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 I. Extraction of Thermal Conductivity with a Depinning Electrical Field 

For thermal measurement with the depinning electrical field applied across the nanowire, there 

is an electrical current passing through sample, which leads to Joule heating inside the nanowire. 

In addition, heat transfer associated with Pielter effect will also occur. We have considered these 

two effects in deriving the thermal conductance from raw data.

The schematic of the measurement system is shown in Figure S1. Here Joule heat from 

different components upon applying a depinning voltage to the sample is denoted as QRc1, QRc2, 

Qw, Qb1 and Qb2. QRc1 and QRc2 are due to the contact electrical resistance at nanowire-electrode 

junctions. Qw is heat generation inside the nanowire. Qb1 and Qb2 are Joule heat generated by the 

platinum (Pt) lines connecting to the contact pads on the substrate. In addition, one more factor 

that must be considered is the Peltier cooling with the applied DC current across the sample, which 

move heat Qp from one end to the other. Th and Ts are the measured temperature rise of the heating 

and sensing membranes, respectively.

Figure S1. Schematic diagram of the measurement set-up.
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These heat sources/sinks, together with the Joule heat on the heating side Qh, and the two 

current carrying beams QL, can be expressed as

,                                                             (S1)𝑄ℎ = 𝐼2 ∙ 𝑅ℎ

,                                                           (S2)2𝑄𝐿 = 2𝐼2 ∙ 𝑅𝐿

,                                                          (S3)𝑄𝑤 = 𝐼𝑤
2 ∙ 𝑅𝑤

,                                                          (S4){𝑄𝑏1 = 𝐼𝑤
2𝑅𝐿1

𝑄𝑏2 = 𝐼𝑤
2𝑅𝐿2

�

,                                                          (S5){𝑄𝑅𝑐1 = 𝐼𝑤
2𝑅𝑐1

𝑄𝑅𝑐2 = 𝐼𝑤
2𝑅𝑐2

�
.                                                  (S6)𝑄𝑝 = Π𝑎𝑏𝐼 = |𝑆𝑎𝑏|Δ𝑇𝐼𝑤

Here I denotes the DC current passing through the serpentine Pt heating coil; and Iw denotes the 

DC current passing through the nanowire as a result of the applied depinning electric field. Rh, RL, 

Rw and Rc represent the electrical resistance of the heating coil, the suspended leg/beam, the 

nanowire sample and the contact resistance, separately. Πab and Sab are the Peltier coefficient and 

Seebeck coefficient between our sample and Pt probes. ΔT is the temperature difference between 

the two junctions.

All the heat will eventually dissipate to the substrate through the suspended legs/beams. We 

define Q1 as the heat transferred to the substrate from the heating side, and Q2 the heat transferred 

from sensing side.

Based on the energy conservation, we have

.                        (S7)𝑄1 + 𝑄2 = 𝑄ℎ + 2𝑄𝐿 + 𝑄𝑤 + 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2 + 𝑄𝑏1 + 𝑄𝑏2
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For the two current carrying beams on the heating side, the heat diffusion equation can be written 

as 

,                                                        (S8)

𝐺𝑏𝐿𝑏

6
𝑑2𝑇

𝑑𝑥2
+

𝑄𝐿

𝐿𝑏
= 0

where Gb is the total thermal conductance of the six supporting beams. The boundary conditions 

to solve this equation are

,𝑇 = 𝑇ℎ, 𝑥 = 0 (𝑜𝑛 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑠𝑖𝑑𝑒)

.𝑇 = 𝑇0, 𝑥 = 𝐿𝑏 (𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑠𝑖𝑑𝑒)

Here Lb is the length of support beams. Solving Eq. 8 with the given boundary conditions leads to 

the following temperature profile

.                                           (S9)
𝑇 = 𝑇ℎ ‒

3𝑄𝐿

𝐺𝑏𝐿𝑏
2
𝑥2 + ( 3𝑄𝐿

𝐺𝑏𝐿𝑏
‒

∆𝑇ℎ

𝐿𝑏
)𝑥

Here ΔTh=Th-T0. The heat transfer from these two current-carrying beams is then

.
𝑄1,𝑎 = 2 ×

‒ 𝐺𝑏𝐿𝑏

6
∙ (𝑑𝑇

𝑑𝑥)𝑥 = 𝐿𝑏
=

𝐺𝑏∆𝑇ℎ

3
+ 𝑄𝐿

For the beam with Iw passing through it on the heating side, we have 

.                                                      (S10)

𝐺𝑏𝐿𝑏

6
𝑑2𝑇

𝑑𝑥2
+

𝑄𝑏

𝐿𝑏
= 0

The boundary conditions are

 ,𝑇 = 𝑇ℎ, 𝑥 = 0 (𝑜𝑛 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑠𝑖𝑑𝑒)

 .𝑇 = 𝑇0, 𝑥 = 𝐿𝑏 (𝑜𝑛 𝑡ℎ𝑒 𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒 𝑠𝑖𝑑𝑒)

Solving this equation, we get the temperature profile below
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.                                      (S11)
𝑇 = 𝑇ℎ ‒

3𝑄𝑏1

𝐺𝑏𝐿𝑏
2
𝑥2 + (3𝑄𝑏1

𝐺𝑏𝐿𝑏
‒

𝑇ℎ ‒ 𝑇0

𝐿𝑏
)𝑥

The heat transfer through this beam to the substrate is then

.
𝑄1,𝑏 =

‒ 𝐺𝑏𝐿𝑏

6
∙ (𝑑𝑇

𝑑𝑥)𝑥 = 𝐿𝑏
=

𝐺𝑏∆𝑇ℎ

6
+

1
2

𝑄𝑏

The heat transferred through the other 3 beams without electrical current to the substrate can be 

expressed as

.
𝑄1,𝑐 =

𝐺𝑏∆𝑇ℎ

2

Sum all heat transfer from the heating membrane to the substrate, we have 

.                               (S12)
𝑄1 = 𝑄1,𝑎 + 𝑄1,𝑏 + 𝑄1,𝑐 = 𝐺𝑏∆𝑇ℎ + 𝑄𝐿 +

1
2

𝑄𝑏1

The sample itself is also under uniform Joule heating and the temperature is governed by

.                                                       (S13)
𝐺𝑠𝐿𝑠

𝑑2𝑇

𝑑𝑥2
+

𝑄𝑤

𝐿𝑠
= 0

The boundary conditions are

,𝑇 = 𝑇ℎ, 𝑥 = 0 (𝑜𝑛 𝑡ℎ𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑠𝑖𝑑𝑒)

.𝑇 = 𝑇𝑠, 𝑥 = 𝐿𝑠 (𝑜𝑛 𝑡ℎ𝑒 𝑠𝑒𝑛𝑠𝑖𝑛𝑔 𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 𝑠𝑖𝑑𝑒)

The temperature profile along the sample is then

,                                      (S14)
𝑇 = 𝑇ℎ ‒

𝑄𝑤

2𝐺𝑠𝐿𝑠
2
𝑥2 + ( 𝑄𝑤

2𝐺𝑠𝐿𝑠
‒

∆𝑇ℎ ‒ ∆𝑇𝑠

𝐿𝑠
)𝑥
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where ΔTs=Ts-T0. The heat transfer through sample to the sensing side is then Gs(ΔTh-ΔTs) + Qw/2. 

To conserve energy, the heat transfer from the sensing side to the substrate must be equal to 

the heat coming into the sensing membrane and the heat generated on the sensing membrane. So 

that

.                     (S15)
𝑄2 = 𝐺𝑏∆𝑇𝑠 +

1
2

𝑄𝑏2 = 𝐺𝑠(∆𝑇ℎ ‒ ∆𝑇𝑠) +
𝑄𝑤

2
+ 𝑄𝑏2 + 𝑄𝑅𝑐2 ‒ 𝑄𝑝

Combine Eqs. S7, S12 and S15, we can get

.                                        (S16)
𝐺𝑏 =

𝑄ℎ + 𝑄𝐿 + 𝑄𝑤 + (𝑄𝑏1 + 𝑄𝑏2)/2 + 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2

∆𝑇ℎ + ∆𝑇𝑠

From Eq. S15 we have

.                                                 (S17)
𝐺𝑠 =

𝐺𝑏∆𝑇𝑠 ‒
𝑄𝑤

2
‒

𝑄𝑏2

2
‒ 𝑄𝑅𝑐2 + 𝑄𝑝

∆𝑇ℎ ‒ ∆𝑇𝑠

In view that we are not able to get accurate values for the contact electrical resistance, QRc1 

and QRc2, the above equations cannot be used to solve for Gb and Gs. Fortunately, the expressions 

for Gb and Gs can be simplified to get rid of the unknown resistance. The heating comes from three 

sources, namely, Joule heat from the DC current to raise the temperature of the heating membrane, 

Joule heat generated by the depinning current, and Peltier effect that moves Qp from one membrane 

to the other. The last two are induced by Iw and will be grouped together as the depinning 

component.

We split the temperature rise of the heating and sensing membranes into two components

,∆𝑇ℎ = ∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇ℎ,𝐼𝐷𝐶
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.∆𝑇𝑠 = ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇𝑠,𝐼𝐷𝐶

Then we can rewrite Equation S16 and S17 into

           
𝐺𝑏 =

𝑄ℎ + 𝑄𝐿 + 𝑄𝑤 + (𝑄𝑏1 + 𝑄𝑏2)/2 + 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2

∆𝑇ℎ + ∆𝑇𝑠
=

(𝑄ℎ + 𝑄𝐿) + [𝑄𝑤 + (𝑄𝑏1 + 𝑄𝑏2)/2 + 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2]
(∆𝑇ℎ,𝐼𝐷𝐶 + ∆𝑇𝑠,𝐼𝐷𝐶) + (∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛)

(S18)

                                       (S19)
𝐺𝑠 =

𝐺𝑏∆𝑇𝑠,𝐼𝐷𝐶 + (𝐺𝑏∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛 ‒
𝑄𝑤

2
‒

𝑄𝑏2

2
‒ 𝑄𝑅𝑐2 + 𝑄𝑝)

(∆𝑇ℎ,𝐼𝐷𝐶 ‒ ∆𝑇𝑠,𝐼𝐷𝐶) + (∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 ‒ ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛)

Figure S2. Schematic diagram demonstrating the effect of the depinning current.

In the experiment, if we only apply the depinning current without the DC heating current IDC, 

as shown in Figure S2, the heating effect is only caused by the depinning current. In this case, the 

heat transferred from the heating side to the substrate is 

.                                        (S20)
𝑄1,𝑑𝑒𝑝𝑖𝑛 = 𝐺𝑏∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 +

1
2

𝑄𝑏1

Similarly, the heat transferred from the sensing side to the substrate is 
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.                                           (S21)
𝑄2,𝑑𝑒𝑝𝑖𝑛 = 𝐺𝑏∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛 +

1
2

𝑄𝑏2

Considering energy balance, we have

.                        (S22)𝑄1,𝑑𝑒𝑝𝑖𝑛 + 𝑄2,𝑑𝑒𝑝𝑖𝑛 = 𝑄𝑏1 + 𝑄𝑏2 + 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2 + 𝑄𝑤

Combining Eqs. S20, S21 and S22, we obtain an expression for Gb as

.                                                  (S23)
𝐺𝑏 =

𝑄𝑤 +
𝑄𝑏1 + 𝑄𝑏2

2
+ 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2

∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛

In addition, the heat transfer from the heating side to the sensing side through the nanowire can be 

expressed as   

.                                    (S24)
𝑄𝑠 =

𝑄𝑤

2
+ 𝐺𝑠(∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 ‒ ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛) ‒ 𝑄𝑝

For the sensing side, we have

.                                                  (S25)𝑄2,𝑑𝑒𝑝𝑖𝑛 = 𝑄𝑠 + 𝑄𝑏2 + 𝑄𝑅𝑐2

Combining Eqs S21, S24 and S25, we get

.                                          (S26)
𝐺𝑠 =

𝐺𝑏∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛 ‒
𝑄𝑤

2
‒

𝑄𝑏2

2
‒ 𝑄𝑅𝑐2 + 𝑄𝑝

∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 ‒ ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛

Comparing Eqs. S18, S19, S24 and S26, mathematically we have 

,      
𝐺𝑏 =

(𝑄ℎ + 𝑄𝐿) + [𝑄𝑤 +
𝑄𝑏1 + 𝑄𝑏2

2
+ 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2]

(∆𝑇ℎ,𝐼𝐷𝐶 + ∆𝑇𝑠,𝐼𝐷𝐶) + (∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛)
=

𝑄𝑤 +
𝑄𝑏1 + 𝑄𝑏2

2
+ 𝑄𝑅𝑐1 + 𝑄𝑅𝑐2

∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 + ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛
=

𝑄ℎ + 𝑄𝐿

∆𝑇ℎ,𝐼𝐷𝐶 + ∆𝑇𝑠,𝐼𝐷𝐶

(S27)
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.   
𝐺𝑠 =

𝐺𝑏∆𝑇𝑠,𝐼𝐷𝐶 + (𝐺𝑏∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛 ‒
𝑄𝑤

2
‒

𝑄𝑏2

2
‒ 𝑄𝑅𝑐2 + 𝑄𝑝)

(∆𝑇ℎ,𝐼𝐷𝐶 ‒ ∆𝑇𝑠,𝐼𝐷𝐶) + (∆𝑇ℎ,𝑑𝑒𝑝𝑖𝑛 ‒ ∆𝑇𝑠,𝑑𝑒𝑝𝑖𝑛)
=  

𝐺𝑏∆𝑇𝑠 ‒
𝑄𝑤

2
‒

𝑄𝑏2

2
‒ 𝑄𝑅𝑐2 + 𝑄𝑝

∆𝑇ℎ ‒ ∆𝑇𝑠
 =

𝐺𝑏∆𝑇𝑠,𝐼𝐷𝐶

∆𝑇ℎ,𝐼𝐷𝐶 ‒ ∆𝑇𝑠,𝐼𝐷𝐶

(S28)

The above two equations allow us to extract the thermal conductance of the supporting legs/beams 

and the nanowire sample with an applied depinning electric field. The essential idea is that the 

heating effects of the depinning voltage are a background that can be canceled out in the derivation 

of the beam and wire conductance.

II. Contact Treatment to Minimize the Electrical and Thermal Resistance

Our measurement indicates that the electrical resistance at the two contacts between the 

nanowire sample and suspended membranes without any treatment can be over 100 kΩ at 50 K. 

While this value only has marginal effect on the derived electrical conductance as we use the four-

probe method to measure it. The large contact electrical resistance does affect the thermal 

measurement under the depinning condition as the contact resistance can induce a temperature rise 

of more than 50 K with the applied depinning voltage. To minimize this temperature rise, it is 

critical to reduce the contact electrical resistance. To do so, we fine tune our electron-beam induced 

deposition process based on published reports1–4 by selecting a larger operating current of 1.4 nA 

to increase the content of Pt in the deposited Pt/C mixture to achieve a low the contact resistance. 

The measured contact electrical resistance is shown in Figure S3, which shows that it is reduced 

to be below 1 kΩ. Doing so, the overall temperature rise is measured to be less than 6 K during 

the thermal measurement.
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Figure S3. The measured contact electrical resistance versus temperature.

III. Effects of Drift Velocity

The strongest electric field we applied for depinning is below 2 V/cm. Based on the mobility 

of electrons in NbSe3,
5 the maximum drift velocity is calculated as

.                          (S29)𝑣𝑑 = 𝜇𝐸 = 1500 𝑐𝑚2 (𝑉 ∙ 𝑠) × 2 𝑉/𝑐𝑚 = 3 × 103 𝑐𝑚/𝑠

The Fermi velocity vF in NbSe3 is estimated to be .6 Therefore, the drift velocity is 2.5 × 107 𝑐𝑚/𝑠

less than 0.02% of the Fermi velocity and the contribution of the external electric field to the 

electronic thermal conduction can be neglected.

IV. Scattering Rates due to Different Scattering Mechanisms

Phonon mode dependent scattering rates and phonon mean free path (MFP) from different 

scattering mechanisms is provided at 47 K. As shown in Figure S4a, the phonon-phonon (ph-ph) 

scattering plays a minor role (the scattering rate is only in gigahertz regime across the entire 

spectrum) at this low temperature regime (47 K). In contrast, electron-phonon (e-ph), phonon-

boundary and phonon-impurity scattering all make appreciable contributions to the total phonon 

scattering rate. It is shown that boundary scattering is more important for low frequency phonons 
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while e-ph scattering and defect scattering play important roles across the entire spectrum. Under 

depinning conditions, e-ph scattering rate further increases due to the enhanced free electron 

concentration, which suggests that the reduction in lattice thermal conductivity is indeed due to 

the enhanced e-ph scattering rate. Similar conclusions can also be drawn from the corresponding 

MFP in Figure S4b.

We note that while usually e-ph scattering is only important in high temperature region for 

electrical transport, it can play a critical role for phonon transport at low temperatures as ph-ph 

scattering is also drastically suppressed as temperature drops.

Figure S4. (a) Scattering rates of different mechanisms at 47 K; (b) Phonon MFP determined by 
different mechanisms at 47 K.

V. Effects of the Depinning Current on Lattice Thermal Conductivity

We plotted the lattice thermal conductivity as a function of the electrical current in Figure S5a 

for a 94 nm diameter wire. It can be seen that the lattice thermal conductivity continuously 

decreases with the increasing depinning current before it reaches ~5.5 A, beyond which the lattice 

thermal conductivity stays the same as no more condensed electrons are depinned.
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Figure S5. Lattice thermal conductivity as a function of (a) the depinning current, and (b) the 
carrier concentration, during depinning test for the 94 nm NbSe3 nanowire sample at 47 K.

Figure S5b shows the relation between the carrier concentration and lattice thermal 

conductivity, which shows that increased electron concentration leads to a stronger e-ph scattering 

and thus a reduced lattice thermal conductivity. This plot further demonstrates the reduction in 

lattice thermal conductivity is induced carrier concentration variation, not depinning current and 

other factors.

VI. Uncertainty Analysis

The derived thermal conductivity tolerates noises from the thermal conductance uncertainty, 

and uncertainties associated with the length and cross-sectional area measurement. Based on the 

formula below

,                                                               (S30)
𝜅 =

𝐺𝐿
𝐴

where G is the measured thermal conductance, L is the measured length of the nanowire, and A is 

cross section area, the uncertainty of thermal conductivity can be estimated as

.                                             (S31)
𝛿𝜅
𝜅

= (𝛿𝐺
𝐺 )2 + (𝛿𝐿

𝐿 )2 + (𝛿𝐴
𝐴 )2



13

The uncertainty of thermal conductance is estimated to be 2 ~ 3% depending on temperature 

using a Monte Carlo simulation approach in our previous work.7 The length L is measured by 

SEM, and the uncertainty is evaluated as 0.2 µm, which introduce about 3% uncertainty for our 

~6.5 µm long sample. The relative uncertainty for the cross-sectional area is conservatively 

estimated to be 10%. Together, the overall uncertainty for the derived thermal conductivity is 

determined to be 11% at 300 K.

The electrical resistance of our samples was calculated by taking the slope of the linear fitted 

I-V curve. The uncertainty is calculated by

,                                           (S32)

𝑈𝑅 =
∑(𝑉𝑖 ‒ 𝑅𝐼𝑖 ‒ 𝑏)2

𝑛 ‒ 2
×

𝑛

𝑛∑𝐼2
𝑖 ‒ (∑𝐼𝑖)2

where n is the number of measured data points, b is the fitted intercept representing zero-point 

current shift. UR is calculated to be 5.4 Ω at 300 K for our 94 nm diameter sample. This is only 

0.47 % of the linear fitted resistance (1148.8 Ω). As such, we didn’t show the error bar for electrical 

resistance in the main paper.
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