Supporting Information of

Transition metal carbon quadruple bond: Viability through single electron transmutation

Computational Details

Geometry optimization has been performed using M06-2X,¹ PBE² and B3LYP³ levels of theory using Def2-TZVP basis set. Harmonic vibrational frequency calculations were also performed at the same level of theory to understand the nature of stationary point. All these structures were found to be at their local minimum geometry. It should be noted that the C_{3v} structure in singlet ground state, ¹A₁, has also been previously found to be the global minima for AFe(CO)₃⁻ (A = B, C, Si, Ge, Sn, Pb, Sc, Y, La).⁴⁻⁶ M06-2X produced a shorter C-Fe distance (1.481 Å) compared to 1.514 Å at PBE and 1.525 Å at B3LYP and hence, we adopted all the analyses at M06-2X geometries.

Single point multi-configurational complete-active-space-selfconsistent-field (CASSCF) calculations were further performed on the M06-2X optimized geometries to verify the electronic configurations. The calculations used 12 electrons in 12 orbitals, i. e., CASSCF(12e,12o). All these calculations were performed using GAUSSIAN16 suite of program.⁷ The relaxed force constant calculations were performed using Compliance 3.0.2 program.^{8,9} Adaptive natural density partitioning (AdNDP)¹⁰ analyses were performed using Multiwfn¹¹ on the M06-2X optimized geometries.

References

1 Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215.

J. P. Perdew, K. Burke and M. Ernzerhof, *Phys. Rev. Lett.* 1996, 77, 3865.

3 (*a*) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648; (*b*) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B: Condens. Matter*, 1988, **37**, 785; (*c*) S. H. Vosko, L. Wilk and M. Nusair, *Can. J. Phys.*, 1980, **58**, 1200.

4 C. Chi, J.-Q. Wang, H.-S. Hu, Y.-Y. Zhang, W.-L. Li, L. Meng, M. Luo, M. Zhou and J. Li. *Nat. Commun.* 2019, **10**, 1.

5 J. –Q. Wang, C. Chi, J. –B. Lu, L. Meng, M. Luo, H. –S. Hu, M. Zhou and J. Li. *Chem. Commun.* 2019, **55**, 5685.

6 J. -Q. Wang, C. Chi, H. –S. Hu, X. Li, M. Luo, J. Li and M. Zhou, *Angew. Chem. Int. Ed.* 2020, **59**, 2344.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

8 K. Brandhorst and J. Grunenberg, J. Chem. Phys., 2010, **132**, 184101.

- 9 K. Brandhorst and J. Grunenberg, Chem. Soc. Rev., 2008, 37, 1558.
- 10 D. Y. Zubarev and A. I. Boldyrev, *Phys. Chem. Chem. Phys.* 2008, 10, 5207.
- 11 T. Lu and F. Chen, J. Comput. Chem. 2012, **33**, 580.

Table S1. Calculated relative energies (kcal/mol) of different isomers and for different spin multiplicities at M06-2X/Def2-TZVP level of theory.

Table S2. Natural valence orbitals of $AFe(CO)_3$ (A = C, Si, Ge) from CASSCF(12e,12o), their occupation numbers (NOON), coefficient c^2 of the ground state wave function and effective bond order (EBO).

Туре	CFe(CO) ₃	SiFe(CO) ₃	GeFe(CO) ₃
5c-bonding			
	NOON (1.98)		
π-bonding	NOON (1 90)		NOON (1.89)
1 1'		NOON (1.90)	
π-bonding			,
	NOON (1.89)	NOON (1.90)	NOON (1.89)

σ-bonding		2	
	NOON (1.91)	NOON (1.90)	NOON (1.89)
π^* -anti-bonding			.
	NOON (0.11)	NOON (0.10)	NOON (0.11)
π^* -anti-bonding			
	NOON (0.11)	NOON (0.10)	NOON (0.11)
σ*-bonding			
	NOON (0.09)	NOON (0.10)	NOON (0.12)
5c-anti-bonding	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	NOON (0.01)		
Coefficient, c^2	0.953	0.941	0.944
EBO	3.68	2.70	2.66

Table S3. Fe-CO bond lengths (Å) and CO stretching frequencies (cm⁻¹) of the complexes.

Complex	Fe-CO bond length	CO stretching frequency
	(Å)	(cm ⁻¹)
CFe(CO) ₃	1.884	2191.2
SiFe(CO) ₃	1.825	2114.8
GeFe(CO) ₃	1.817	2100.1

Fig S1. AdNDP orbitals showing 5c-2e bonds with their corresponding occupation number (O.N).

Fig S2. CAS(12,12) active orbitals.

Cartesian coordinates of the optimized geometries, lowest vibrational frequency along with the total energy in a.u.

CFe(CO)₃

 $v_1 = 67.6 \text{ cm}^{-1}$

Sum of electronic and zero-point Energies= -1641.580445

Sum of electronic and thermal Energies=	-1641.571120
Sum of electronic and thermal Enthalpies=	-1641.570176
Sum of electronic and thermal Free Energies=	-1641.616214

26	0.000060000	-0.000147000	0.144352000
6	1.807886000	-0.361221000	-0.244875000
6	-0.591365000	1.745878000	-0.244690000
6	-1.216535000	-1.385104000	-0.244305000
8	2.904463000	-0.579788000	-0.379423000
8	-0.950061000	2.804925000	-0.379414000
8	-1.954924000	-2.224728000	-0.379336000
6	0.000452000	0.000542000	1.625909000

SiFe(CO)₃

 $v_1 = 43.8 \text{ cm}^{-1}$

Sum	of electronic and	zero-point Energ	gies=	-1893.018989
Sum	of electronic and	thermal Energie	es=	-1893.009358
Sum	of electronic and	thermal Enthalp	oies=	-1893.008413
Sum	of electronic and	thermal Free En	ergies=	-1893.056347
26	-0.001375000	0.000176000	-0.24612	2000

6	0.741264000	-1.662708000	-0.364307000
6	1.079798000	1.465457000	-0.366624000
6	-1.812011000	0.193392000	-0.372213000
8	1.204675000	-2.695990000	-0.440165000
8	1.752573000	2.376191000	-0.445684000
8	-2.937819000	0.311839000	-0.456379000

GeFe(CO)₃

 $v_1 = 34.5 \text{ cm}^{-1}$

Sum of electronic and zero-point Energies=			-3680.564532	
Sum of electronic and thermal Energies=			-3680.556314	
Sun	n of electronic an	d thermal Enthal	pies=	-3680.555370
Sun	n of electronic an	d thermal Free E	nergies=	-3680.599733
26	-0.012109000	0.004982000	-0.62693	31000
6	-0.746735000	1.667146000	-0.65548	1000
6	-1.097127000	-1.452423000	-0.67045	3000
6	1.792655000	-0.194179000	-0.70951	4000
8	-1.206047000	2.706020000	-0.69550	0000
8	-1.775369000	-2.363093000	-0.72224	6000
8	2.919699000	-0.318522000	-0.79183	0000
32	0.034870000	-0.014001000	1.44342	22000