Supporting Information

Vibration Mediated Photodissociation Dynamics of CH₃SH: Manipulation of the Dynamic Energy Disposal into Products

Heesung Lee and Sang Kyu Kim*

Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea

E-mail: sangkyukim@kaist.ac.kr

*Corresponding Author

Figure S1. 1- and 2-color H⁺ PHOFEX of photodissociation of CH₃SH and TKER distributions

Figure S2. 3-color IR+UVs H⁺ PHOFEX of photodissociation of CH₃SH

Figure S3. Power (or IR mode) dependent TKER distributions of UVs and IR+UVs of photodissociation of CH_3SH

Table S1. Fitting-parameters for TKER distributions in the Figure 1.

Table S2. Average TKER distributions and kinetic energy fractions in the Figure 1.

Figure S4. TKER distributions of photodissociation of CH₃SH in various set of IR $({}^{\nu_3}, {}^{\nu_2}, {}^{\nu_1/\nu_9})$ + UVs (216-226 nm plus 263-278 nm)

Figure S5. Energy correlation plot for the photodissociation of MeSH (CH₃SH).

Figure S6. De-convolution of Figure 1 (c) and (e).

Figure S1. H⁺ photofragment excitation (PHOFEX) spectra (a and c) and corresponding velocity map ion imaging (VMI) for the H⁺ ions (b and d) following photodissociations of methyl mercaptan (CH₃SH). (a) Doppler scan for the photoexcitation of H atom *via* 2s-1s state is done by 2+1 REMPI. Blue circle: nozzle-on, black rectangle: nozzle-off ion intensities. (b) Total kinetic energy release (TKER) distribution after photodissociation of CH₃SH ~243.1 nm laser beam. Inset is raw image of H⁺ and the laser polarization axis is shown as red arrow. (c) Doppler scanned H⁺ PHOFEX spectrum using two color laser beams (224 + 266 nm). Black circle: normal signal, black rectangle: nozzle-off signal, red rectangle: 266 nm, blue rectangle: 224 nm. (d) TKER distribution after photodissociation of CH₃SH using 224 nm and 266 nm laser beams.

Figure S2. IR+UV (224 + 266 nm) H⁺ PHOFEX spectra. IR laser was introduced 5 ns before two simultaneously counter-propagated UVs. Dark-gray line with circles is average PHOFEX spectrum. Overlapped light-gray lines are single experiments, respectively. Tangible three peaks are assigned as v_3 (2608), v_2 (2951), and v_{1/v_9} (3007) as recent IR+VUV study, respectively.^{S1}

Figure S3. Total kinetic energy release distributions of reduced Doppler double-pump photodissociation of MeSH (CH₃SH) following H⁺ velocity map ion imaging (VMI) experiments. (a)-(c) 224 + 266 nm UV laser beams, (d)-(e) 220 + 271 nm UVs, and (f) 221 + 270 nm UVs, respectively. IR (v_2)-UVs (blue) and UVs (black) are shown. Inset shows lasers (IR, UVs) polarization (red arrow) and raw 2D images (upper: UVs, lower: IR (v_2)+UVs) for (b) and (c), respectively. (d) 200 μ J (blue), 400 μ J (red), and 1000 μ J (orange) of v_2 vibration mediated TKER distributions are shown. For the same UVs as (d), the mode-dependent vibration mediated TKER distributions are in (e). 300 μ J (red), 400 μ J (blue), and 400 μ J (green) for v_3 (S-H stretch), v_2 , and v_1/v_9 (C-H₃/C-H₂ anti-symmetric stretch) vibration mediated TKER distributions are showed black circles.). With 221 and 270 nm UVs, (f) orange (800 μ J), pink (1700 μ J), and red (2200 μ J) of v_3 mediated TKER distributions.

Table S1. Fitting-parameters for total kinetic energy release (TKER, kcal/mol) in Figure 1. Each $A = -2\left(\frac{x-a}{vr}\right)^{2}$

ction. (i.e.
$$\frac{A}{W\sqrt{\pi/2}}e^{-2(W)}$$
 where A is

dynamic component is de-convoluted as one gaussian function. (i.e. $W\sqrt{\pi/2}$ where A is amplitude, W is width, a is a center, and x is dependent variable (TKER).) CH S. Spin-R (overlapped C-H₃SH

CH₃S· ^v ₃(S-C stretch) quanta	orbit sym metr y	268.844 nm			IR (CH ₃ S-H stretch, ^{1/3} , 2607.5 cm ⁻¹) + 268.844 nm			IR (C-H ₃ SH symmetric stretch, ^{<i>V</i>} ₂ , 2950.9 cm ⁻¹) + 268.844 nm			asymmetric stretches, v_1/v_9 , 3006.7 cm ⁻¹) + 268.844 nm		
		Area	Center	Width	Area	Center	Width	Area	Center	Width	Area	Center	Width
0	E _{3/2}	1.620	20.250	1.8	1.710	27.450	1.8	0.410	28.737	1.85	0.163	28.897	1.85
1		0.470	18.171	1.8	1.100	25.571	1.8	0.450	26.658	1.85	0.169	26.818	1.85
2		0.160	16.092	1.8	0.630	23.492	1.8	0.650	24.579	1.85	0.140	24.739	1.85
3		0.100	14.013	1.8				0.770	22.500	1.85	0.080	22.660	1.85
0	E _{1/2}	0.729	19.509	1.8	0.770	26.909	1.8	0.185	27.996	1.85	0.073	28.156	1.85
1		0.212	17.430	1.8	0.495	24.830	1.8	0.203	25.917	1.85	0.076	26.077	1.85
2		0.072	15.351	1.8	0.284	22.751	1.8	0.293	23.838	1.85	0.063	23.998	1.85
3		0.045	13.272	1.8				0.347	21.759	1.85	0.036	21.919	1.85

Unit [kcal/mol]

Table S2. Average TKER (kcal/mol) and percentages of energy fraction into kinetic energy for Figure 1. Assumption that the all available energies are released as kinetic energy by the photo-excitation of CH_3SH using 268.844 nm allows us to set the reference (dynamics through UV-alone) and to quantify the aforementioned percentages of degrees of TKER for available energy from IR+UV experiment.

For all CH ₃ S ^{, V₃(S-C stretch) quanta (0, 1, 2, and 3)}	268.844 nm	IR (CH ₃ S-H stretch, ^{<i>v</i>3} , 2607.5 cm ⁻¹) + 268.844 nm	IR (C-H ₃ SH symmetric stretch, ^{V2} , 2950.9 cm ⁻¹) + 268.844 nm	IR (overlapped C- H ₃ SH asymmetric stretches, v_1/v_9 , 3006.7 cm ⁻¹) + 268.844 nm	
<e<sub>k, S=3/2> [kcal/mol]</e<sub>	19.264	26.008	25.035	26.302	
$< E_{k, S=3/2} > / < E_{Total available} > [\%]$	100	97.3	90.4	94.4	
<e<sub>k, S=1/2> [kcal/mol]</e<sub>	18.523	25.267	24.294	25.561	
$\langle E_{k, S=1/2} \rangle \langle E_{Total available} \rangle [\%]$	100	97.3	90.1	94.3	

Figure S4. Total kinetic energy release (TKER) distributions of reduced Doppler double-pump photodissociation dynamics of CH₃SH using various combinations of two UVs following IR preexcitations. Left boxes label the following TKER distributions. Black (or filled black): UVs, red: ${}^{1\nu_{3+}}$ UVs, blue: ${}^{1\nu_{2+}}$ UVs, green: ${}^{1\nu_{1}/\nu_{9+}}$ UVs. Filled color implies the experimental difference population between IR_{off} – IR_{on}. (a) total overlapped TKER distributions, (b) S-H stretch mediated one, (c) C-H₃ symmetric stretch mediated one, and (d) overlapped C-H₃ antisymmetric and antisymmetric C-H₂ stretches mediated TKER distributions, respectively. Abscissa is TKER [kcal/mol] and ordinate is

normalized population [a.u.]. Top (278+216 nm) and bottom (263+226 nm) experiment used loose focusing (20 cm) of one UV (e.g. 216 nm) beam and low power IR (0.3 mJ/pulse for 2608 cm⁻¹, 1 mJ for 3007 cm⁻¹, and 2 mJ for 2951 cm⁻¹) which has linearly parallel polarization to detection plate. Whereas, rests of experiments used tight focusing UVs (15 cm) and high-power IR (1.5 mJ/pulse for 2608 cm⁻¹ except 1.7 mJ for (269.95+221.17 nm), 2 mJ for both 2951 cm⁻¹ and 3007 cm⁻¹, respectively) which has linearly orthogonal polarization to detection plate. Experimental data were 3-point smoothed.

Figure S5. Energy correlation plot for the photodissociation of MeSH (CH₃SH). Inset shows the optimized ground-state CH₃SH structure calculated by Gaussian 09 (DFT B3LYP/6-31G(d,p)).^{S2} Circles indicate expected maximum kinetic energy release, i.e. available energy ($E_{avl} = E_{photon(s)}$ -D₀ (30 250) cm⁻¹) for each photon energy.^{S3} Rectangle is for the average TKER (total kinetic energy release) (i.e. $\langle E_{TKER} \rangle$) following the corresponding photon-energies for photo-excitations. Black/blue: UV only, red: IR (S-H stretch) + UV, green: IR (C-H₃ symmetric stretch) + UV, respectively. Filled light-gray area with dash-arrows show difference between expected $\langle E_{TKER} \rangle$ and the experiments. x mark indicates the previous experimental reference at 300K.^{S4}

Figure S6. Deconvolution of the Figure 1 (c) and (e). (a) and (b) are reproduced TKER distributions from Figure 1 (c) and (e), respectively. To illustrate the de-convolutions of CH₃S· ($\tilde{X}^2 E_{\Omega}$, v_3) components, tie-bars are drawn. $v_3=0,1,2,3$ are progressed. Each colored solid-line is gaussian-function for each CH₃S· ($\tilde{X}^2 E_{3/2}$, v_3) component and each dashed-line is gaussian-function for each CH₃S· ($\tilde{X}^2 E_{3/2}$, v_3) component. The population of $E_{1/2}$: $E_{3/2}$ is assumed to be 0.45 and The S-H dissociation energy of 30 250 ± 100 cm⁻¹ has been used for the simulation.^{S3} Each center of the gaussian-function is < E_{TKER} > for each component (Table S1). Sum of all same spin symmetry components is then averaged by the populations (< E_{k} , s=1/2 or 3/2> in Table S2). < $E_{Total available}$ > is estimated TKER that sum of input IR photon energy and measured < E_{TKER} > by 268.844 nm. < E_{k} , S=1/2 or 3/2>/< $E_{Total available}$ > are then calculated for the IR+(268.844+221.924 nm) experiment case. In Figure S5, whereas, < E_{TKER} > = (*Sum of (population * corresponding TKER*)

Sum of populations) which is experimentally determined and spin-orbit branches were not considered.

Supporting References

1. Xie, M.; Shen, Z.; Pratt, S. T.; Lee, Y.-P., Vibrational autoionization of state-selective jet-cooled methanethiol (CH₃SH) investigated with infrared + vacuum-ultraviolet photoionization. *Phys. Chem. Chem. Phys.* **2017**, *19* (43), 29153-29161.

2. M. J. Frisch; G. W. Trucks; H. B. Schlgel; G. E. Scuseria; M. A. Robb; J. R. Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G. A. Petersson, et al., Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford, CT, **2009**.

3. Wilson, S. H. S.; Ashfold, M. N. R.; Dixon, R. N., Near ultraviolet photolysis of methanethiol studied by H atom photofragment translational spectroscopy. *The Journal of Chemical Physics* **1994**, *101* (9), 7538-7547.

4. Sturm, G. P.; White, J. M., Photodissociation of Hydrogen Sulfide and Methanethiol. Wavelength Dependence of the Distribution of Energy in the Primary Products. *The Journal of Chemical Physics* **1969**, *50* (11), 5035-5036.