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1 Fokker-Planck equation

In a coarse-grained description, the system state is determined by the vector of total particle

numbers X = Ωx, where Ω is the volume of container and xi stands for the particle density

of i-th species. From microscopic perspective, the n-th reaction occurs with the probability

Wn(X,X − vn) jumping from state X − vn to X per unit time. Here, the stoichiometric

coefficients are written as the vector form vn, where the components vni is the stoichiometric

coefficient of ith species in nth reaction. Such a stochastic system can be described by the

master equation

Ṗ (X) =
∑

n
[Wn(X,X− vn)P (X− vn)−Wn(X + vn,X)P (X)] (1)

where P (X) is the probability of the system staying in the state X.

The concentration x is usually an invariant with respect to the volume of container Ω.

For instance, in the thermodynamic limit or macroscopic limit, the concentrations hold fixed

X/Ω = constant, while X → ∞ and Ω → ∞. So, it is easy to obtain a scaling transform

for the master equation[1]

ρ̇(x) = Ω
∑

n

[
wn

(
x,x− vn

Ω

)
ρ
(
x− vn

Ω

)
− wn

(
x +

vn
Ω
,x
)
ρ (x)

]
(2)

with the scaling maps

X = Ωx, (3)

P (X) = Ω−1ρ(x),

Wn(X) = Ωwn(x).

For a system with a large volume Ω� 1, we can take the Taylor expansion for the master

equation with respect to vn/Ω → 0. Note that the stoichiometric coefficients vn ∼ 1. By

taking the Taylor expansion up to second order, we obtain the Fokker-Planck equation as

a continuous approach for the master equation[1]

ρ̇(x) = −∇ · J (4)

with the expression for the probability flux

J = Fρ− Ω−1∇ · (Dρ), (5)

where the drift terms[1]

Fi(x) =
∑

n
vniwn(x) (6)

2



and the diffusion terms[1]

Dij(x) =
1

2

∑
n
vnivnjwn(x). (7)
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2 Chemical Lorenz model with chaos

In a specific chemical reaction model, the backward reactions can be taken as very small

rates, so that the chemical dynamics is dominated by the forward reactions. In this case,

the specific value of the product concentrations and the backward reaction rates do not

appear in the species dynamical equations. The parameters in the chemical reaction model

are taken as follows

r2 = 1, r3 = 1, (8)

k1 = 0.001, k2 = 1, k3 = 10000, k4 = 0.0001, k5 = 1,

k6 = 0.05, k7 = 0.005, k8 = 9900, k9 = 1, k10 = 0.0133.

We take the concentration r1 as a control parameter. The corresponding deterministic

species dynamics reads from the law of mass action

ẋ1 = F1 = 0.001r1x1x2 − 0.1x21, (9)

ẋ2 = F2 = x1x2 − 0.0001x1x2x3 + x2x3 − 0.01x22 − 9900x2,

ẋ3 = F3 = 10000x3 + 0.0001x1x2x3 − x2x3 − x1x3 − 0.0266x23.
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3 On the chemical potential difference

Imagine that there is a chemical reaction system between some particle reservoirs. The

chemical system consisted by M species and N reactions and the reaction described by the

general form ∑
m
v+nmXm

k+m−−⇀↽−−
k−m

∑
m
v−nmXm. (10)

In coarse-grained description, the state of system is determined by the population densities

xm. We can introduce the progress variable ξn for counting the reaction process for nth

reaction. The progress variable increases ξn → ξn+1 with the one step nth forward reaction.

The disharmony among different pathways results in the accumulation in the node species

with the rate

ẋm =
∑

m
vnmξ̇n, (11)

where

vnm = v+nm − v−nm (12)

are stoichiometric coefficients.

Usually, a chemical system can be regarded as certain intermediates reacting between

reactant and product reservoirs. Such an overall system can be thought of as a closed system

exchanging energy but not matter with its environments. The heat flow from environment

to the system reads

dQ = −TdSenv (13)

where dSenv is the entropy change in the environment, and from the energy conservation

dQ = dU + pdV. (14)

We introduce a thermodynamical potential G called Gibbs free energy with the form

G = U + pV − TS. (15)

Then, the second law of thermodynamics described by the total entropy production can be

translated to the dissipation of Gibbs free energy, i.e.,

dG = d(U + pV − TS) = −T (dS + dSenv) ≤ 0. (16)
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A particle in a chemical system acquires a thermodynamical property associated with

the Gibbs free energy as the form

µm =
∂G

∂xm
(17)

called chemical potential. The chemical potential can be viewed as an effective statistical

mechanical pressure on the particle creating an effective force which is called affinity defined

as

An = − ∂G
∂ξn

= −
∑

m
vnmµm, (18)

where the progress variables ξn count nth reaction progress and the stoichiometric coeffi-

cients

vnm =
∂xm
∂ξn

(19)

reflecting the reaction structure. A spontaneous reaction occurs along positive affinities

An > 0 to reduce the Gibbs free energy.

The reactant and product reservoirs with different chemical potentials sustain the nonequi-

librium in the intermediates system. The stoichiometric coefficient vnm < 0 for reactants

and vnm > 0 for products. Thus, we can introduce an overall chemical potential difference

between reactant and product reservoirs in the form

∆µ =
∑

i
µRi −

∑
j
αjµPj (20)

where the coefficients αj reflect the reaction structure. The chemical potential of species i

can be written in the form

µi = µ0i +RT lnxi (21)

with concentration xi, where µ0i is the chemical potential of pure species i, R is the gas

constant and T is the temperature. Note that the constant RT is normalized into RT = 1

in our theoretical treatment. The chemical potential difference will possess complex form

due to different features of species.

For a forward dominated reaction system, we can simplify the chemical potential dif-

ference into a relatively brief structure. In such a system, the backward reactions occur

with very small rates, so that the equilibrium can only be achieved with very small amount

of reactants. In other words, the chemical equilibrium ∆µ → 0 is sustained by very small
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concentration of reactants. By contrast, the finite concentrations of reactants contribute to

additional chemical potential difference between reactants and products

∆µ =
∑

i
ln ri (22)

where ri is the concentration of the reactant Ri. It breaks the chemical equilibrium to

create chemical reaction flows, like a higher temperature is imposed on the bottom of the

atmosphere to create the buoyancy. The chemical potential difference increases with the

density of reactants, while the products do not contribute to such difference. In the chemical

Lorenz model, the chemical potential difference between reactants and products is given as

∆µ = ln r1 (23)

controlled by the concentration r1 of the reactant R1.
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4 Potential-flux landscape

The intrinsic potential and flux is obtained by solving the Hamilton-Jacobi equation corre-

sponding to the thermodynamical limit Ω → ∞. But, the Hamilton-Jacobi equation as a

nonlinear partial differential equation is hard to solve. In an approximation, we replace its

solution corresponding to the thermodynamical limit Ω → ∞ by the numerical solution of

Fokker-Planck equation with the case of Ω� 1.

One can see the general Fokker-Planck equation possesses a anisotropic inhomogeneous

diffusion matrix[1]

Dij(x) =
∑

n
vnivnjwn(x)/2. (24)

It leads to also another difficulty in numerical treatment in practice. So, we use an isotropic

homogeneous diffusion to replace the original state-dependent matrix. It is necessary to

notice the isosurface of the potential in Fig.2(d)-(f) is corresponding to the solution of the

Fokker-Planck equation ∑
i

∂Fiρss
∂xi

− α
∑

ij

∂2ρss
∂xi∂xj

= 0. (25)

In the numerical calculation, the diffusion parameter is taken as α = 2×107. In the original

Fokker-Planck equation ∑
i

∂Fiρss
∂xi

− Ω−1
∑

ij

∂2Dijρss
∂xi∂xj

= 0, (26)

where the diffusion matrix is approximately

D =

1 0 0
0 16 −8
0 −8 17

× 107. (27)

By comparing Eqs.(25)-(27), it is easy to see that the parameter α = 2×107 is corresponding

to an approximate volume Ω ∼ 10.

The intrinsic potential φ contains an integral constant from the form of Hamilton-Jacobi

equation, and thus the effective part is the difference

φ = φ(x)− φmin. (28)

In addition, the intrinsic potential can be interpreted by the probability distribution φ =

−α ln ρss. So, the integral constant is actually

φmin = −α ln ρmax
ss (29)
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where ρmax
ss is the maximum of the probability density in the state space. The isosurface

for the effective intrinsic potential in Fig.2(d)-(f) is taken as

φiso = 2α. (30)

Note that the α can be thought of as a noise strength exiting the system. The system lies

in the ground state φmin = −α ln ρmax
ss without fluctuation. The isosurface φiso outlines the

states that can be exited by the noise with strength 2α. Obviously, the ground state φmin

is surrounded by the isosurface φiso. Furthermore, the intrinsic flux in Fig.2(g)-(i) is also

approximated by the solution of the Fokker-Planck equation

V = F− α∇ ln ρss. (31)

It is necessary to notice that Fig.2 is a heuristic illustration for the distribution of the

potential and flux. The detailed value used in Fig.2 does not affect the further calculation

of other quantities. The latter is performed by other treatment.
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5 Lyapunov exponent

The chaos is characterized by the sensitive dependence of system behavior on initial condi-

tions. On average, two infinitesimally closed trajectories separate exponentially fast in the

form

|δx(t)| ≈ eλt|δx(0)| (32)

with the Lyapunov exponent λ providing a measure of such dynamical sensitivity.

More technically, we consider two trajectories x(t) and x′(t) with separation r(t) =

x′(t)− x(t). For a general dynamics ẋ = F(x), the separation rate reads

ṙ(t) = F(x′(t))− F(x(t)) ' J(x)r (33)

with the Jacobian J = ∂F/∂x. The solution can be formally written as

ṙ(tn) =

(
n∏
i

exp[τJ(x(ti))]

)
r(0) (34)

where τ is infinitesimal time increment. The global Lyapunov exponents as the chaotic

measure are defined as the eigenvalues of the cumulated matrix

Λ = lim
n→∞

1

2nτ
ln

( n∏
i

exp[τJ(x(ti))]

)T( n∏
i

exp[τJ(x(ti))]

) (35)

which describe a global property with independence of the initial condition. Usually, the

largest Lyapunov exponent λmax is representative for measure of chaos.
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6 Kolmogorov-Sinai entropy

We divide the d-dimensional state space into boxes with size εd. A dynamical trajectory

x̃(t) can be identified by the box sequence i0(0), i1(τ), · · · , in(nτ) with the sampling interval

τ . Such a trajectory can be recognized with the information

Kn = −
∑

Pi0···in lnPi0···in . (36)

Accordingly, the additional information Kn+1 − Kn is needed to predict the next boxes

the trajectory passed. The Kolmogorov-Sinai entropy entropy is defined as the average

information

hKS = lim
τ→0

lim
ε→0

lim
N→∞

1

Nτ

∑N−1

n=0
(Kn+1 −Kn) . (37)

Some numerical algorithms were developed to evaluate the Kolmogorov-Sinai entropy.
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7 Entropy production rate

The intrinsic flux gives rise to the dynamical irreversibility exhibiting the asymmetry in the

probability between forward and backward trajectories. The irreversibility in the trajectory

probabilities can be obtained by means of the path integral[2]. A stochastic trajectory occurs

with probability

P[x(t)]Dx = P[x(t)|x0]ρss(x0)Dx (38)

where trajectory-dependent transition probability density P[x(t)|x0] can be obtained by

the path integral,

P[x(t)|x0] =
τ∏
t=0

[
Ω

4π|D|dt

]1/2
exp

[
−Ω

∫ τ

0
Ldt
]
. (39)

Each trajectory contributes a different weight by the Lagrangian

L =
1

4
[ẋ− F(x)] ·D−1 · [ẋ− F(x)]. (40)

Obviously, the Lagrangian vanishes

L(x, ẋ) = 0 (41)

along a deterministic trajectory ẋ = F(x). For the time reversal trajectory x̃(t) = x(τ − t),

we have ˙̃x− F(x̃) = −ẋ− F(x) = −2F(x) and the corresponding Lagrangian

L(x̃, ˙̃x) = F(x) ·D−1 · F(x). (42)

The dynamical irreversibility is measured by

P[x(t)]

P[x̃(t)]
=
P[x(t)|x0]ρss(x0)

P[x̃(t)|x̃0]ρss(x̃0)
(43)

=
ρss(x0)

ρss(xτ )
exp

[
Ω

∫ τ

0
[L(x̃, ˙̃x)− L(x, ẋ)]dt

]
= exp

[
Ω[φ(xτ )− φ(x0)] + Ω

∫ τ

0
L(x̃, ˙̃x)dt

]
= exp

[
Ω

∫ τ

0
F · ∇φdt+ Ω

∫ τ

0
F ·D−1 · Fdt

]
= exp

[
Ω

∫ τ

0
[F ·D−1 · F− (∇φ0) ·D · (∇φ0)]dt

]
= exp

[
Ω

∫ τ

0
V ·D−1 ·Vdt

]
.
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On the other hand, it is particularly associated with the trajectory-dependent entropy[3]

P[x(t)]

P[x̃(t)]
= exp

[∫ τ

0
ṡ[x(t)]dt

]
, (44)

where ṡ[x(t)] is the trajectory-dependent entropy production[4] . Therefore, we obtain the

density of entropy production rate

ep = Ω−1
∫
ṡ(x)ρss(x)dx (45)

=

∫
V ·D−1 ·Vρss(x)dx ≥ 0.
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