Electronic supplementary information for: "Influence of the N atom position on the excited state photodynamics of protonated azaindole."

Jennifer A. Noble^{1*}, Ernesto Marceca², Claude Dedonder¹, Witchaya Phasayavan^{3,4}, Geraldine Féraud^{1%}, Burapat Inceesungvorn⁴ & Christophe Jouvet¹

1 CNRS, Aix Marseille Univ., PIIM, Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397, Marseille, France. jennifer.noble@univ-amu.fr

2 INQUIMAE (CONICET – Universidad de Buenos Aires), DQIAQF (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria), 3er piso, Pab. II, 1428 Buenos Aires, Argentina.

3 Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand.

4 Department of Chemistry, Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.

% Present address: Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005, Paris, France.

Figure SI-1: Time of flight mass spectra of protonated 7-, 6-, and 5-azaindole upon collision induced dissociation (CID), and photofragmentation in excited states S_1 and S_3 (7-AIH⁺ and 6-AIH⁺ only).

Figure SI-2: Optimised geometries in S_0 *of (l-r)* 7-*AIH*⁺, 6-*AIH*⁺, and 5-*AIH*⁺; $C_7N_2H_7^+$, where C atoms are grey, N atoms are blue, H atoms are white.

7-AIH⁺ S₀ optimised geometry (x,y,z co-ordinates)

С	-0.8767320140	1.6717162266	2.0654094722
С	-0.6368294839	1.3712455317	3.3777476827
Η	-0.0032388405	0.6071661170	3.8209409215
С	-1.7975953368	2.7760761521	2.0501402820
Ν	-1.3639669477	2.2350922383	4.2063032204
С	-2.0648846364	3.0828896708	3.4194425251
С	-2.4314779564	3.5445130402	1.0714804547
Η	-2.2605142210	3.3494940210	0.0106495248
Ν	-2.9030968175	4.0838695289	3.7689610482
С	-3.2970881107	4.5772749895	1.4687415571
Η	-3.8065858366	5.1943416292	0.7288615517
С	-3.5202572822	4.8316384028	2.8128678216
Η	-4.1809734604	5.6189747229	3.1739242849
Η	-0.4492415964	1.1675281443	1.2034126873
Η	-3.0841989123	4.2915746450	4.7498750759
Η	-1.3523231460	2.2106098049	5.2202451849

6-AIH⁺ S₀ optimised geometry (x,y,z co-ordinates)

С	-1.5911460688	-1.2653543711	0.0000000000
С	-0.2613745458	-0.7687925694	0.0000000000
С	-0.3521257213	0.6693304023	0.0000000000
Ν	-1.6862267754	0.9961042094	0.0000000000
С	-2.4245718752	-0.1613890576	0.0000000000
С	1.0216825157	-1.3563164475	0.0000000000
С	2.1241588706	-0.5309523985	0.0000000000
Ν	1.9751854938	0.8291904407	0.0000000000
С	0.7785723896	1.4609535620	0.0000000000
Η	-3.5119402382	-0.1180917017	0.0000000000
Η	-2.0732388462	1.9331261715	0.0000000000
Η	1.1580018465	-2.4380463826	0.0000000000
Η	-1.9082701319	-2.3043913191	0.0000000000
Η	0.7849749019	2.5508205366	0.0000000000
Η	3.1496779026	-0.8976664246	0.0000000000
Η	2.8166402821	1.4014753496	0.0000000000

5-AIH⁺ S₀ optimised geometry (x,y,z co-ordinates)

С	-3.1562555879	3.5624946268	5.6358485426
С	-2.0608820652	2.7934831227	5.2121702906
С	-1.7726690859	2.5956936069	3.8146703215
С	-2.6132144362	3.1894307190	2.8856532811
Ν	-3.6574824443	3.9221765331	3.3328696840
С	-3.9464633158	4.1214557046	4.6541369076
Ν	-1.1100596790	2.1214877356	5.9077638443
С	-0.2299670229	1.5051860691	5.0241361258
С	-0.6010692899	1.7713637388	3.7322975853
Η	0.6027924176	0.9173040583	5.4029853895
Η	-1.0448638176	2.0705520342	6.9189151086
Н	-2.4919991883	3.1070772524	1.8054463955
Н	-4.2692827253	4.3541897239	2.6432775959
Η	-4.8200370931	4.7352420726	4.8683770996
Η	-0.1001501777	1.4220793918	2.8338901755
Η	-3.3942101355	3.7259381163	6.6872131019

Figure SI-3: Two simulated spectra of 7-AIH⁺ (cm⁻¹). The simulation in blue includes the v9 out-of-plane vibration. The one in black does not include this vibration and is much closer to the experimental spectrum (Figure 2), indicating that the first calculation overestimated the out-of-plane character of the excited state.

	5-AIH ⁺					6-AIH ⁺						7-AIH ⁺				
	S ₀ S ₁ (1A')]	<u>S0</u> <u>S1</u> ((1A')		So			S ₁ bend				
1	a"	226	a"	153		1	a"	229	a"	186		1	a"	221	a	209
2	a"	244	a"	221		2	a"	252	a"	268		2	a"	249	a	273
3	a'	411	a"	338		3	a'	411	a"	331		3	a"	405	a	414
4	a"	430	a"	379		4	a"	434	a"	341		4	a'	423	a	438
5	a'	558	a'	388		5	a"	521	a'	393		5	a"	502	a	517
6	a"	576	a"	466		6	a'	560	a'	517		6	a'	558	a	538
7	a"	598	a'	514		7	a"	588	a"	519		7	a"	574	a	574
8	a'	617	a"	524		8	a'	613	a"	564		8	a"	608	a	587
9	a"	621	a"	556		9	a"	620	a'	619		9	a'	619	a	621
10	a"	739	a"	609		10	a"	729	a"	662		10	a"	718	a	634
11	a"	760	a'	619		11	a"	774	a"	693		11	a"	746	a	723
12	a'	787	a"	696		12	a'	789	a"	727		12	a'	771	a	753
13	a"	800	a"	717		13	a"	814	a'	750		13	a"	795	a	768
14	a"	849	a'	754		14	a"	867	a"	760		14	a"	826	a	811
15	a'	902	a"	791		15	a'	899	a"	807		15	a'	901	a	852
16	a'	908	a'	878		16	a'	910	a"	874		16	a'	909	a	884
17	a"	919	a"	893		17	a"	914	a'	887		17	a"	913	a	926
18	a"	935	a'	907		18	a"	941	a'	909		18	a"	954	a	939
19	a"	963	a"	958		19	a"	983	a"	969		19	a"	1014	a	995
20	a'	1045	a'	1002		20	a'	1043	a'	1010		20	a'	1060	a	1005
21	a'	1082	a'	1045	1	21	a'	1087	a'	1058		21	a'	1070	a	1039
22	a'	1107	a'	1121		22	a'	1124	a'	1117		22	a'	1104	a	1096
23	a'	1171	a'	1156		23	a'	1165	a'	1142		23	a'	1136	a	1149
24	a'	1219	a'	1184		24	a'	1235	a'	1174		24	a'	1220	a	1184
25	a'	1267	a'	1219		25	a'	1270	a'	1222		25	a'	1237	a	1198
26	a'	1291	a'	1228		26	a'	1275	a'	1228		26	a'	1299	a	1220
27	a'	1346	a'	1283		27	a'	1339	a'	1289		27	a'	1325	a	1244
28	a'	1385	a'	1357		28	a'	1383	a'	1343		28	a'	1376	a	1328
29	a'	1427	a'	1408		29	a'	1422	a'	1384		29	a'	1399	a	1368
30	a'	1465	a'	1439		30	a'	1478	a'	1435		30	a'	1476	a	1435
31	a'	1520	a'	1484		31	a'	1518	a'	1450		31	a'	1533	a	1459
32	a'	1545	a'	1522		32	a'	1537	a'	1519		32	a'	1542	a	1506
33	a'	1596	a'	1574		33	a'	1574	a'	1555		33	a'	1576	a	1534
34	a'	1650	a'	1625	1	34	a'	1638	a'	1633		34	a'	1656	a	1589
35	a'	1675	a'	1677	1	35	a'	1692	a'	1668		35	a'	1685	a	1736
36	a'	3223	a'	3224		36	a'	3224	a'	3227		36	a'	3209	a	3214
37	a'	3232	a'	3251	1	37	a'	3232	a'	3251		37	a'	3228	a	3251
38	a'	3248	a'	3257	1	38	a'	3245	a'	3265		38	a'	3245	a	3252
39	a'	3262	a'	3271]	39	a'	3258	a'	3285		39	a'	3264	a	3268
40	a'	3279	a'	3295]	40	a'	3276	a'	3299		40	a'	3281	a	3269
41	a'	3570	a'	3590]	41	a'	3575	a'	3571		41	a'	3556	a	3576
42	a'	3616	a'	3613]	42	a'	3624	a'	3599		42	a'	3619	a	3586
					-		_				-				7	

Table SI-1: All calculated vibrational modes for S_0 *and* S_1 *of* 5-, 6-, *and* 7-AIH⁺ (cm⁻¹).

Figure SI-4: Power dependence of fragment m/z 92 in each excited state for 6-AIH⁺. Linear fits to log-log plots are plotted in red. In all three states, the transition exhibits linearity at the beginning, before saturating at higher power (red data points not included in fit). From the power dependency, all transitions appear to involve one photon.

Figure SI-5: Photofragmentation bands of m/2 92 for 7-AIH⁺ in the S₃ state. The vibrational progression of ~70 cm⁻¹ is indicated in black, while the fitted Lorentzian functions reveal a width of ~23 cm⁻¹ (i.e. without taking into consideration the laser spectral width of ~10 cm⁻¹).

Figure SI-6: REMPI spectrum of neutral 7-azaindole at m/z 118 recorded in a molecular beam. Inset: Photofragmentation in the 0-0 band of the 7-azaindole molecule. The signal of the precursor molecule at m/z 118 (violet) has been divided by ten for ease of interpretation. The fragment m/z 91 (blue) is produced in the 0-0 band of neutral 7-azaindole, with a background signal (black) of approximately zero in this spectral range.

Figure SI-7: Schematic of the possible potential surface in n-AIH⁺, derived from the work of $Su^{[49]}$ on pyridine.

Figure SI-8: Schematic of the possible relaxation pathways from S_1 *and* S_3 *.*