Supplemental Information:

On the impact of large-amplitude mode truncation in anharmonic frequency calculations

Arman Nejad^{*a} and Deborah L. Crittenden^b

^a Institute of Physical Chemistry, University of Göttingen, Tammannstr. 6, D-37077 Göttingen (Germany). E-mail: anejad@gwdg.de

^b School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.

Contents

1	Computational details	$\mathbf{S2}$
2	Fundamental wavenumbers	$\mathbf{S2}$
	2.1 Computation of low-resolution band centres for NH_3 , H_2O_2/D_2O_2 and CH_3OH	S2
	2.2 Part I – Tetratomics	S3
	2.3 Part II – Pentatomics and hexatomics	$\mathbf{S8}$
3	R matrices	S10
	3.1 Tetratomic examples: NH_3 , SO_3 and H_2O_2	S10
	3.2 Pentatomics: CH_2NH and NH_2OH	S11
	3.3 Hexatomics: CH_2NOH and CH_3OH	S12
Re	ferences	S13

List of Tables

S1	Fundamental wavenumbers for group (A) SS	3
S1	Fundamental wavenumbers for group (B) S4	4
S1	Fundamental wavenumbers for group (C) Statemental wavenumbers for group (C)	õ
S1	Fundamental wavenumbers for group (D) See	6
S2	Tetratomics: ν_{ref} resonances	7
S3	Tetratomics: $\tilde{\nu}_{harm}$ resonances	7
S4	Fundamental wavenumbers for CH ₂ NH, NH ₂ OH and CH ₂ NOH	8
S5	Fundamental wavenumbers for $CH_3OH(G_6)$	9
S6	Fundamental wavenumbers for $CH_3OH(C_s)$	9

1 Computational details

Harmonic frequency calculations have been performed with CFOUR version 1^[1] and MOLPRO version 2018.1^[2, 3]. Prior to each harmonic or anharmonic frequency calculation, the geometry was optimised. Symmetry was enabled in all calculations, except for the MOLPRO calculations on CH₃OH and NH₂OH. Anharmonic quartic force fields were computed from analytic Hessians, using PyPES with default settings. Masses of the following isotopes were used: ¹H, ²H=D, ¹¹B, ¹²C, ¹⁴N, ¹⁶O, ¹⁹F, ²⁷Al, ²⁸Si, ³¹P, ³²S, ¹²¹Sb and ²⁰⁹Bi. Keyword specifications used in each calculation are listed below:

Type of calculation	Program	Keywords
CCSD(T) Hessian	CFOUR	FROZEN_CORE=ON SCF_CONV=9 CC_CONV=9 CC_PROGRAM=ECC
		ABCDTYPE=AOBASIS LINEQ_CONV=9 GEO_CONV=9
		GEO_METHOD=NR VIB=EXACT
CCSD(T)-F12 Hessian	Molpro	$\{GThresh, OptStep=6.d-5, OptGrad=1.d-8, Energy=1.d-10, Zero=1.d-16\}$
		$\{Optg,Gaussian,GRMS=1.d-7,SRMS=1.d-7\}$ $\{Mass,Iso\}$ $\{Frequencies\}$
Anharmonic force field	PyPES	CFOUR_ZMAT ZMAT, DO_NUM_DIFF_NM True, DLVL_CART 4,
		FF_NM_TO_CNM (4)->(4), FF_CNM_TO_NM (4)->(6), SAVE_FF_NM True
VCI	PyVCI	DLVL 6, EXC_LVL 10 (or 9)

2 Fundamental wavenumbers

2.1 Computation of low-resolution band centres for NH_3 , H_2O_2/D_2O_2 and CH_3OH

Due to the symmetric double-well potentials of the ammonia inversion / hydrogen peroxide torsion, the vibrational energy levels are split into two levels, labelled according to their parity as + and -. The low-resolution band centre of vibration i is computed as

$$2\bar{\nu}_i = (W_i^+ - W_{g.s.}^-) + W_i^-$$

= $(E_i^+ - E_{g.s.}^-) + (E_i^- - E_{g.s.}^+),$ (1)

where W is the term value relative to the vibrational ground state, whereas E includes zero-point energy. For methanol, the three-fold torsional degeneracy results in one A and two E levels. Here, the low-resolution band centre is computed as

$$3\bar{\nu}_{i} = 2\nu_{i}(E) + \nu_{i}(A)$$

= 2W_i(E) - 2W_{g.s.}(E) + W_i(A)
= 2E_i(E) - 2E_{g.s.}(E) + E_i(A) - E_{g.s.}(A). (2)

2.2 Part I – Tetratomics

Table S1: Fundamental wavenumbers for all 24 tetratomic molecules in our benchmarking set. Computational (ν_{lit}) and, when available, high-resolution gas phase (ν_{expt}) literature data (references in brackets), and in this work computed VCI(10) fundamentals $(\nu^{(10)})$ and their respective convergence errors (δ_{cvge}) are shown in cm⁻¹. Low-resolution band centres are shown for NH₃ and H₂O₂/D₂O₂ (see footnotes).

	D	demontal	1/		16.		$\nu^{(10)}$				$\delta_{\rm cvge} = \nu^{(10)} - \nu^{(9)}$			
	гu	luamentai	$\nu_{\rm exp}$	ot	$\nu_{\rm lit}$		$\nu_{\rm ref}$	$\tilde{\nu}_{ m harm}$	$\nu_{ m drop}$	$\tilde{\nu}_{\mathrm{drop}}$	$\nu_{\rm ref}$	$\tilde{\nu}_{\rm harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\mathrm{drop}}$
						G	roup (A)						
	ν_1 A	1 s str	3336.2	[4]	3342.5	[5]	3344.7	3337.3	3347.6	3353.4	-5.6	1.3	0.0	0.0
	ν_2 A	$_1$ inversion	949.9	[6]	951.2	[5]	951.9	992.7			-0.5	-0.4		
NIT a	$\nu_3 E$	$a \operatorname{str}$	3443.4	[7]	3449.0	[5]	3453.1	3450.2	3462.3	3462.0	0.0	-0.1	0.0	0.0
NH3	$\nu_3 E$	$a \operatorname{str}$	3443.4	[7]	3449.0	[5]	3453.1	3450.2	3462.3	3462.0	0.0	-0.1	0.0	0.0
	ν_4 E	bend	1626.4	[8]	1628.7	[5]	1629.2	1624.3	1630.4	1631.6	0.0	0.0	0.0	0.0
	ν_4 E	bend	1626.4	[8]	1628.7	[5]	1629.2	1624.3	1630.4	1631.6	0.0	0.0	0.0	0.0
	$ u_1 $	$_1 \mathrm{s str}$	2321.1	[9]	2321.0	[10]	2323.1	2324.1	2325.9	2325.7	0.0	0.0	0.0	0.0
	$ u_2 $	$_1$ inversion	992.1	[11]	991.9	[10]	991.8	998.2			0.0	0.0		
рц	$\nu_3 E$	$a \operatorname{str}$	2326.9	[9]	2325.8	[10]	2327.8	2330.8	2332.8	2332.3	0.0	0.0	0.0	0.0
Г 11 <u>3</u>	$\nu_3 E$	$a \operatorname{str}$	2326.9	[9]	2325.8	[10]	2327.8	2330.8	2332.8	2332.3	0.0	0.0	0.0	0.0
	$\nu_4 E$	bend	1118.3	[11]	1118.9	[10]	1119.7	1120.2	1119.9	1119.6	0.0	0.0	0.0	0.0
	ν_4 E	bend	1118.3	[11]	1118.9	[10]	1119.7	1120.2	1119.9	1119.6	0.0	0.0	0.0	0.0
	ν_1 A	$_1 \mathrm{s str}$	1890.5	[12]	1893.8	[13]	1894.2	1896.0	1897.5	1897.3	0.0	0.0	0.0	0.0
	$ u_2 $	$_1$ inversion	782.2	[12]	798.9	[13]	798.4	803.0			0.0	0.0		
ShH.	$\nu_3 E$	$a \operatorname{str}$	1894.5	[12]	1899.1	[13]	1899.8	1901.9	1903.5	1903.1	0.0	0.0	0.0	0.0
50113	ν_3 E	$a \operatorname{str}$	1894.5	[12]	1899.1	[13]	1899.8	1901.9	1903.5	1903.1	0.0	0.0	0.0	0.0
	ν_4 E	bend	827.9	[12]	836.8	[13]	836.8	837.4	836.5	836.1	0.0	0.0	0.0	0.0
	ν_4 E	bend	827.9	[12]	836.8	[13]	836.8	837.4	836.5	836.1	0.0	0.0	0.0	0.0
	ν_1 A	$_1 \mathrm{s str}$	1733.3	[14]	1742.4	[13]	1742.7	1745.6	1746.7	1746.6	0.0	0.0	0.0	0.0
	$ u_2 $	$_1$ inversion	726.7	[14]	733.9	[13]	733.4	738.3			0.0	0.0		
BH.	$\nu_3 E$	$a \operatorname{str}$	1734.5	[14]	1746.3	[13]	1746.7	1749.2	1750.5	1750.1	0.0	0.0	0.0	0.0
	$\nu_3 E$	$a \operatorname{str}$	1734.5	[14]	1746.3	[13]	1746.7	1749.2	1750.5	1750.1	0.0	0.0	0.0	0.0
	$\nu_4 E$	bend	751.2	[14]	759.5	[13]	759.3	760.3	759.1	758.7	0.0	0.0	0.0	0.0
	$\nu_4 E$	bend	751.2	[14]	759.5	[13]	759.3	760.3	759.1	758.7	0.0	0.0	0.0	0.0
	ν_1 A	$_1 \mathrm{s str}$			1840.7	[15]	1840.4	1838.1	1839.1	1838.5	0.0	0.0	0.0	0.0
	$ u_2 $	$_1$ inversion			844.1	[15]	844.2	844.4			0.0	0.0		
C:TT-	ν_3 E	$a \operatorname{str}$			1821.5	[15]	1824.5	1828.8	1828.9	1828.1	0.0	0.0	0.0	0.0
$ ^{\operatorname{SIH}_3}$	ν_3 E	$a \mathrm{str}$			1821.5	[15]	1824.5	1828.8	1828.9	1828.1	0.0	0.0	0.0	0.0
	ν_4 E	bend			937.8	[15]	941.0	939.6	940.1	939.8	0.0	0.0	0.0	0.0
	$\nu_4 E$	bend			937.8	[15]	941.0	939.6	940.1	939.8	0.0	0.0	0.0	0.0

^a Low-resolution experimental and computational literature band centres are computed according to Eq. 1. Pairs of (W_i^+, W_i^-) are listed in cm⁻¹: Expt:

 $W_{\text{g.s.}} = (0, 0.79),^{[6]} W_1 = (3336.11, 3337.10), W_2 = (932.43, 968.12), W_3 = (3443.68, 3443.99) \text{ and } W_4 = (1626.28, 1627.37).$ Lit:

 $W_{\text{g.s.}} = (0, 0.8), [5] W_1 = (3342.4, 3343.3), W_2 = (933.8, 969.5), W_3 = (3449.2, 3449.6) \text{ and } W_4 = (1628.6, 1629.7).$

Table S1:Continued.

	Fundamental		14.		ν		$ u^{(10)} $		$\delta_{\rm cvge} = \nu^{(10)}$		(10) - 1	$(0) - \nu^{(9)}$	
	Fundamentai	$\nu_{\rm expt}$	$\nu_{\rm lit}$		$ u_{\rm ref} $	$\tilde{\nu}_{ m harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\mathrm{drop}}$	ν_{ref}	$\tilde{\nu}_{\rm harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\rm drop}$	
				Gro	oup (B)								
	$\nu_1 A'_1$ s str		887.6	[16]	887.9	886.8	889.7	889.7	0.0	0.0	0.0	0.0	
	$\nu_2 A_2''$ oop	691.2 [17]	696.2	[16]	696.2	693.7			0.0	0.0			
DF	$ u_3 E' \text{ a str} $	1454.0 [18]	1469.6	[16]	1470.3	1472.0	1472.8	1472.8	0.0	0.0	0.0	0.0	
	$ u_3 E' \text{ a str} $	1454.0 [18]	1469.6	[16]	1470.2	1472.6	1472.8	1472.8	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend	479.4 [19]	480.6	[16]	480.9	479.4	480.4	480.4	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend	479.4 [19]	480.6	[16]	480.9	479.1	480.4	480.4	0.0	0.0	0.0	0.0	
	$\nu_1 A'_1 \text{ s str}$		1044.5	[16]	1044.8	1043.5	1046.5	1046.5	0.0	0.0	0.0	0.0	
	$\nu_2 A_2''$ oop		812.6	[16]	812.7	812.4			0.0	0.0			
CF^+	$\nu_3 E'$ a str		1682.8	[16]	1683.5	1685.7	1686.9	1686.9	0.0	0.0	0.0	0.0	
	$\nu_3 E'$ a str		1682.8	[16]	1683.5	1687.8	1686.9	1686.9	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		592.6	[16]	593.0	591.5	592.7	592.7	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		592.6	[16]	593.0	591.2	592.7	592.7	0.0	0.0	0.0	0.0	
	$\nu_1 A'_1 \text{ s str}$		689.5	[20]	689.0	689.7	686.4	686.4	0.0	0.0	0.0	0.0	
	$\nu_2 A_2''$ oop		301.1	[20]	301.3	300.2			0.0	0.0			
AIF.	$\nu_3 E'$ a str		951.8	[20]	951.2	951.6	951.6	951.6	0.0	0.0	0.0	0.0	
All'3	$\nu_3 E'$ a str		951.8	[20]	951.2	951.2	951.6	951.6	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		241.4	[20]	241.4	240.8	241.1	241.1	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		241.4	[20]	241.4	240.7	241.1	241.1	0.0	0.0	0.0	0.0	
	$\nu_1 A'_1 \text{ s str}$		853.3	[20]	852.8	853.8	850.9	850.9	0.0	0.0	0.0	0.0	
	$\nu_2 A_2''$ oop		356.7	[20]	356.8	356.1			0.0	0.0			
S;E+	$\nu_3 E'$ a str		1187.9	[20]	1187.2	1187.8	1188.0	1188.0	0.0	0.0	0.0	0.0	
5113	$\nu_3 E'$ a str		1187.9	[20]	1187.2	1187.4	1188.0	1188.0	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		307.2	[20]	307.2	306.5	307.0	307.0	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend		307.2	[20]	307.2	306.5	307.0	307.0	0.0	0.0	0.0	0.0	
	$\nu_1 A'_1 \text{ s str}$		1067.0	[21]	1066.9	1071.7	1066.5	1066.5	0.0	0.0	0.0	0.0	
	$\nu_2 A_2''$ oop	497.6 [22]	498.6	[21]	496.4	500.4			0.0	0.0			
SO	$ \nu_3 E' \text{ a str} $	1391.5 [23]	1396.3	[21]	1396.3	1397.6	1398.5	1398.5	0.0	0.0	0.0	0.0	
1003	$ \nu_3 E' \text{ a str} $	1391.5 [23]	1396.3	[21]	1396.3	1398.2	1398.5	1398.5	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend	530.1 [22]	528.1	[21]	528.3	527.2	528.0	528.0	0.0	0.0	0.0	0.0	
	$\nu_4 E'$ bend	530.1 [22]	528.1	[21]	528.3	527.3	528.0	528.0	0.0	0.0	0.0	0.0	
	$\nu_1 A_1 CH_2 s str$	2782.5 [24]	2781.7	[25]	2784.1	2782.0	2788.2	2788.2	0.0	0.0	0.0	0.0	
	$\nu_2 A_1$ CO str	1746.0 [26]	1744.6	[25]	1744.9	1748.5	1748.5	1748.5	0.0	0.0	0.0	0.0	
HaCO	$\nu_3 A_1$ CH ₂ bend	1500.2 [26]	1499.1	[25]	1499.3	1491.3	1499.9	1499.9	0.0	0.0	0.0	0.0	
11200	$\nu_4 B_1$ oop	1167.3 [26]	1166.1	[25]	1166.1	1149.0			0.0	0.0			
	$\nu_5 B_2 CH_2 a str$	2843.3 [24]	2842.4	[25]	2845.0	2847.0	2851.8	2851.8	0.0	0.0	0.0	0.0	
	$\nu_6 B_2 CH_2 rock$	1249.1 $[26]$	1245.6	[25]	1245.5	1237.4	1242.2	1242.2	0.0	0.0	0.0	0.0	
	$\nu_1 A_1$ SiH ₂ s str		2171.0	[27]	2171.4	2171.2	2174.7	2174.7	0.0	0.0	0.0	0.0	
	$\nu_2 A_1$ SiO str		1206.9	[27]	1207.1	1209.0	1209.0	1209.0	0.0	0.0	0.0	0.0	
HaSiO	$\nu_3 A_1$ SiH ₂ bend		994.3	[27]	994.6	991.2	995.0	995.0	0.0	0.0	0.0	0.0	
112010	$\nu_4 B_1$ oop		690.9	[27]	690.6	684.9			0.0	0.0			
	$\nu_5 B_2$ SiH ₂ a str		2191.3	[27]	2192.1	2194.2	2196.4	2196.4	0.0	0.0	0.0	0.0	
	$\nu_6 B_2 \operatorname{SiH}_2 \operatorname{rock}$		680.1	[27]	680.1	676.8	678.3	678.3	0.0	0.0	0.0	0.0	

Table S1: Continued.

	Fundamental	14	16.		$\nu^{(}$	10)		$\delta_{\rm cv}$	$_{\rm ge} = \nu^{(1)}$	$(0) - \nu$	(9)
	Fundamenta	ν_{expt}	$ u_{ m lit}$	$\nu_{ m ref}$	$\tilde{\nu}_{ m harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\mathrm{drop}}$	$ u_{ m ref} $	$\tilde{\nu}_{ m harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\mathrm{drop}}$
			Gro	oup (C)							
	$\nu_1 A$ OH s str	3608.2 [28]	3609.1 [29]	3593.0	3590.2	3607.3	3607.3	-2.8	-14.7	-0.1	-0.1
	$\nu_2 A$ s bend	1391.4 [30]	1392.4 [29]	1393.7	1388.4	1385.1	1385.1	0.3	0.0	0.0	0.0
ноонь	$\nu_3 A$ OO str	866.2 [31]	866.3 [29]	868.3	867.2	867.0	867.0	-0.4	0.4	0.0	0.0
	$\nu_4 A$ torsion	307.0 [32]	307.7 [29]	367.8	408.1			-13.4	-0.1		
	$\nu_5 B$ OH a str	3609.0 [33]	3610.3 [29]	3602.8	3602.9	3608.9	3608.9	0.4	-0.4	0.0	0.0
	$\nu_6 B$ a bend	1269.2 [30]	1269.1 [29]	1279.6	1287.6	1281.6	1281.6	-1.0	-0.1	0.0	0.0
	$\nu_1 A \text{ OD s str}$		2667.2 [29]	2665.0	2663.2	2666.3	2666.3	-2.3	-0.6	0.0	0.0
	$\nu_2 A$ s bend		1026.2 [29]	1026.0	1023.5	1023.0	1023.0	-0.1	-0.4	0.0	0.0
	$\nu_3 A$ OO str		869.3 [29]	870.2	870.0	869.7	869.7	-0.2	-0.1	0.0	0.0
DOOD	$\nu_4 A$ torsion	229.1 [34]	230.1 [29]	267.7	288.1			-1.5	-0.8		
	$\nu_5 B$ a str		2666.6 [29]	2663.8	2664.3	2665.6	2665.6	-0.4	-0.4	-0.1	-0.1
	$\nu_6 B$ OD a bend		945.4 [29]	950.5	957.5	955.0	954.9	-0.3	-0.1	0.0	0.0
	$\nu_1 A$ OH str	3625.6 [35]	3625.9 [36]	3615.7	3618.4	3633.3	3633.3	-2.6	-1.9	0.0	0.0
	$\nu_2 A$ SH str	2538.0^d [37]	2544.4 [36]	2548.0	2545.8	2546.1	2546.1	-1.4	-0.9	0.0	0.0
UCOU	$\nu_3 A$ SOH bend		1174.0 [36]	1184.0	1188.7	1178.5	1178.5	-0.5	-0.3	0.0	0.0
HSOH	$\nu_4 A$ OSH bend		1007.7 [36]	1016.3	1007.8	1007.0	1007.0	21.5	-0.5	0.0	0.0
	$\nu_5 A$ SO str		760.0 [36]	761.0	763.6	763.4	763.4	-0.7	-0.4	0.0	0.0
	$\nu_6 A$ torsion		443.0 [36]	480.3	506.4			-1.0	-0.4		
$ \begin{array}{ c c c c c c } \hline \nu_6 & A & \text{torsion} \\ \hline$											

Low-resolution band centres for HOOH and DOOD computed from tunnelling split energy levels (see footnote a): Expt (HOOH):

 $W_{g.s.}^{(32)} = (0, 11.44), [32] W_1 = (3609.8, 3617.95), W_2 = (1395.88, 1398.32), W_3 = (865.94, 877.93), W_4 = (254.55, 370.89), W_5 = (1395.88, 1398.32), W_5 = (1395.$ $(3610.66, 3618.84), W_6 = (1264.58, 1285.12).$ Lit (HOOH):

$$\begin{split} & W_{\text{g.s.}} = (0, 11.3), ^{[29]} W_1 = (3610.6, 3618.8), W_2 = (1394.9, 1401.1), W_3 = (866.0, 877.8), W_4 = (255.4, 371.3), W_5 = (3611.8, 3620.0), W_6 = (1264.5, 1285.0). \end{split}$$

Expt (DOOD):

 $W_{g.s.} = (0, 1.93)^{[34]}$ and $W_4 = (208.87, 251.26)$. Lit (DOOD):

d

In (DOOD). $W_{\text{g.s.}} = (0, 1.9)^{[29]}$ and $W_4 = (210.1, 251.9)$. Beckers *et al.* report a low-resolution value of 2538,^[38] which is corroborated by the high-resolution value 2537.9869(12)^[36] from the dissertation^[37] of O. Baum.

Table S1:Continued.

	Б	1 4 1						$\nu^{(}$	10)		$\delta_{\rm cv}$	$_{\rm ge} = \nu^{(}$	$(10) - \nu$,(9)
	Fun	damental	$ u_{\rm exp} $	ot	$ u_{ m lit} $		$\nu_{\rm ref}$	$\tilde{\nu}_{ m harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{ m drop}$	$\nu_{\rm ref}$	$\tilde{\nu}_{\rm harm}$	$\nu_{\rm drop}$	$\tilde{\nu}_{\mathrm{drop}}$
					. (Grou	p (D)		*	*				
	$\nu_1 A_a$	NH s str			3033.3	[39]	3036.5	3042.6	3044.3	3044.3	-0.1	-0.1	-0.1	-0.1
	$\nu_2 A_a^g$	NH s bend			1579.4	39	1579.7	1584.8	1582.0	1582.0	0.0	0.0	0.0	0.0
/	$\nu_3 A_a$	$NN \ str$			1519.3	[39]	1519.3	1524.3	1524.1	1524.1	0.0	0.0	0.0	0.0
t-HNNH	$\nu_4 A_u^s$	torsion	1288.6	[40]	1294.2	[39]	1294.2	1318.5			0.0	0.0		
	$\nu_5 B_u$	NH a str	3120.3	[40]	3125.0	[39]	3114.8	3117.8	3123.8	3123.8	-0.1	-0.1	-0.1	-0.1
	$\nu_6 B_u$	NH a bend	1316.4	[40]	1317.5	[39]	1317.9	1323.1	1316.0	1316.0	0.0	0.0	0.0	0.0
	$\nu_1 A'$	OH str			3676.2	[41]	3662.0	3666.4	3681.9	3681.9	-2.7	-3.0	-0.1	-0.1
	$\nu_2 A'$	SiH str			1891.0	[41]	1872.6	1878.5	1870.5	1870.5	0.9	2.0	-0.3	-0.3
a HSIOHe	$\nu_3 A'$	a bend			939.0	[41]	948.1	954.4	946.1	946.1	-0.7	-2.6	-0.2	-0.2
<i>c</i> -1151011	$\nu_4 A'$	$SiO \ str$			841.1	[41]	841.6	842.4	842.7	842.7	-0.3	-0.2	-0.1	-0.1
	$\nu_5 A'$	s bend			727.0	[41]	745.5	754.7	738.3	738.3	-2.2	0.1	-0.1	-0.1
	$\nu_6 A''$	torsion			599.6	[41]	626.7	652.2			-0.5	-1.5		
	$\nu_1 A'$	$OH \ str$			3673.1	[41]	3665.9	3663.6	3678.0	3678.0	14.8	-0.3	0.0	0.0
	$\nu_2 A'$	SiH str			1950.0	[41]	1951.3	1954.3	1955.0	1955.0	-0.3	-0.2	-0.1	-0.1
t-HSiOH	$\nu_3 A'$	s bend			929.9	[41]	940.4	952.9	941.3	941.3	0.1	-0.5	-0.3	-0.3
	$\nu_4 A'$	SiO str			836.9	[41]	837.6	839.3	839.1	839.1	-0.3	-0.2	-0.1	-0.1
	$\nu_5 A'$	a bend			788.4	[41]	797.7	801.8	792.5	792.5	-0.6	-0.4	-0.3	-0.3
	$\nu_6 A''$	torsion			632.7	[41]	652.4	687.1			-1.0	-0.6		
	$\nu_1 A'$	OD str			2713.1	[41]	2711.0	2711.3	2717.0	2717.0	0.6	-0.2	0.0	0.0
	$\nu_2 A'$	SiD str			1372.8	[41]	1375.0	1362.3	1374.8	1374.8	-0.3	-0.2	-0.1	-0.1
<i>c</i> -DSiOD	$\nu_3 A'$	SiO str			838.4	[41]	838.6	839.0	839.6	839.6	-0.1	-0.1	0.0	0.0
	$\nu_4 A'$	a bend			718.2	[41]	721.2	725.3	720.8	720.8	-0.2	-0.2	-0.1	-0.1
	$\nu_5 A'$	s bend			523.4	[41]	528.5	534.2	526.5	526.5	-0.3	-0.2	-0.1	-0.1
	$\nu_6 A^{\prime\prime}$	torsion			450.2	[41]	458.6	474.5	0710.0	0710.0	-0.4	-0.3	0.0	0.0
	$\nu_1 A'$	OD str			2709.7	[41]	2707.9	2706.8	2712.6	2712.6	-0.1	-0.1	0.0	0.0
	$\nu_2 A'$	SiD str			1423.0	[41]	1425.8	1429.5	1427.4	1427.4	-0.2	-0.2	-0.1	-0.1
t-DSiOD	$\nu_3 A$	SIO str			834.7	[41]	835.0	830.3	830.2 700 5	830.2 700 F	-0.1	-0.1	0.0	0.0
	$\nu_4 A$	s bend			100.3	[41]	101.3	(14.0 578.0	709.5 E74.1	709.5 E74.1	-0.2	-0.1	-0.1	-0.1
	$\nu_5 A$	torgion			070.4 460.9	[41]	475.0	406.0	574.1	574.1	-0.2	-0.1	-0.1	-0.1
	$\nu_6 A$	OH str			409.2 2452.2	[41]	470.9	<u>490.0</u> 3441.6	2440.4	2440.4	-0.4	$\frac{-0.3}{2.2}$	0.1	0.1
	$\nu_1 A$ $\nu_2 A'$	C=0 str			1894.1	[42]	1830.1	1893 /	1822.0	1822.0	-1.0	0.0	-0.1	-0.1
	$\nu_2 \Lambda$ $\nu_0 \Lambda'$	COH bend			1024.1	[42]	1296 6	1020.4	1025.9	1025.9	-0.7	-0.3	0.0	0.0
<i>c</i> -HOCO	$\nu_3 \Lambda$ $\nu_4 A'$	C=0 str			1200.2 1042.4	[42]	1048.2	1050.3	1049.9	1049.9	-0.2	-0.4	0.0	0.0
	$\nu_4 \Pi$ $\nu_5 A'$	OCO bend			601.2	[42]	602.9	603.2	600.0	600.0	-0.9	-0.1	0.0	0.0
	$\nu_6 A''$	torsion			540.2	[42]	588.9	596.8	000.0	000.0	-1.0	-0.8	0.0	0.0
	$\nu_0 = A'$	OH str	3635.7	[43]	3641.0	[44]	3627.8	3632.3	3650.5	3650.5	3.5	1.8	-0.1	-0.1
	$\nu_2 A'$	$C = O \operatorname{str}$	1852.6	[45]	1862.0	[44]	1861.0	1861.4	1861.6	1861.6	-0.7	-0.3	0.0	0.0
, trogof	$\nu_3 A'$	COH bend		[-]	1212.7	[44]	1224.8	1228.6	1219.5	1219.5	-0.1	-0.3	-0.1	-0.1
t-HOCO	$\nu_4 A'$	$C-O \ str$			1052.0	[44]	1049.7	1054.2	1053.2	1053.2	-0.8	-0.4	0.0	0.0
	$\nu_5 A'$	OCO bend			616.0	[44]	619.1	618.6	615.5	615.5	-0.6	-0.4	0.0	0.0
	$\nu_6 A''$	torsion			475.4	[44]	541.6	572.2			-5.1	-2.0		
	$\nu_1 A'$	OD str			2551.6	[42]	2551.2	2547.8	2550.2	2550.2	0.0	0.0	0.0	0.0
	$\nu_2 A'$	C=O str			1827.5	[42]	1826.7	1826.4	1827.2	1827.2	0.0	0.0	0.0	0.0
DOCO	$\nu_3 A'$	$\rm C-O~str$			1123.1	[42]	1123.5	1124.9	1125.5	1125.5	0.0	0.0	0.0	0.0
c-DOCO	$\nu_4 A'$	COD bend			960.9	[42]	969.9	944.1	960.1	960.1	-0.2	-0.2	0.0	0.0
	$\nu_5 A'$	OCO bend			539.8	[42]	541.7	542.4	540.2	540.2	0.0	0.0	0.0	0.0
	$\nu_6 A''$	torsion			446.9	[42]	471.2	478.6			-0.1	-0.1		
	$\nu_1 A'$	OD str	2684.1	[46]	2685.1	[44]	2687.4	2689.8	2693.8	2693.8	-0.7	1.2	0.0	0.0
	$\nu_2 A'$	$C = O \ str$	1851.6	[45]	1859.8	[44]	1859.1	1859.5	1859.8	1859.8	-0.1	-0.2	0.0	0.0
	$\nu_3 A'$	$\rm C-O~str$			1086.4	[44]	1087.4	1090.3	1090.0	1090.0	-0.1	-0.1	0.0	0.0
1-DOCO ⁹	$\nu_4 A'$	COD bend			902.6	[44]	905.9	910.5	906.3	906.3	-0.1	-0.1	0.0	0.0
	$\nu_5 A'$	OCO bend			590.1	[44]	593.2	593.2	589.6	589.6	-0.1	-0.1	0.0	0.0
	$\nu_6 A''$	torsion			368.0	[44]	401.1	422.5			-0.5	-0.4		

Consistent with results by Martin^[41], we observe a strong Fermi resonance between ν_2 and $2\nu_3$, where the resonant is located at 1857.9 ($\nu_{\rm lit}$), 1904.7 ($\nu_{\rm ref}$) and 1901.8 ($\nu_{\rm drop}/\tilde{\nu}_{\rm drop}$), indicating an inverse assignment to Ref. [41]. In Ref. [47] reported VCI data on the CcCRE QFF for t-HOCO are incorrect,^[44] instead CcCR-based values are taken from Ref. [44]. e

fgNo CcCRE-based VCI data for t-DOCO are reported in the literature. **Table S2:** From V_{ref} computed transition wavenumbers (cm^{-1}) and percentage wavefunction contributions P (squared VCI coefficients) from respective VCI basis functions, as a function of VCI excitation level for states that become neardegenerate with: the OSH bending fundamental of HSOH (ν_4), the OH stretching fundamental of *t*-HSiOH (ν_1), the symmetric NH stretching fundamental of NH₃ (ν_1), the terminal C=O stretching fundamental of *c*-HOCO (ν_2) and the OH torsional fundamental of HOOH (ν_4). States are automatically grouped according to their leading wavefunction coefficients. Bolded values indicate logical regroupings of states and associated transition frequencies that could plausibly be assigned as fundamentals.

	$V_{ m ref}$	VCI(8)	VCI(9)	VCI(10)		$V_{\rm ref}$	VCI(8)	VCI(9)	VCI(10)
	Fundamental	1002.3	994.8	1016.3		Fundamental	3666.3	3651.0	3665.9
	$P(\nu_4)$	87%	48%	52%		$P(\nu_1)$	89%	42%	57%
	$P(2\nu_6)$	8%	39%	37%		$P(3\nu_3 + \nu_4)$	< 1%	< 1%	2%
HSOH					+ HSIOH	$P(8\nu_6)$	< 1%	21%	< 1%
	Resonant	1040.4	1016.1	992.9		Resonant		3675.7	3661.2
	$P(\nu_4)$	9%	40%	44%		$P(\nu_1)$		25%	28%
	$P(2\nu_6)$	72%	24%	44%		$P(3\nu_3 + \nu_4)$		20%	13%
						$P(8\nu_6)$		11%	< 1%
	Fundamental	3345.1	3344.7	3339.2		Fundamental	1821.9	1821.7	1830.1
	$P(\nu_1)$	69%	69%	38%		$P(\nu_2)$	68%	66%	59%
	$P(3\nu_2)$	< 1%	< 1%	24%		$P(\nu_5 + 2\nu_6)$	8%	9%	23%
NH ₃	Resonant	3539.5	3432.3	3352.6	L HOCO	Resonant	1840.0	1837.9	1815.9
	$P(\nu_1)$	< 1%	< 1%	31%	2-110000	$P(\nu_2)$	21%	22%	29%
	$P(3\nu_2)$	52%	55%	32%		$P(\nu_5 + 2\nu_6)$	41%	39%	30%
	$P(5\nu_2)$	19%	14%	6%					
	Fundamental	382.4	381.2	367.8					
	$P(\nu_4)$	86%	85%	67%					
ноон	$P(\nu_1 + 8\nu_4)$		< 1%	7%					
	Resonant			428.1					
	$P(\nu_4)$			18%					
	$P(\nu_1 + 8\nu_4)$			30%					

Table S3: From \tilde{V}_{harm} computed transition wavenumbers (cm⁻¹) and percentage wavefunction contributions P (squared VCI coefficients) from respective VCI basis functions for the symmetric OH stretch of HOOH (ν_1) which becomes near-degenerate with $2\nu_2 + \nu_3$, as a function of VCI excitation level. VCI eigenstates are automatically grouped according to their leading basis state wavefunction coefficients.

	$ ilde{V}_{ m harm}$	VCI(8)	VCI(9)	VCI(10)
	Fundamental	3596.9	3604.9	3590.2
	$P(\nu_1)$	43%	53%	39%
ноон	$P(2\nu_2+\nu_3)$	36%	23%	38%
	Resonant	3608.9	3592.7	3600.9
	$P(\nu_1)$	42%	32%	39%
	$P(2\nu_2 + \nu_3)$	29%	45%	28%

$\mathbf{2.3}$ Part II – Pentatomics and hexatomics

Table S4: Fundamental wavenumbers for methyleneimine (CH_2NH), hydroxylamine (NH_2OH) and formaldoxime (CH₂NOH). Computational anharmonic (ν_{lit}) and high-resolution gas phase (ν_{expt}) literature data (references in brackets), harmonic (ω), and computed VCI(9) fundamentals ($\nu^{(9)}$) are shown in cm⁻¹. All reported VCI(9) fundamentals are converged to within $0.1 \,\mathrm{cm}^{-1}$, if not stated otherwise. s and a refer to symmetric and antisymmetric combinations, respectively.

	Б	.	damantal	ú	J ^a		$ u^{(9)}$)		с
	Г	uno	lamentai	CC	CC-F12	$ u_{ m ref} $	$\nu_{ m drop}$	$\tilde{\nu}_{ m drop}$	$ u_{ m lit} $		$\nu_{\rm expt}$;
	ν_1 .	A'	NH str	3435.1	3449.6	3280.7^{d}	3288.5^{d}	3288.5^{d}	3275.3	[48]	3262.6	[49]
	ν_2 .	A'	$CH_2 a str$	3150.9	3156.3	3026.6	3028.0	3027.7	3029.7	[48]	3024.5	[50]
	$ u_3$,	A'	$CH_2 \text{ s str}$	3050.5	3052.6	2912.4	2915.0	2915.2	2909.5	[48]	2914.2	[50]
	$ u_4$.	A'	CN str	1666.5	1675.7	1636.3	1638.9	1639.4	1636.6	[48]	1638.3	[51]
CH_2NH	ν_5 .	A'	CH_2 scissor	1475.5	1480.6	1450.2	1451.2	1451.4	1447.8	[48]	1452.0	[52]
	ν_6 .	A'	CNH bend	1375.1	1380.6	1347.2	1347.7	1347.0	1340.1	[48]	1344.3	[52]
	ν_7 .	A'	CH_2 rock	1067.1	1072.7	1059.2	1058.3	1057.6	1053.6	[48]	1058.2	[53]
	ν_8 .	$A^{\prime\prime}$	NH torsion	1148.7	1155.7	1128.4			1124.8	[48]	1127.0	[53]
	ν_9 .	$A^{\prime\prime}$	CH_2 wag	1071.2	1078.9	1064.0	1062.0	1060.4	1059.9	[48]	1060.8	[53]
	ν_1 .	A'	$OH \ str$	3826.5	3845.3		3663.0	3663.0			3649.9	[54]
	ν_2 .	A'	$NH_2 s str$	3444.7	3458.5		$3291.2^{e,f}$	$3303.9^{e,g}$			3294.2	[54]
	ν_3 .	A'	NH_2 scissor	1663.2	1669.7		1608.4	1608.2			1604.5	[54]
	ν_4 .	A'	NOH bend	1402.7	1409.1		1360.8	1360.7			1353.3	[54]
$\rm NH_2OH$	ν_5 .	A'	NH_2 wag	1154.9	1157.0		1116.0	1114.8			1115.5	[54]
	ν_6 .	A'	NO str	920.2	937.1		900.2	900.1			895.2	[54]
	ν_7 .	$A^{\prime\prime}$	$NH_2 a str$	3529.6	3544.4		3361.2	3361.2			3358.8	[54]
	ν_8 .	$A^{\prime\prime}$	NH_2 twist	1327.2	1336.1		1298.2	1298.3			1294.5	[54]
	ν_9 .	$A^{\prime\prime}$	OH torsion	406.7	410.2						386.0	[54]
	ν_1 .	A'	OH str	3823.3	3842.0		3663.9	3663.9			3650.3	[55]
	ν_2 .	A'	$CH_2 a str$	3245.9	3252.9		3111.1	3111.1			3109.7	[55]
	ν_3 .	A'	$CH_2 s str$	3115.4	3118.1		2974.4	2974.4			2974.2	[55]
	ν_4 .	A'	$CN \ str$	1677.3	1687.7		1642.8	1642.8			1639.5	[56]
	ν_5 .	A'	CH_2 scissor	1446.2	1451.6		1410.2	1410.2			1410.5	[56]
CHANOH	ν_6 .	A'	NOH bend	1343.1	1350.6		1315.0	1315.0			1319.0	[56]
	ν_7 .	A'	$CH_2 \text{ rock}$	1172.5	1182.3		1162.0	1161.9			1157.3	[57]
	ν_8 .	A'	NO str	906.2	924.7		897.5	897.5			892.6	[56]
	ν_9 .	A'	CNO bend	528.8	533.8		529.5	529.5			530.0	[57]
	$ u_{10} $	$A^{\prime\prime}$	CH_2 wag	961.5	968.5		957.0	957.0			952.6	[58]
	$ u_{11} $	$A^{\prime\prime}$	NOH wag	785.0	791.2		776.5	776.5			772.8	[57]
	$ u_{12}$.	$A^{\prime\prime}$	OH torsion	404.7	413.4						397.7	[57]

 \overline{a} This work: CC = fc - CCSD(T)/aVTZ; CC - F12 = fc - CCSD(T) - F12a/VTZ - F12

Ь VCI at CCSD(T)-F12a/aVTZ

cExperimental data for CH₂NH and CH₂NOH are compactly summarised in Ref. [56].

dFermi resonance between ν_1 and $2\nu_4$:

 $\begin{array}{l} \nu_{\rm ref:} \quad 3280.7\,{\rm cm^{-1}} \ (81\% \ \nu_1, 4\% \ 2\nu_4) \ {\rm and} \ 3260.0\,{\rm cm^{-1}} \ (4\% \ \nu_1, 81\% \ 2\nu_4) \\ \nu_{\rm drop:} \quad 3288.5\,{\rm cm^{-1}} \ (81\% \ \nu_1, 4\% \ 2\nu_4) \ {\rm and} \ 3265.1\,{\rm cm^{-1}} \ (4\% \ \nu_1, 82\% \ 2\nu_4) \\ \tilde{\nu}_{\rm drop:} \quad 3288.6\,{\rm cm^{-1}} \ (81\% \ \nu_1, 4\% \ 2\nu_4) \ {\rm and} \ 3266.3\,{\rm cm^{-1}} \ (4\% \ \nu_1, 82\% \ 2\nu_4) \\ \end{array}$

Strong resonance mixing between ν_2 , $3\nu_5$ and $2\nu_3$: $\begin{array}{l} \nu_{\rm drop}: \ 3309.5 \ {\rm cm^{-1}} \ (27\% \ \nu_2, \ 37\% \ 3\nu_5, \ 6\% \ 2\nu_3), \ 3291.2 \ {\rm cm^{-1}} \ (45\% \ \nu_2, \ 21\% \ 3\nu_5, \ 3\% \ 2\nu_3) \ {\rm and} \ 3193.7 \ {\rm cm^{-1}} \ (12\% \ \nu_2, \ 78\% \ 2\nu_3) \\ \tilde{\nu}_{\rm drop}: \ 3303.9 \ {\rm cm^{-1}} \ (50\% \ \nu_2, \ 19\% \ 3\nu_5, \ 9\% \ 2\nu_3), \ 3282.9 \ {\rm cm^{-1}} \ (21\% \ \nu_2, \ 41\% \ 3\nu_5) \ {\rm and} \ 3193.3 \ {\rm cm^{-1}} \ (12\% \ \nu_2, \ 78\% \ 2\nu_3) \\ \end{array}$ $\nu^{(9)} - \nu^{(8)}$ convergence uncertainty: $1.2 \,\mathrm{cm}^{-1}$ f

 $\nu^{(9)} - \nu^{(8)}$ convergence uncertainty: $1.8 \,\mathrm{cm}^{-1}$ g

Table S5: Fundamental transition wavenumbers (ν) and tunnel splittings $(\Delta = \nu(E) - \nu(A) + \Delta_{g.s.})$ for methanol (CH₃OH) in the molecular symmetry group representation G_6 . Experimental references are shown in brackets, see footnotes on how transition wavenumbers were obtained. All reported values are in units of cm⁻¹.

	Mathanal (C		Ref. [59]		R	tef. [60]			Expt.		
	Methanol (G_6	$\nu(A)$	$\nu(E)$	Δ	$\nu(A)$	$\nu(E)$	Δ	$\nu(A)$	$\nu(E)$	Δ	Ref.
g.s.	A_1/E			8.8			8.7			9.12	[61]
ν_1	A_1/E OH str	r 3680.2	3677.9	6.5	3675.0	3673.2	6.9	3685.32	3682.49	6.29	[62]
ν_2	A_1/E CH ₃ a	str 3005.2	2993.6	-2.8	2986.3	2976.9	-0.7	3006.99	2994.61	-3.26	[63]
ν_3	A_1/E CH ₃ s	str 2844.4	2841.2	5.6	2839.5	2839.9	9.1	2844.72	2844.67	9.07	[64]
ν_4	A_1/E CH ₃ a	bend 1484.0	1469.9	-5.3	1483.8	1472.4	-2.7	1486.08	1474.14	-2.82	[65]
ν_5	A_1/E CH ₃ s	bend 1450.2	1449.0	7.6	1446.8	1446.8	8.7	1453.32	1452.96	8.76	[65]
ν_6	A_1/E COH b	bend 1321.0	1337.1	24.9	1321.9	1333.2	20.0	1320.63	1335.20	23.69	[66]
ν_7	A_1/E CH ₃ re	ock 1074.0	1069.8	4.6	1079.9	1078.8	7.6	1074.66	1070.15	4.61	[67]
ν_8	A_1/E CO str	r 1031.0	1030.6	8.4	1026.3	1028.1	10.5	1034.37	1033.53	8.27	[67]
ν_9	A_2/E CH ₃ a	str 2956.5	2943.7	-4.0	2961.5	2949.4	-3.4	2966.64	2952.04	-5.48	[68]
ν_{10}	A_2/E CH ₃ a	bend 1465.0	1451.5	-4.7	1475.1	1462.2	-4.2	1481.45	1464.80	-7.53	[65]
ν_{11}	A_2/E CH ₃ re	ock 1159.9	1143.6	-7.5	1156.5	1142.4	-5.4	1163.97	1147.35	-7.50	[67]

Low-resolution band centres are computed for each fundamental according to Eq. 2:

g.s. Moruzzi *et al.*^[61] report Taylor expansion coefficients for absolute term energies in Tabs. 8.1 (A) and 8.3 (E). From these, we compute the ground state term values $E_{g.s.}(A) = 128.7822 \text{ cm}^{-1}$ and $E_{g.s.}(E) = 137.9036 \text{ cm}^{-1}$, yielding a zero-point splitting of $\Delta_{g.s.} = 9.12 \text{ cm}^{-1}$. For consistency, this value is used to compute E transitions for all other vibrational fundamentals.

 ν_1 Hunt *et al.*^[62] list relative term values in Tabs. 1 (A) and 2 (E): $W_1(A) = 3685.3222 \text{ cm}^{-1}$ and $W_1(E) = 3691.6122 \text{ cm}^{-1}$.

 ν_2 Xu *et al.*^[63] report both, absolute term values for the ground state ($E_{g.s.}(A) = 127.817 \text{ cm}^{-1}$ and $E_{g.s.}(E) = 136.939 \text{ cm}^{-1}$) and ν_2 ($E_2(A) = 3134.804 \text{ cm}^{-1}$ and $E_2(E) = 3131.549 \text{ cm}^{-1}$) in Tab. 4. We obtain relative term values as $W_2(A/E) = E_2(A/E) - 127.817 \text{ cm}^{-1}$.

 ν_3 Hunt *et al.*^[64] report transition wavenumbers $\nu_3(A) = (2844.72 \pm 0.01) \text{ cm}^{-1}$ and $\nu_3(E) = (2844.67 \pm 0.05) \text{ cm}^{-1}$ in Tab. 2.

 ν_4 Temsamani *et al.*^[65] report absolute term values for ν_4 , ν_5 and ν_{10} in Tab. 7. For ν_4 they report values of $E_4(A) = 1614.19 \,\mathrm{cm}^{-1}$ and $E_4(E) = 1611.37 \,\mathrm{cm}^{-1}$. In Tab. 4 they report a zero-point energy of $E_{\mathrm{g.s.}}(A) = 128.1069 \,\mathrm{cm}^{-1}$ which they calculated with constants reported by Xu and Hougen^[69]. We obtain relative term values as $W_i(A/E) = E_i(A/E) - 128.1069 \,\mathrm{cm}^{-1}$.

 ν_5 See ν_4 . $E_5(A) = 1581.43 \,\mathrm{cm}^{-1}$ and $E_5(E) = 1590.19 \,\mathrm{cm}^{-1}$.

 u_6 Lees *et al.*^[66] report transition wavenumbers for ν_6 in Tab. 1: $\nu_6(A) = 1320.633 \,\mathrm{cm}^{-1}$ and $\nu_6(E) = 1335.199 \,\mathrm{cm}^{-1}$.

 ν_7 Lees *et al.*^[67] re-fitted Fourier coefficients for ν_7 , ν_8 , ν_{11} and other vibrational states. Using their coefficients in Tab. 2, we obtain relative term values of $W_7(A) = 1074.661 \,\mathrm{cm}^{-1}$ and $W_7(E) = 1079.269 \,\mathrm{cm}^{-1}$.

 ν_8 See ν_7 . $W_8(A) = 1034.373 \,\mathrm{cm}^{-1}$ and $W_8(E) = 1042.646 \,\mathrm{cm}^{-1}$.

 ν_9 Wang and Perry^[68] report absolute term values for ν_2 , ν_3 and ν_9 ($E_9(A) = 3094.75 \,\mathrm{cm}^{-1}$ and $E_9(E) = 3089.27 \,\mathrm{cm}^{-1}$). The zero-point energy is computed by constants reported by Xu and Hougen^[69]. We obtain relative term values as $W_i(A/E) = E_i(A/E) - 128.1069 \,\mathrm{cm}^{-1}$.

 ν_{10} See ν_4 . $E_{10}(A) = 1609.65 \,\mathrm{cm}^{-1}$ and $E_{10}(E) = 1602.03 \,\mathrm{cm}^{-1}$.

 ν_{11} See ν_7 . $W_{11}(A) = 1163.970 \,\mathrm{cm}^{-1}$ and $W_{11}(E) = 1156.465 \,\mathrm{cm}^{-1}$.

Table S6: Fundamental transition wavenumbers (cm⁻¹) for methanol (CH₃OH) in the single-reference point group symmetry representation C_s . Low-resolution computational and experimental literature values ($\bar{\nu}$), harmonic (ω) and single-reference VCI(9) fundamental transition wavenumbers ($\nu^{(9)}$) are shown. All reported VCI(9) fundamentals are converged to within 0.1 cm⁻¹, if not stated otherwise.

Г ,	\. I_a+la	anal(C)	μ	, a	$\nu^{(}$	(9)		$\bar{\nu}$	
	Meth	(C_s)	CC	CC-F12	$ u_{ m drop}$	$\tilde{\nu}_{ m drop}$	Ref. [59]	Ref. [60]	Expt.
ν_1	A'	OH str	3843.6	3864.0	3685.6	3685.6	3678.7	3673.8	3683.4
ν_2	A'	$CH_3 a str$	3128.3	3137.1	3002.9	3002.7	2997.5	2980.0	2998.7
ν_3	A'	$CH_3 s str$	3010.9	3016.1	2840.9	2840.7	2842.3	2839.8	2844.7
ν_4	A'	CH_3 a bend	1522.8	1521.0	1475.5	1475.1	1474.6	1476.2	1478.1
ν_5	A'	CH_3 s bend	1484.1	1484.6	1448.3	1448.4	1449.4	1446.8	1453.1
ν_6	A'	COH bend	1379.2	1382.5	1347.9	1347.8	1331.7	1329.4	1330.3
ν_7	A'	$CH_3 rock$	1082.3	1089.2	1067.2	1067.1	1071.2	1079.2	1071.7
ν_8	A'	CO str	1053.6	1061.3	1033.3	1033.4	1030.7	1027.5	1033.8
ν_9	$A^{\prime\prime}$	$CH_3 a str$	3069.2	3076.3	$2953.0^{b,c}$	$2952.1^{b,c}$	2948.0	2953.4	2956.9
ν_{10}	$A^{\prime\prime}$	CH_3 a bend	1512.3	1510.8	1464.5	1464.0	1456.0	1466.5	1470.4
ν_{11}	$A^{\prime\prime}$	CH ₃ rock	1175.9	1180.9	1155.7	1155.5	1149.0	1147.1	1152.9

This work: CC = fc-CCSD(T)/aVTZ; CC-F12 = fc-CCSD(T)-F12a/VTZ-F12

Very strong resonance mixing between ν_9 and $\nu_4 + \nu_5$:

 ν_{drop} : 2953.0 cm⁻¹ (33% ν_9 , 44% $\nu_4 + \nu_5$) and 2921.7 cm⁻¹ (28% ν_9 , 35% $\nu_4 + \nu_5$) $\tilde{\nu}_{\text{drop}}$: 2952.1 cm⁻¹ (35% ν_9 , 52% $\nu_4 + \nu_5$) and 2921.3 cm⁻¹ (27% ν_9 , 37% $\nu_4 + \nu_5$)

 c $\nu^{(9)} - \nu^{(8)}$ convergence uncertainty: $0.2 \,\mathrm{cm}^{-1}$

3 R matrices

In the following, **R** matrices (see main text, Eq. 4) are reported for all investigated molecular topologies (group D similar to group B), where **R** contains elements $R_{ij} = \partial \tilde{Q}_i / \partial S_j$. The internal coordinate labels SPF, BA, DA and SOOP stand for Simons-Parr-Finlan, bond angle, dihedral angle and sine of out-of-plane angle, respectively. ν_i denotes the i^{th} normal mode.

3.1 Tetratomic examples: NH₃, SO₃ and H₂O₂

Cartesian coordinates (Angst)											
1	Ν	0.00	0.00	0.07							
2	н	-0.46	0.82	-0.31							
3	н	-0.48	-0.80	-0.31							
4	н	0.94	-0.01	-0.31							
Redundant internal coordinates											
	Connectivity										
				<u>,</u>							
S_1	SPF		(1-2)								
S ₁ S ₂	SPF SPF		(1-2) (1-3)								
S ₁ S ₂ S ₃	SPF SPF SPF		(1-2) (1-3) (1-4)								
S_1 S_2 S_3 S_4	SPF SPF SPF BA		(1-2) (1-3) (1-4) (2-1-3)								

(3-1-4)

 S_6

 S_5

 S_6

S₇

ΒA

ΒA

SOOP

ΒA

		R ma	trix fo	r V _{ref} /~	V _{harm} /V	/ _{drop}		
ν_{i}		Label	S ₁	S ₂	S ₃	S ₄	S_5	S_6
1	A_1	s stretch	-47	-47	-47	-3	-3	-3
2	A_1	inversion	-1	-1	-1	40	40	40
3	Е	a stretch	47	14	-61	1	0	-1
3	Е	a stretch -43 63 -19 0					-1	1
4	Е	a bend 1 2 -3 40					-30	-10
4	Е	a bend	3	-2	-1	12	29	-41
		F	R matr	ix for -	~V _{drop}			
ν_{i}		Label	S ₁	S ₂	S ₃	S ₄	S_5	S_6
1	A_1	s stretch	-49	-49	-49	139	139	139
3	Е	a stretch	47	14	-61	1	0	-1
3	Е	a stretch	-43	63	-19	0	-1	1
4	Е	a bend	1	1 2 -3 40		-30	-10	
4	Е	a bend	3	-2	-1	12	29	-41

С	Cartesian coordinates (Angst)										
1	S	0.00	0.00	0.00							
2	0	1.43	0.00	0.00							
3	0	-0.71	-1.23	0.00							
4	0	-0.71 1.23 0.									
Re	edundant	internal o	coordina	ates							
		Cor	nectivit	у							
S ₁	SPF	(1-2)									
S ₂	SPF										
S ₃	SPF		(1-4)								
S ₄	BA	(2-1-3)								

(2-1-4)

(3-1-4)

(1-2-4-3)

	R matrix for V _{ref} /~V _{harm} /V _{drop}													
v_i		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S_6	S ₇					
1	A_1 '	s stretch	266	266	266	0	0	0	0					
2	A_"	оор	0	0	0	0	0	0	-504					
4	E'	a bend 121 9 -129 162		-11	-151	0								
4	E'	a bend	a bend -80 144 -65 81		-181	100	0							
3	E'	a stretch	1	241	-242	2 -6		0	0					
3	E'	a stretch	279	-140	-139	-3	-3	6	0					
			R	matrix	for ~V _d	op								
ν _i		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S_6	-					
1	Α,'	s stretch	266	266	266	0	0	0	-					
3	E'	a stretch	1	241	-242	-6	6	0	-					
3	E'	a stretch	279	-140	-139	-3	-3	6	-					
4	E'	a bend	121	9	-129	162	-11	-151	-					
4	E'	a bend	-80	144	-65	81	-181	100	-					

Cartesian coordinates (Angst)											
1	н	-0.90	-0.79	-0.49							
2	0	-0.73	0.00	0.03							
3	0	0,73	0.00	0.03							
4	н	0.90	0.79	-0.49							
Redundant internal coordinates											

		Connectivity
S_1	SPF	(1-2)
S ₂	SPF	(2-3)
S ₃	SPF	(3-4)
S ₄	BA	(1-2-3)
S ₅	BA	(2-3-4)
S ₆	DA	(1-2-3-4)

		R matri	ix for ∖	∕ _{ref} /∼V _h	arm/V _{dro}	p		
ν_{i}		Label	S ₁	S ₂	S_3	S ₄	S ₅	S_6
1	А	OH ₂ s stretch	-53	4	-53	1	1	0
2	А	s bend	-4	-88	-4	-53	-53	-4
3	А	OO stretch	3	329	3	-1	-1	-3
4	А	torsion	0	-17	0	1	1	-52
5	В	OH ₂ a stretch	53	0	-53	0	0	0
6	В	a bend	-1	0	1	-52	52	0
		R	matrix	for ~V	drop			
ν_{i}		Label	S ₁	S ₂	S_3	S_4	S_5	1
1	А	OH ₂ s stretch	-53	4	-53	1	1	I
2	А	s bend	-4	-87	-4	-53	-53	-
3	А	OO stretch	3	330	3	-1	-1	-
5	В	OH ₂ a stretch	53	0	-53	0	0	-
6	В	a bend	-1	0	1	-52	52	-

3.2 Pentatomics: CH₂NH and NH₂OH

Cartesian coordinates (Angst)												
1	С	0.00	0.03	-0.63								
2	Ν	0.00	0.03	0.64								
3	н	0.00	-0.93	0.99								
4	н	0.00	0.99	-1.15								
5	н	0.00	-0.87	-1.25								
Re	edundant i	nternal	coordina	ates								
		Co	nnectivi	ty								
S_1	SPF	SPF (1-2)										
S ₂	SPF		(1-4)									
S3	SPF		(1-5)									
S_4	SPF		(2-3)									
S ₅	BA		(2-1-4)									
S ₆	BA		(2-1-5)									
S ₇	BA		(4-1-5)									
S ₈	BA		(1-2-3)									
S ₉	DA	(•	4-1-2-3)									
S ₁₀	DA	(5-1-2-3)									
S_{11}	SOOP	(1-2-5-4)									

	R matrix for V _{rel} /~V _{harm} /V _{drop}												
ν	i	Label	S_1	S ₂	S_3	S ₄	S ₅	S_6	S ₇	S_8	S ₉	S ₁₀	
1	A'	NH stretch	6	3	-4	-80	-1	1	0	-2	0	0	
2	A'	CH ₂ a stretch	2	-75	37	-4	0	0	0	0	0	0	
3	A'	CH ₂ s stretch	-6	39	76	-3	0	-1	1	-1	0	0	
4	A'	CN stretch	208	9	9	6	-8	-11	19	6	0	0	
5	A'	CH ₂ scissor	182	5	4	5	22	14	-36	10	0	0	
6	A'	CNH bend	10	-9	8	-3	-28	31	-3	-56	0	0	
7	A'	CH ₂ rock	20	-4	6	-2	-45	46	-1	53	0	0	
8	A'	NH torsion	0	0	0	0	0	0	0	0	40	21	
9	A'	CH ₂ wag	0	0	0	0	0	0	0	0	41	-48	
	R matrix for ~V _{drop}												
ν	i	Label	S_1	S ₂	S ₃	S_4	S ₅	S_6	S ₇	S ₈	S ₁₁	-	
1	A'	NH stretch	6	3	-4	-80	-1	1	0	-2	0	-	
2	A'	CH ₂ a stretch	2	-75	37	-4	0	0	0	0	0	-	
3	A'	CH ₂ s stretch	-6	39	76	-3	0	-1	1	-1	0	-	
4	A'	CN stretch	208	9	9	6	-8	-11	19	6	0	-	
5	A'	CH ₂ scissor	182	5	4	5	22	14	-36	10	0	-	
6	A'	CNH bend	10	-9	8	-3	-28	31	-3	-56	0	-	
7	A'	CH ₂ rock	20	-4	6	-2	-45	46	-1	53	0	-	
9	A'	CH ₂ wag	0	0	0	0	0	0	0	0	-154	-	
			R	matri	x for \	/ _{ref} /∼V	harm/V _{dr}	ор					
ν_{i}		Label	S_1	S ₂	$S_{_3}$	S ₄	S_5	S ₆	S ₇	S	_β S ₉	S ₁₀	
1	A'	OH stretch	-3	-1	-1	76	0		0	0	0	0 0	
2	A'	NH ₂ s stretch	2	-57	- 57	-1	0		0 -	3	0 -	1 1	
3	A'	NH ₂ scissor	38	1	1	2	27	2	7 -3	4	12 -	9 9	
4	A'	NOH bend	-91	-3	-3	-4	-13	-1	3 -	9 -	- 66	99	
5	A'	NH ₂ wag	101	1	1	2	41	4	1 1	0 -	32 1	9 -19	
6	A'	NO stretch	304	3	3	3	-8	-	8 -	6	2 -	6 6	
7	Α"	NH ₂ a stretch	0	56	-56	0	-1		1	0	0	0 0	
8	Α"	NH ₂ twist	0	-5	5	0	-55	5	5	0	0	2 2	
						_							

2	0	0.00	-0.01	0.71							
3	н	0.00	-0.95	0.91							
4	н	0.81	0.56	-0.97							
5	н	-0.81	0.56	-0.97							
Re	dundan	t internal	coordir	ates							
		Co	nnectivit	y							
S ₁	SPF		(1-2)								
S ₂	SPF	(1-4)									
S ₃	SPF		(1-5)								
S ₄	SPF		(2-3)								
S ₅	BA	((2-1-4)								
S ₆	BA	((2-1-5)								
S ₇	BA	((4-1-5)								
S ₈	BA		(1-2-3)								
S ₉	DA	(4	1-1-2-3)								
S ₁₀	DA	(5	5-1-2-3)								

Cartesian coordinates (Angst)

0.00 -0.01 -0.74

Ν

1

0	А		0	-5	5	0	-55	55	0	0	2	2
9	Α"	OH torsion	0	1	-1	0	-3	3	0	0	-31	-31
				Rı	matrix	for ~	V _{drop}					
ν_{i}		Label	S_1	S ₂	$S_{_3}$	S_4	S_5	S_6	S ₇	S ₈	-	-
1	A'	OH stretch	-3	-1	-1	76	0	0	0	0	-	-
2	A'	NH ₂ s stretch	2	-57	-57	-1	-1	-1	-4	0	-	-
3	A'	NH ₂ scissor	38	1	1	2	24	24	-44	12	-	-
4	A'	NOH bend	-91	-3	-3	-4	-17	-17	-19	-66	-	-
5	A'	NH ₂ wag	101	1	1	2	48	48	31	-32	-	-
6	A'	NO stretch	304	3	3	3	-10	-10	-12	2	-	-
7	Α"	NH ₂ a stretch	0	56	-56	0	-1	1	0	0	-	-
8	Α"	NH ₂ twist	0	-5	5	0	-55	55	0	0	-	-

 $S_{_{11}}$

S₁₂

S₁₃ DA

S₁₄

S₁₅ DA

ΒA

ΒA

DA

(3-2-6)

(5-2-6)

(4-1-2-3)

(4-1-2-5)

(4-1-2-6)

4

5 A'

6 A'

7 A'

8 A' CO str

9 A"

10 A"

11

A'

 CH_3 a bend

 CH_3 s bend

COH bend

CH₃ rock

CH₃ a str

A" CH₃ rock

 CH_3 a bend

1 1

-31

37 4 10 -4 -4 56 38 -17 -17

-211

-242

0

0 0 0 2 -2 0 0 -9 9 37 -37

0 0 0 9 -9 0 0 57 -57 12 -12

-1

-2 1 -6 -6 -40 43 -26 -26 10 10

-5 -7 -3 -3 28 -38 12 12 -1 -1 12

0 0 60

-1 1

2

1 1

1 7 11 -10 -10 -18 -18 43

-60

-1 -24 -23 -23 27 27 17

0

-1 1 1 -1 0

0

3.3 Hexatomics: CH₂NOH and CH₃OH

Ca	artesian	igst)							R ma	atrix fo	or V _{ref} /-	∼V _{harm} ∕∖	/ drop									
1	N	-0.37	0.21	-0.33		v _i		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	S ₁₁	S ₁₂	S ₁₃	7
2	0	-0.37	-0.55	0.86		1	A'	OH str	2	1	L -76	6 1	0	C	0 0	0	0	()	0 0) (5
3	С	0.83	0.45	-0.70		2	A'	CH ₂ a str	3	2	2 (40	-73	1	. 0	0	0	()	0) (D
4	н	-1.32	-0.67	1.03		3	A'	CH ₂ s str	-1	-8	3 () 75	42	-1	. 0	0	0	()	0 0) (5
5	н	1.69	0.09	-0.14		4	A'	CN str	-27	209) -:	11	8	-9	-19	-4	-8	12	2	0 0) (D
6	н	0.94	1.04	-1.60		5	A'	CH ₂ scissor	41	-56	6 2	2 -1	3	18	36	-20	-14	33	3	0) (D
Re	dundan	nt interna	l coordin	nates		6	A'	NOH bend	23	164	1 3	3 2	7	22	2 57	0	19	-19)	0) (D
		Co	nnectivit	iy.		7	A'	CH ₂ rock	-51	-16	6 () -9	9	35	-21	-45	43	2	2	0) (D
S_1	SPF		(1-2)			8	A'	NO str	331	82	2 5	5 -2	7	28	8 1	-15	19	-4	1	0 0) (D
S ₂	SPF		(1-3)			9	A'	CNO bend	-90	-109	9 -9	9 3	-10	-230	15	-35	30	Ę	5	0 0) i	D
$S_{_3}$	SPF		(2-4)		1	.0	۹"	CH ₂ wag	0	C) (0 0	0	C	0 0	0	0	()	0 5	1 -4	D
S_4	SPF		(3-5)		1	.1	۹"	NOH wag	0	C) (0 0	0	0	0 0	0	0	() -1	0 3	5 6	1
S_5	SPF		(3-6)		1	.2	۹"	OH torsion	0	C) (0 0	0	0	0 0	0	0	() 7	1 1:	3	5
S_6	BA		(2-1-3)									R mat	rix for	~V _{drop}						_		
S ₇	BA		(1-2-4)		· [v _i		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉	S ₁₀	-	S ₁₂	S ₁₃	7
S ₈	BA		(1-3-5)			1	A'	OH str	2	1	L -76	5 1	0	C	0 0	0	0	() -) (D
S ₉	BA		(1-3-6)			2	A'	CH ₂ a str	3	2	2 (0 40	-73	1	. 0	0	0	() -) (D
S ₁₀	BA		(5-3-6)			3	A'	CH ₂ s str	-1	-8	3 () 75	42	-1	. 0	0	0	() -) (D
S ₁₁	DA	(3	3-1-2-4)			4	A'	CN str	-27	209) -:	L 11	8	-9	-19	-4	-8	12	2 -	() (D
S ₁₂	DA	(2	2-1-3-5)			5	A'	CH ₂ scissor	41	-56	6 2	2 -1	3	18	36	-20	-14	33	3 -) (D
S ₁₃	DA	(2	2-1-3-6)			6	A'	NOH bend	23	164	1 3	3 2	7	22	2 57	0	19	-19) -) (D
						7	A'	CH ₂ rock	-51	-16	6 () -9	9	35	-21	-45	43	2	2 -) (D
						в	A'	NO str	331	82	2 5	5 -2	7	28	8 1	-15	19	-4	t -) (D
						9	A'	CNO bend	-90	-109	9 -9	9 3	-10	-230	15	-35	30	Ę	5 -) (D
					1	.0	۹"	CH ₂ wag	0	() (0 0	0	C	0 0	0	0	() -	5	1 -4	D
					1	.1	۹"	NOH wag	0	() (0 0	0	C	0 0	0	0	() -	3	7 6	2
																						_
Ca	artesian	coordina	ates (An	igst)								R ma	trix foi	۲V _{ref} /~۱	/ _{harm} /V _d	rop						
1	0	0.69	-0.06	0.00	· [·	v _i		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈	S ₉ !	S ₁₀	S ₁₁	S ₁₂	S ₁₃	S ₁₄
2	С	-0.73	0.01	0.00		1	A'	OH str	-3	76	-1	0	0	1	0	0	0	0	0	0	0	0
3	н	-1.10	1.01	0.00		2	A'	CH ₃ a str	-1	1	80	-19	-19	-1	0	0	0	1	1	-1	0	0
4	н	1.04	0.83	0.00		3	A'	CH ₃ s str	-4	0	-29	-58	-58	0	0	1	1	0	0	-1	0	0
5	н	-1.11	0.52	-0.89		4	A'	CH_3 a bend	1	1	-1	1	1	7	16	-13	-13	-12	-12	33	0	12
6	н	-1.11	0.52	0.89		5	A'	CH_3 s bend	-31	-1	2	1	1	-1	-25	-22	-22	25	25	20	0	-3
Re	dundan	nt interna	l coordin	nates		6	A'	COH bend	37	4	10	-4	-4	56	32	-13	-13	0	0	-4	0	-13
		Co	nnectivit	y		7	A'	CH ₃ rock	-211	-2	1	-6	-6	-40	36	-23	-23	4	4	4	0	-14
S_1	SPF		(1-2)			8	A'	CO str	-242	-5	-7	-3	-3	28	-33	10	10	4	4	4	0	10
S_2	SPF		(1-4)			9.	۹"	CH₃ a str	0	0	0	60	-60	0	0	-1	1	1	-1	0	1	0
$S_{_3}$	SPF		(2-3)		1	.0	۹"	$CH_{_3}$ a bend	0	0	0	2	-2	0	0	-14	14	27	-27	0	16	-9
S_4	SPF		(2-5)		1	.1	۹"	CH ₃ rock	0	0	0	9	-9	0	0	52	-52	0	0	0	20	-10
S_5	SPF		(2-6)		1	.2	۹"	torsion	0	0	0	0	0	0	0	-4	4	-1	1	0	-23	-20
S ₆	BA		(2-1-4)									F	R matr	ix for ~	V _{drop}							
S ₇	BA		(1-2-3)			v,		Label	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆	S ₇	S ₈ :	S_9	S ₁₀	S ₁₁	S ₁₂	-	-
S ₈	BA		(1-2-5)			1	A'	OH str	-3	76	-1	0	0	1	0	0	0	0	0	0	-	-
S_9	BA		(1-2-6)			2	A'	CH ₃ a str	-1	1	80	-19	-19	-1	0	0	0	1	1	-1	-	-
S ₁₀	BA		(3-2-5)]		3	A'	CH ₃ s str	-4	0	-29	-58	-58	0	0	1	1	0	0	-1	-]	-

 S_{15}

0

0

-12

3

13

14

-10

0

-9 -10

-20

-

-

-

-

-

_

- | -

- | - | -

- | - | -

_

- -

- | - | -

- -

-

-7

0

0

6 6 -14 - - -

References

- J. F. Stanton, J. Gauss, L. Cheng, M. E. Harding, D. A. Matthews, P. G. Szalay, CFOUR, Coupled-Cluster [1] techniques for Computational Chemistry, a quantum-chemical program package, With contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, M. Hilgenberg, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, T. Kirsch, K. Klein, W.J. Lauderdale, F. Lipparini, T. Metzroth, L.A. Mück, D.P. O'Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ABACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and ECP routines by A. V. Mitin and C. van Wüllen. For the current version, see https://www.cfour.de.
- H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, "Molpro: a general-purpose quantum chemistry |2|program package", WIREs Comput. Mol. Sci. 2012, 2, 242–253.
- H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, W. Györffy, D. Kats, T. Korona, R. $\left|3\right|$ Lindh, A. Mitrushenkov, G. Rauhut, K. R. Shamasundar, T. B. Adler, R. D. Amos, S. J. Bennie, A. Bernhardsson, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, S. J. R. Lee, Y. Liu, A. W. Lloyd, Q. Ma, R. A. Mata, A. J. May, S. J. McNicholas, W. Meyer, T. F. Miller III, M. E. Mura, A. Nicklass, D. P. O'Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, M. Welborn, MOLPRO, version 2018.1, a package of ab initio programs, see https://www.molpro.net, 2018.
- G. Guelachvili, A. H. Abdullah, N. Tu, K. N. Rao, Š. Urban, D. Papoušek, "Analysis of high-resolution Fourier [4]transform spectra of 14 NH₃ at 3.0 μ m", J. Mol. Spectrosc. 1989, 133, 345–364.
- S. N. Yurchenko, J. Zheng, H. Lin, P. Jensen, W. Thiel, "Potential-energy surface for the electronic ground state [5]of NH_3 up to 20 000 cm⁻¹ above equilibrium", J. Chem. Phys. 2005, 123, 134308.
- Š. Urban, V. Špirko, D. Papoušek, J. Kauppinen, S. P. Belov, L. I. Gershtein, A. F. Krupnov, "A simultane-[6]ous analysis of the microwave, submillimeterwave, far infrared, and infrared-microwave two-photon transitions between the ground and ν_2 inversion-rotation levels of ¹⁴NH₃", J. Mol. Spectrosc. **1981**, 88, 274–292.
- I. Kleiner, L. R. Brown, G. Tarrago, Q.-L. Kou, N. Picqué, G. Guelachvili, V. Dana, J.-Y. Mandin, "Positions [7]and intensities in the $2\nu_4/\nu_1/\nu_3$ vibrational system of ¹⁴NH₃ near $3\,\mu\text{m}$ ", J. Mol. Spectrosc. **1999**, 193, 46–71.
- C. Cottaz, I. Kleiner, G. Tarrago, L. R. Brown, J. S. Margolis, R. L. Poynter, H. M. Pickett, T. Fouchet, P. 8 Drossart, E. Lellouch, "Line positions and intensities in the $2\nu_2/\nu_4$ vibrational system of ¹⁴NH₃ near 5-7 μ m", J. Mol. Spectrosc. 2000, 203, 285–309.
- O. N. Ulenikov, E. S. Bekhtereva, V. A. Kozinskaia, J.-J. Zheng, S.-G. He, S.-M. Hu, Q.-S. Zhu, C. Leroy, L. [9] Pluchart, "On the study of resonance interactions and splittings in the PH₃ molecule: ν_1 , ν_3 , $\nu_2 + \nu_4$, and $2\nu_4$ bands", J. Mol. Spectrosc. 2002, 215, 295–308.
- R. I. Ovsyannikov, W. Thiel, S. N. Yurchenko, M. Carvajal, P. Jensen, "Vibrational energies of PH₃ calculated [10]variationally at the complete basis set limit", J. Chem. Phys. 2008, 129, 044309.
- A. Ainetschian, U. Häring, G. Spiegl, W. A. Kreiner, "The ν_2/ν_4 diad of PH₃", J. Mol. Spectrosc. 1997, 181, [11]99 - 107.
- L. Fusina, G. Di Lonardo, "The Fundamental Bands in the Infrared Spectrum of Stibine (SbH₃)", J. Mol. [12]Spectrosc. 2002, 216, 493–500.
- [13]S. N. Yurchenko, W. Thiel, P. Jensen, "Rotational energy cluster formation in XY₃ molecules: Excited vibrational states of BiH₃ and SbH₃", J. Mol. Spectrosc. 2006, 240, 174–187.
- W. Jerzembeck, H. Bürger, J. Breidung, W. Thiel, "High resolution infrared spectra of the $\nu_1 \nu_4$ bands of BiH₃, [14]and ab initio calculations of the spectroscopic parameters", J. Mol. Spectrosc. 2004, 226, 32-44.
- K. Aarset, A. G. Császár, E. L. Sibert III, W. D. Allen, H. F. Schaefer III, W. Klopper, J. Noga, "Anharmonic [15]force field, vibrational energies, and barrier to inversion of SiH₃⁻", J. Chem. Phys. 2000, 112, 4053–4063.
- [16]Y. Pak, R. C. Woods, "Anharmonic force fields and spectroscopic properties of BF₃ and CF_3^+ using the coupled cluster method", J. Chem. Phys. 1997, 106, 6424-6429.
- S. Yamamoto, R. Kuwabara, M. Takami, K. Kuchitsu, "Infrared diode laser spectroscopy of the ν_2 band of BF₃", [17]J. Mol. Spectrosc. 1986, 115, 333–352.
- S. Yamamoto, K. Kuchitsu, T. Nakanaga, H. Takeo, C. Matsumura, M. Takami, "Infrared-microwave double [18]
- resonance spectroscopy of the ν_3 band of BF₃ using a tunable diode laser", J. Chem. Phys. **1986**, 84, 6027–6033. S. G. W. Ginn, D. Johansen, J. Overend, "The ν_4 bands of ¹⁰BF₃ and ¹¹BF₃ at high resolution", J. Mol. [19]Spectrosc. 1970, 36, 448–463.
- Y. Pak, E. L. Sibert III, R. C. Woods, "Coupled cluster anharmonic force fields, spectroscopic constants, and [20]vibrational energies of AIF₃ and SiF₃⁺", J. Chem. Phys. **1997**, 107, 1717–1724.
- [21]J. M. L. Martin, "A fully ab initio quartic force field of spectroscopic quality for SO₃", Spectrochim. Acta Part A 1999, 55, 709–718.
- J. Ortigoso, R. Escribano, A. G. Maki, "The ν_2 and ν_4 IR bands of SO₃", J. Mol. Spectrosc. **1989**, 138, 602–613. N. F. Henfrey, B. A. Thrush, "The ν_3 band of SO₃ at high resolution", Chem. Phys. Lett. **1983**, 102, 135–138. [22]
- [23]

- [24] A. Perrin, A. Valentin, L. Daumont, "New analysis of the $2\nu_4$, $\nu_4 + \nu_6$, $2\nu_6$, $\nu_3 + \nu_4$, $\nu_3 + \nu_6$, ν_1 , ν_5 , $\nu_2 + \nu_4$, $2\nu_3$, $\nu_2 + \nu_6$ and $\nu_2 + \nu_3$ bands of formaldehyde H₂¹²C¹⁶O: Line positions and intensities in the 3.5 μ m spectral region", J. Mol. Struct. **2006**, 780, 28–44.
- [25] A. Yachmenev, S. N. Yurchenko, P. Jensen, W. Thiel, "A new spectroscopic potential energy surface for formaldehyde in its ground electronic state", J. Chem. Phys. 2011, 134, 244307.
- [26] F. K. Tchana, A. Perrin, N. Lacome, "New analysis of the ν_2 band of formaldehyde (H₂¹²C¹⁶O): Line positions for the ν_2 , ν_3 , ν_4 and ν_6 interacting bands", J. Mol. Spectrosc. **2007**, 245, 141–144.
- [27] J. Koput, S. Carter, N. C. Handy, "The vibrational-rotational energy levels of silanone", Chem. Phys. Lett. 1999, 301, 1–9.
- [28] W. B. Olson, R. H. Hunt, B. W. Young, A. G. Maki, J. W. Brault, "Rotational constants of the lowest torsional component (⁰G) of the ground state and lowest torsional component (¹G) of the first excited torsional state of hydrogen peroxide", J. Mol. Spectrosc. 1988, 127, 12–34.
- [29] P. Małyszek, J. Koput, "Accurate ab initio potential energy surface and vibration-rotation energy levels of hydrogen peroxide", J. Comput. Chem. 2013, 34, 337–345.
- [30] A. Perrin, A. Valentin, J.-M. Flaud, C. Camypeyret, L. Schriver, A. Schriver, P. Arcas, "The 7.9-μm band of hydrogen peroxide: line positions and intensities", J. Mol. Spectrosc. 1995, 171, 358–373.
- [31] C. Camy-Peyret, J.-M. Flaud, J. W. C. Johns, M. Noel, "Torsion-vibration interaction in H₂O₂: First highresolution observation of ν₃", J. Mol. Spectrosc. 1992, 155, 84–104.
- [32] J.-M. Flaud, C. Camy-Peyret, J. W. C. Johns, B. Carli, "The far infrared spectrum of H₂O₂. First observation of the staggering of the levels and determination of the *cis* barrier", J. Chem. Phys. **1989**, 91, 1504–1510.
- [33] W. B. Cook, R. H. Hunt, W. N. Shelton, F. A. Flaherty, "Torsion-rotation energy levels, hindering potential, and inertial parameters of the first excited vibrational state of the antisymmetric OH stretch in hydrogen peroxide", J. Mol. Spectrosc. 1995, 171, 91–112.
- [34] J.-M. Flaud, J. W. C. Johns, Z. Lu, G. Winnewisser, H. Klein, "The torsion-rotation spectrum of D₂O₂", Can. J. Phys. 2001, 79, 367–374.
- [35] O. Baum, T. F. Giesen, S. Schlemmer, "High-resolution infrared measurements on HSOH: Analysis of the OH fundamental vibrational mode", J. Mol. Spectrosc. 2008, 247, 25–29.
- [36] S. N. Yurchenko, A. Yachmenev, W. Thiel, O. Baum, T. F. Giesen, V. V. Melnikov, P. Jensen, "An ab initio calculation of the vibrational energies and transition moments of HSOH", J. Mol. Spectrosc. 2009, 257, 57–65.
- [37] O. Baum, HSOH: an elusive species with many different traits (PhD thesis), 1st ed., Cuvillier, Göttingen, 2008.
- [38] H. Beckers, S. Esser, T. Metzroth, M. Behnke, H. Willner, J. Gauss, J. Hahn, "Low-Pressure Pyrolysis of tBu₂SO: Synthesis and IR Spectroscopic Detection of HSOH", Chem. Eur. J. 2006, 12, 832–844.
- [39] J. M. L. Martin, P. R. Taylor, "Accurate ab initio quartic force field for trans-HNNH and treatment of resonance polyads", Spectrochim. Acta Part A 1997, 53, 1039–1050.
- [40] F. Hegelund, H. Burger, O. Polanz, "The high-resolution infrared spectrum of the ν₄, ν₅, and ν₆ bands of trans-di-imide revisited", J. Mol. Spectrosc. **1994**, 167, 1–10.
- [41] J. M. L. Martin, "Anharmonic force fields and accurate thermochemistry of H₂SiO, *cis*-HSiOH, and *trans*-HSiOH", J. Phys. Chem. A 1998, 102, 1394–1404.
- [42] R. C. Fortenberry, X. Huang, J. S. Francisco, T. D. Crawford, T. J. Lee, "Vibrational frequencies and spectroscopic constants from quartic force fields for *cis*-HOCO: The radical and the anion", J. Chem. Phys. 2011, 135, 214303.
- [43] J. T. Petty, C. B. Moore, "Transient Infrared Absorption Spectrum of the ν₁ Fundamental of trans-HOCO", J. Mol. Spectrosc. 1993, 161, 149–156.
- [44] X. Huang, R. C. Fortenberry, Y. Wang, J. S. Francisco, T. D. Crawford, J. M. Bowman, T. J. Lee, "Dipole Surface and Infrared Intensities for the *cis-* and *trans-HOCO* and DOCO Radicals", *J. Phys. Chem. A* 2013, 117, 6932–6939.
- [45] T. J. Sears, W. M. Fawzy, P. M. Johnson, "Transient diode laser absorption spectroscopy of the ν₂ fundamental of trans-HOCO and DOCO", J. Chem. Phys. 1992, 97, 3996–4007.
- [46] J. T. Petty, C. B. Moore, "Transient infrared absorption spectrum of the ν_1 fundamental of *trans*-DOCO", J. Chem. Phys. **1993**, 99, 47–55.
- [47] R. C. Fortenberry, X. Huang, J. S. Francisco, T. D. Crawford, T. J. Lee, "The trans-HOCO radical: Quartic force fields, vibrational frequencies, and spectroscopic constants", J. Chem. Phys. 2011, 135, 134301.
- [48] G. Rauhut, G. Knizia, H.-J. Werner, "Accurate calculation of vibrational frequencies using explicitly correlated coupled-cluster theory", J. Chem. Phys. 2009, 130, 054105.
- [49] L. Halonen, G. Duxbury, "Fourier transform infrared spectrum of CH₂NH: The ν_1 band", *Chem. Phys. Lett.* 1985, 118, 246–251.
- [50] L. Halonen, G. Duxbury, "High resolution infrared spectrum of methyleneimine, CH₂NH, in the 3 μm region", J. Chem. Phys. 1985, 83, 2091–2096.
- [51] G. Duxbury, H. Kato, M. L. Le Lerre, "Laser Stark and interferometric studies of thioformaldehyde and methyleneimine", *Faraday Discuss. Chem. Soc.* 1981, 71, 97–110.
- [52] G. Duxbury, M. L. Le Lerre, "Fourier transform infrared spectra of CH₂NH: The ν_5 and ν_6 bands", J. Mol. Spectrosc. **1982**, 92, 326–348.

- [53] L. Halonen, G. Duxbury, "The Fourier transform infrared spectrum of methyleneimine in the 10 μm region", J. Chem. Phys. 1985, 83, 2078–2090.
- [54] D. Luckhaus, "The rovibrational spectrum of hydroxylamine: A combined high resolution experimental and theoretical study", J. Chem. Phys. 1997, 106, 8409–8426.
- [55] G. Duxbury, "High-resolution infrared spectrum of formaldoxime (CH₂NOH) in the 3-μm and OH overtone regions", J. Mol. Spectrosc. 1988, 132, 393–406.
- [56] R. A. Bannai, G. Duxbury, "Fourier-transform infrared spectra of formaldoxime: ν_4 , ν_5 , ν_6 , and ν_8 bands", J. Opt. Soc. Am. B **1994**, 11, 170–175.
- [57] R. A. Bannai, G. Duxbury, G. Ritchie, S. Klee, "Fourier Transform Infrared Spectra of Formaldoxime: The ν₇, ν₉, ν₁₁, ν₁₂, and 2ν₁₂ Bands", J. Mol. Spectrosc. **1996**, 178, 84–92.
- [58] G. Duxbury, R. M. Percival, D. Devoy, M. R. M. Mahmoud, "Fourier transform and diode laser spectroscopy of the 10-μm bands of formaldoxime (CH₂NOH)", J. Mol. Spectrosc. **1988**, 132, 380–392.
- [59] E. L. Sibert III, J. Castillo-Chará, "Theoretical studies of the potential surface and vibrational spectroscopy of CH₃OH and its deuterated analogs", J. Chem. Phys. 2005, 122, 194306.
- [60] J. M. Bowman, X. Huang, N. C. Handy, S. Carter, "Vibrational Levels of Methanol Calculated by the Reaction Path Version of MULTIMODE, Using an ab initio, Full-Dimensional Potential", J. Phys. Chem. A 2007, 111, 7317–7321.
- [61] G. Moruzzi, B. P. Winnewisser, M. Winnewisser, I. Mukhopadhyay, F. Strumia, Microwave, infrared, and laser transitions of methanol: atlas of assigned lines from 0 to 1258 cm⁻¹, CRC Press, Boca Raton, London, New York, 1995.
- [62] R. H. Hunt, W. N. Shelton, F. A. Flaherty, W. B. Cook, "Torsion–Rotation Energy Levels and the Hindering Potential Barrier for the Excited Vibrational State of the OH-Stretch Fundamental Band ν_1 of Methanol", J. Mol. Spectrosc. **1998**, 192, 277–293.
- [63] L.-H. Xu, X. Wang, T. J. Cronin, D. S. Perry, G. T. Fraser, A. S. Pine, "Sub-Doppler Infrared Spectra and Torsion–Rotation Energy Manifold of Methanol in the CH-Stretch Fundamental Region", J. Mol. Spectrosc. 1997, 185, 158–172.
- [64] R. H. Hunt, W. N. Shelton, W. B. Cook, O. N. Bignall, J. W. Mirick, F. A. Flaherty, "Torsion-rotation absorption line assignments in the symmetric CH-stretch fundamental of methanol", J. Mol. Spectrosc. 1991, 149, 252– 256.
- [65] M. A. Temsamani, L.-H. Xu, R. M. Lees, "A rotation-torsion-vibration treatment with three-dimensional internal coordinate approach and additional FTIR spectral assignments for the CH₃-bending fundamentals of methanol", J. Mol. Spectrosc. 2003, 218, 220–234.
- [66] R. M. Lees, L.-H. Xu, J. W. C. Johns, Z.-F. Lu, B. P. Winnewisser, M. Lock, R. L. Sams, "Fourier transform spectroscopy of CH₃OH: rotation-torsion-vibration structure for the CH₃-rocking and OH-bending modes", J. Mol. Spectrosc. 2004, 228, 528-543.
- [67] R. M. Lees, M. Mollabashi, L.-H. Xu, M. Lock, B. P. Winnewisser, "Variations in the torsion-vibration energy structure of CH₃OH from fundamental, overtone, and combination bands of the ν_7 , ν_8 and ν_{11} CH₃ rocking and CO stretching modes", *Phys. Rev. A* **2002**, *65*, 042511.
- [68] X. Wang, D. S. Perry, "An internal coordinate model of coupling between the torsion and C-H vibrations in methanol", J. Chem. Phys. 1998, 109, 10795–10805.
- [69] L. Xu, J. Hougen, "Global Fit of Torsional-Rotational Transitions in the Ground and First Excited Torsional States of Methanol", J. Mol. Spectrosc. 1995, 173, 540–551.