a given bond volume at time t is given by: 

 (S13) 

The sum of electronic terms in Eq. (S13) can be separated into a diagonal term which corresponds 

to a population contribution to the electronic density in each type of bond and a coherence term, 

off diagonal in the electronic index: 

ρii,g x, y, z( )
ρij,g x, y, z( )

ρbond
elec t( ) =

i, j

N
∑

g
∑ cig

* t( )c jg t( )ρij,gelec,bond
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 (S14) 

 (S15) 

The electronic density in a given bond type for the geometry of point g is: 

 (S16) 

where the bond type corresponds to the volume of the ‘red’ or the ‘blue’ cylinders shown in Figure 

S8. The electronic one electron densities are computed in the basis of the natural molecular orbitals 

 obtained from the SA-CASSCF computation: 

 (S17) 

The two non-overlapping volumes corresponding to these pseudocylinders are defined as follows. 

For each geometry defined by the grid point g, two specific volumes encompassing the old and the 

new C-C bonds are defined.  

These non-overlapping bond volumes are a sum of volume elements dxdydz centered on a vector 

r that obey the following conditions: a point in space is considered part of the set of volume 

elements that define the new bond volume if it satisfies all the 5 conditions of the equation below. 

The first two conditions select the right quadrant, while the rest of the condition select the cylinder 

area between the two selected carbons. The result is a partition of space where the new and old 

bond cylinders are non-overlapping. 

New bonds (blue cylinders), see Figure S1 for the atom numbering 

 (S18) 
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where 

•   is the normal vector to the plane defined by C1, C8 and C10  

•  is the normal vector to the plane defined by C1, C9 and C11  

• R	is the cylinder radius (set to 1.4 Å). 

• B is the vector connecting C10 and C11 

o |r · w| is the distance between r and B  

o M1 is the normal vector to the plane orthogonal to B that contains C10 

o M2 is the normal vector to the plane orthogonal to B that contains C11 

 

Old bond (red cylinders) 

 

where 

•   is the normal vector to the plane defined by C1, C8 and C10  

•  is the normal vector to the plane defined by C1, C9 and C11  

• R	is the cylinder radius (set to 1.4 Å). 

• C is the vector connecting C8 and C11 

o |r · w| is the distance between r and C  

o M3 is the normal vector to the plane orthogonal to C that contains C8 

o M4 is the normal vector to the plane orthogonal to C that contains C11 

 

 

N1

N2

r :r . N1 > 0{ }∩ r :r . N2 < 0{ }∩ r : r . w < R{ }∩ r :r .M3 > 0{ }∩ r :r .M4 < 0{ }

N1

N2
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Figure S9: Electronic densities in the old and new bonds computed as a function of time for the 

UV(x) simulation (panel A) and for the UV(z) simulation (panel B). The overall decrease is due to 

the amount of population absorbed by the imaginary potential localized on the product side of the 

grid. Normalized densities are shown in Figure 5 of the main text. C) and D) FT of population 

terms of the old bond and new bonds for the UV(x) excitation (C) and the UV(z) excitation (D). 

E) and F) FT of the coherence term for the UV(x) and the UV(z) dynamics. The frequencies reflect 

the oscillation of the two kinds of terms shown in figure 5 of the main text. 

 

4.4 Transient absorption spectra 

The linear response transient absorption spectrum13, 14 is given by  

where  is the Fourier transform(FT) of the dipole moment  computed for the dynamics 

including the interaction with the pump and the probe pulse and  is the complex conjugate 

of the electric field in the frequency domain generated by the two pulses, both computed for 

S ω( ) = −2Im µ ω( )E* ω( )⎡
⎣⎢

⎤
⎦⎥

µ ω( ) µ t( )
E ω( )
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positive frequencies, . A positive value of the response function, , corresponds to an 

absorption process, while a negative value corresponds to emission. 

The dipole moment , also called the total polarization, is given by  where 

 is the coherent density matrix of the system: 

 (S19) 

where  is the permanent dipole of electronic state i and  the transition dipole between 

the electronic states i and j. The dipole moments , are observables corresponding to the one 

electron dipole operator computed at the geometry of the grid point g: 

  (S20) 

where r is the electronic coordinate. The dipoles moments are therefore observables of the 

electronic density and can be used to probe its motion in and out the C-C regions during the ring 

closure. 
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Figure S10: The Fourier transforms of the total dipole moment and transient absorption spectra. 

Panels A and B: Cartesian components of the total dipole moment, Eq.(S19), computed for the 

UV(x) dynamics (panel A) and the UV(z) dynamics (panel B). The time dependent components 

are shown in Figure 6 of the main text. Note the peak at ~6 eV in the x component for the UV(x) 

dynamics and in the z component for the UV(z) that corresponds to the GS-S1 and GS-S2 transition 

frequencies in the Franck-Condon region respectively. Note also how the y component, that is used 

to probe the S2/S3 coherence is more intense in the UV(z) dynamics. The component along z at 

low frequencies is similar in both dynamics. The higher frequencies at about 0.4-1.5 eV reflect the 
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S1/S4 electronic coherence while the smaller ones around 0.2 eV reflect the dynamics on S1 and 

that at the S1/S0 CI. Panel C and D: Transient absorption spectra computed from a single transition 

dipole term in Eq. (S19) above. C: UV(x) dynamics: only the S1-S0 transition dipole term is used 

in Eq. (S19). D: UV(z) dynamics: only the S2-S3 transition dipole term is used in Eq. (S19). 

Compare with Figure 6 of the main text. 

 

In the case of the UV(x) dynamics, five values of delay times τ have been selected: 65.0, 67.5, 

70.0, 72.5 and 75.0 fs. The element corresponding at the S1/S0 transition is shown in Figure S10 

C. The maximum rate of population transfer occurs at 70 fs. One can see by comparing with Figure 

6 of the main text, panel C that the signal at 0.15 eV is essentially due to the S1/S0 transition dipole 

that is beating because of the S0/S1 electronic coherence. 

In the case of the UV(z) computation, the delay time, , spans a whole period: 45.0, 50.8, 54.37, 

58.08, 62.00 and 74.00 fs. At 58.1 fs, the wavefunction is localized in regions where the energy 

difference between S2 and S3 is very low which corresponds to a period of circa 20 fs (0.2 eV). It 

this case too, the total signal shown in Figure 6 is dominated by the transition S3/S2 element shown 

in Figure S10A and the oscillations of the transient absorption signal at 0.15 eV reflect the 

oscillations of the S3/S2 electronic coherence. 
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