Intrinsic Electronic Spectra of Cryogenically Prepared Protoporphyrin IX Ions in Vacuo – Deprotonation-Induced Stark Shifts – Electronic Supplementary Information

Wyatt Zagorec-Marks,^{1,2} James E. T. Smith², Madison M. Foreman,^{1,2} Sandeep Sharma², J. Mathias

Weber^{1,2,*}

¹JILA, University of Colorado, Boulder, CO 80309, USA. ²Department of Chemistry, University of Colorado, Boulder, CO 80309, USA.

Table of Contents

S1. Correlated Calculations
Figure S1.1. A visual comparison of the theoretical and experimental Qx and Qy bands 2
Figure S1.2 The anion natural orbitals (NOs) from the SA-3-CASSCF(4e,4o) calculation 3
Figure S1.3 The leading configurations in the CI expansion for the anion ground state
Figure S1.4 The leading configurations in the CI expansion for the anion Q_x (S1) state4
Figure S1.5 The leading configurations in the CI expansion for the anion Q_y (S2) state4
Figure S1.6 The dianion natural orbitals (NOs) from the SA-3-CASSCF(4e,4o) calculation 5
Figure S1.7 The leading configurations in the CI expansion for the dianion ground state 5
Figure S1.8 The leading configurations in the CI expansion for the dianion Q_x (S1) state 6
Figure S1.9 The leading configurations in the CI expansion for the dianion Q_y (S2) state 6
S2. Model Protoporphyrin (PP-Me) Calculations 7
Figure S2.1. Structure of PP-Me, used to investigate electric field effects
Table S2.2 Summary of the point charge locations and their standard deviations 8
Table S2.3 Experimental and simulated effects of charge state
S3. Frank-Condon Simulation of Free Base Porphyrin 10
S4. Solvatochromic Data
S5. Mid-Infrared Spectra of PP 12
S6. Frequencies and Intensities of Vibrational modes of the Q _x Band of Porphine
S7. Frequencies and Intensities of Vibrational modes of the Q_x Band of (PP-H)⁻ 16
S8. Assignment of FCHT simulation of (PP-H) ⁻ under vertical gradient approximation 18

S1. Correlated Calculations

All PySCF input files along with selected analysis scripts are hosted on GitHub at https://github.com/jamesETsmith/ppix final.

Figure S1.1. A visual comparison of the theoretical and experimental Qx and Qy bands. We make the PySCF NEVPT2 results slightly taller here to facilitate the comparison with the ORCA NEVPT2 results.

Figure S1.2 The anion natural orbitals (NOs) from the SA-3-CASSCF(4e,4o) calculation.

Figure S1.3 The leading configurations in the CI expansion for the anion ground state.

Figure S1.4 The leading configurations in the CI expansion for the anion Q_x (S1) state.

Figure S1.5 The leading configurations in the CI expansion for the anion Q_y (S2) state.

Figure S1.6 The dianion natural orbitals (NOs) from the SA-3-CASSCF(4e,4o) calculation.

Figure S1.7 The leading configurations in the CI expansion for the dianion ground state.

Figure S1.8 The leading configurations in the CI expansion for the dianion Q_x (S1) state.

Figure S1.9 The leading configurations in the CI expansion for the dianion Q_y (S2) state.

S2. Model Protoporphyrin (PP-Me) Calculations

Since the NEVPT2 calculations on PP are in good agreement with the experimentally observed splittings, an interesting question in this context is whether NEVPT2 can reproduce the field effects for a simplified model structure that is placed in the field of point charges that approximate the charge distribution of the ions. We calculated the Q_x and Q_y band energies using a modified molecular structure (in the following referred to as PP-Me), where we replaced the charged (CH₂)₂COO(H) groups on PP with methyl groups, and placed point charges at different positions to simulate the electric field experienced by the macrocycle in a variety of scenarios. The structure of the macrocycle model was optimized using the ω B97XD functional with 6-31G(d) basis set for all atoms. Figure S2.1 shows the geometry used in these simulations, with three different charge distributions for the monoanion and one for the dianion.

Figure S2.1. Structure of PP-Me, used to investigate electric field effects. Positions marked with numbers represent point charge positions: single point charges (-e) were used in positions 1 and 2, two point charges (-0.5 e) in each position marked "3", each configuration simulating a charge distribution modeling the monoanion, and two point charges (-e) in each position marked "4" to simulate the dianion structure.

In scenario 1, a point charge of -e is positioned at the location of the deprotonated carboxylate oxygen atom (relative to the macrocycle). In the second scenario, a point charge of -e is placed at the position of the H atom shared between the two carboxylate groups. In the third scenario, two point charges of -0.5 e each are set in the locations of the oxygen atoms involved in the H-bonding between the carboxylate groups. The fourth model charge distribution uses the midpoint between the two oxygen atoms on each carboxylate group as a model for the dianion.

For each scenario, we calculate the position (or positions depending on the scenario) of the point charges using the following procedure:

- 1. Choose a position for the point charge, e.g. the location of the hydrogen H-bonded between the carboxylate groups in the PP anion.
- 2. Measure the distance from the point charge to four non-H-atoms, which we refer to as reference atoms, on the porphyrin ring in the PP species.
- 3. Use the distances and the positions of the same four reference atoms in the PP-Me geometry to calculate the position of the point charge(s) in the new geometry
- 4. Repeat steps 1-3 for every possible combination of non-H-atoms around the porphyrin ring and take the mean of all coordinates as our point charge location in the correlated calculations.

A summary of the point charge locations and their standard deviations is listed below. All values are in Å.

Scenario	Charge	Х	Y	Z
1	-1.0	-5.7124 ± 0.1298	-3.6452 ± 0.0610	0.1326 ± 0.5764
2	-1.0	-7.0947 ± 0.1190	-3.0432 ± 0.0676	0.1083 ± 0.6237
3	-0.5	-5.7124 ± 0.1298	-3.6452 ± 0.0610	0.1326 ± 0.5764
	-0.5	-8.0172 ± 0.1534	-2.5559 ± 0.0935	0.0854 ± 0.7135
4	-1.0	-2.9263 ± 0.2368	-7.4737 ± 0.2686	-0.3309 ± 1.8030
	-1.0	-8.1490 ± 0.2285	1.2438 ± 0.1640	0.4364 ± 1.5091

Table S2.2 Point Charge Coordinates for Model Calculations

Table S2.2 shows the results of these model calculations in terms of the predicted Q_x and Q_y energies. Scenarios 1, 2, and 3 result in similar band energies. Their calculated band energies and splittings are loosely consistent with the calculated results on singly deprotonated PP, but they do not recover the changes observed in going from the mono- to the dianion. The spread of excitation energies from our scenarios indicates that the band positions are quite sensitive to the charge distribution, corroborating our expectation that the local electric field plays a major role for the behavior of the Q band positions. The various scenarios agree qualitatively with the experimental pattern, but they all consistently overestimate the Q_x band energies, while underestimating the Q_y energies. Clearly, the treatment using point charges in the vicinity of a simplified model macrocycle is insufficient to correctly account for the Stark shifts. We caution that the geometries of the PP-Me model structure and the deprotonated PP structures differ sufficiently strongly to introduce uncertainties in the positions of the point charges, depending on which atoms in the macrocycle are chosen as reference atoms. This uncertainty introduces possible errors regarding the electric field experienced by the atoms closest to the charges. These errors range from ca. 5% for the monoanion to ca. 15% for the dianion.

Charge State	Molecule	Method	$E(Q_x)^{(d)}$	$E(Q_y)^{(d)}$	$\Delta E^{(d)}$
0	РР	experiment ^(a)	$15900\pm\!100$	$19050\pm\!100$	3150 ± 141
	PP	NEVPT2	15810	18606	2796
-1	РР	experiment ^(b)	15870 ± 10	18760 ± 30	2890 ± 32
	PP	NEVPT2	15377	18217	2840
	PP-Me	NEVPT2(1) ^(c)	16072	18530	2457
	PP-Me	NEVPT2(2) ^(c)	16155	18656	2501
	PP-Me	NEVPT2(3) ^(c)	16110	18640	2530
-2	PP	experiment ^(b)	15760 ± 10 (-110)	18270 ± 30 (-490)	2510 ± 32 (-380)
	PP	NEVPT2	15472 (+95)	18123 (-94)	2651 (-189)
	PP-Me	NEVPT2(4) ^(c)	16152 (+40)	18702 (+93)	2550 (-54)

Table S2.3 Experimental and simulated effects of charge state. Vertical transition energies in cm⁻¹.

^(a)Supersonic jet experiment, from ref 16.

^(b)This work.

^(c)Numbers in parentheses refer to the placement of point charges in Figure 5.

^(d)Numbers in parentheses describe the shift from mon- to dianion. For scenario 4, the shift is calculated relative to the average of the scenarios 1-3.

S3. Frank-Condon Simulation of Porphine

Franck-Condon simulation of the Q_x band, performed using the ω B97XD/6-31G(d) level of theory (black), with a scaling factor of 0.97 to account for anharmonicity. The 7¹₀ band at 77 cm⁻¹ is a macrocycle deformation mode where elongation along the x-axis is out of phase with elongation along the y-axis. The in-phase combination of these motions is the 13¹₀ band and is responsible for the peak at 227 cm⁻¹. See PowerPoint file in Supporting Information for animation of key vibrational modes.

S4. Solvatochromic Data

		(8)		
Solvent / Temperature	pH (charge)	$Q_{x}(0)^{(a)}$	$Q_{x}(1)^{(a)}$	Qy(0) ^(a)	Qy(1) ^(a)	ref. ^(b)
in vacuo / jet	(0)	15900 ±100	17420 ±100	19050 ±100	20410 ±100	16
in vacuo / 60	(-1)	15870 ± 10	17400 ± 10	18760 ± 30	20090 ±20	This work
in vacuo / RT	(-1)	N/A	17210 ±100	18690 ±100	20040 ±100	15
in vacuo / 60	(-2)	15760 ± 10	$17280\pm\!10$	18270 ± 30	$19630\pm\!\!30$	This work
water / RT	1	15870	16670	18050	19380	14
water / RT	5	15530	16840	17670	18730	14
water / RT	12	15970	17300	18350	19610	14
DMSO / RT	N/A	15870	17330	18450	19760	14

Table S4. Solvatochromic data for PP (transition energies in cm⁻¹)

^(a) $Q_x(0)$ and $Q_y(0)$ refer to the maximum of each envelope in the band origin region, while $Q_x(1)$ and $Q_y(1)$ represent the maxima of the envelope in the region of Franck-Condon active modes, ca. 1000 cm⁻¹ above each band origin.

^(b) Reference numbers refer to the main text.

S5. Mid-Infrared Spectra of PP

Figure S5. Mid-infrared spectra of $[(PP-H) \cdot N_2]^-$ (top panel) and of $[(PP-2H) \cdot N_2]^{2-}$ (bottom).

Both spectra show the anti-symmetric NH stretching vibration as intense features at 3324 cm⁻¹ and 3327 cm⁻¹, respectively. A subtle feature at 3368 cm⁻¹ in the spectrum of the monoanion corresponds to the symmetric stretching mode, which is too weak to be clearly observable in the dianion spectrum. The features below 3200 cm⁻¹ are CH stretching vibrations as well as Fermi-resonances of these modes with overtones and combination bands of lower frequency modes. We refrain from explicitly assigning any of these modes due to the high congestion in this region. There is no evidence of a free OH stretching vibration in the spectrum of the monoanion, confirming that the hydrogen in shared between the two carboxylate groups (see Figure 3 in the main text).

S6. Frequencies and Intensities of Vibrational modes of the Q_x Band of Porphine

Transition	Label	Frequency	Rel.	Line	Dipole
Ħ		(1/cm)	(1/cm)	Intensity	(a.u.)
1	0> -> 0>	17562.24	0	2442	0.01864
2	0> -> 3 ¹ >	17657.98	95.7363	84.48	0.000684
3	0> -> 7 ¹ >	17715.08	152.8403	415.6	0.003146
4	0> -> 7 ² >	17867.92	305.6807	21.36	0.000161
5	0> -> 13 ¹ >	17873.52	311.2789	561.5	0.004458
6	0> -> 20 ¹ >	17984.46	422.2208	36.3	0.000282
7	0> -> 13 ¹ 7 ¹ >	18026.36	464.1193	87.83	0.000653
8	0> -> 13 ² >	18184.8	622.5579	61.75	0.000477
9	0> -> 33 ¹ >	18295.81	733.5661	511.6	0.003877
10	0> -> 34 ¹ >	18302.44	740.2007	277.9	0.002074
11	0> -> 41 ¹ >	18361.27	799.0247	201	0.001548
12	0> -> 33 ¹ 7 ¹ >	18448.65	886.4064	29.75	0.000226
13	0> -> 34 ¹ 7 ¹ >	18455.29	893.0411	27.27	0.000204
14	0> -> 53 ¹ >	18539.89	977.6411	815	0.005909
15	0> -> 55 ¹ >	18553.53	991.2886	345	0.002639
16	0> -> 58 ¹ >	18585.71	1023.462	286.4	0.002193
17	0> -> 59 ¹ >	18593.21	1030.962	49.16	0.000373
18	0> -> 33 ¹ 13 ¹ >	18607.09	1044.845	79.02	0.000584
19	0> -> 34 ¹ 13 ¹ >	18613.72	1051.48	51.54	0.000376
20	0> -> 61 ¹ >	18624.8	1062.551	498.1	0.003755
21	0> -> 63 ¹ >	18634.17	1071.928	23.43	0.00018
22	0> -> 41 ¹ 13 ¹ >	18672.55	1110.304	32.18	0.000241
23	0> -> 53 ¹ 7 ¹ >	18692.73	1130.481	42.9	0.00031
24	0> -> 55 ¹ 7 ¹ >	18706.37	1144.129	23.3	0.000167
25	0> -> 65 ¹ >	18721.65	1159.405	289.4	0.002198
26	0> -> 58 ¹ 7 ¹ >	18738.55	1176.303	23.85	0.000171
27	0> -> 68 ¹ >	18771.65	1209.407	1103	0.007893
28	0> -> 69 ¹ >	18772.34	1210.099	58.65	0.000421
29	0> -> 61 ¹ 7 ¹ >	18777.64	1215.392	33.17	0.000251
30	0> -> 70 ¹ >	18806.31	1244.064	866.9	0.006291

31	0> -> 53 ¹ 13 ¹ >	18851.16	1288.92	120.4	0.000857
32	0> -> 55 ¹ 13 ¹ >	18864.81	1302.568	55.22	0.000411
33	0> -> 65 ¹ 7 ¹ >	18874.49	1312.245	19.6	0.000139
34	0> -> 58 ¹ 13 ¹ >	18896.99	1334.741	49.6	0.00037
35	0> -> 68 ¹ 7 ¹ >	18924.49	1362.248	74.13	0.000528
36	0> -> 74 ¹ >	18930.55	1368.304	1237	0.008754
37	0> -> 61 ¹ 13 ¹ >	18936.07	1373.83	80.68	0.000593
38	0> -> 75 ¹ >	18953.21	1390.962	2642	0.01968
39	0> -> 76 ¹ >	18953.69	1391.444	1275	0.009568
40	0> -> 70 ¹ 7 ¹ >	18959.15	1396.905	54.83	0.000398
41	0> -> 78 ¹ >	18974.28	1412.032	2012	0.01447
42	0> -> 81 ¹ >	19011.95	1449.703	86.24	0.00061
43	0> -> 65 ¹ 13 ¹ >	19032.93	1470.683	46.34	0.000343
44	0> -> 83 ¹ >	19050.25	1488.006	55.36	0.00039
45	0> -> 68 ¹ 13 ¹ >	19082.93	1520.686	178.4	0.001254
46	0> -> 74 ¹ 7 ¹ >	19083.39	1521.144	78.73	0.000554
47	0> -> 75 ¹ 7 ¹ >	19106.05	1543.803	188.9	0.001415
48	0> -> 76 ¹ 7 ¹ >	19106.53	1544.284	86.25	0.000605
49	0> -> 70 ¹ 13 ¹ >	19117.59	1555.343	138.1	0.00098
50	0> -> 86 ¹ >	19119.79	1557.541	76.89	0.000557
51	0> -> 78 ¹ 7 ¹ >	19127.12	1564.873	127.2	0.000915
52	0> -> 87 ¹ >	19129.04	1566.798	605.2	0.004457
53	0> -> 90 ¹ >	19175.17	1612.931	1720	0.01235
54	0> -> 91 ¹ >	19203.18	1640.937	5346	0.03734
55	0> -> 93 ¹ >	19241.68	1679.44	2467	0.01824
56	0> -> 74 ¹ 13 ¹ >	19241.83	1679.583	184.1	0.001364
57	0> -> 75 ¹ 13 ¹ >	19264.49	1702.241	440.1	0.003194
58	0> -> 76 ¹ 13 ¹ >	19264.97	1702.723	204.1	0.001491
59	0> -> 87 ¹ 7 ¹ >	19281.88	1719.639	33.86	0.000251
60	0> -> 78 ¹ 13 ¹ >	19285.56	1723.311	320.4	0.002254
61	0> -> 90 ¹ 7 ¹ >	19328.01	1765.771	114.5	0.000824
62	0> -> 91 ¹ 7 ¹ >	19356.02	1793.777	339.9	0.002362
63	0> -> 93 ¹ 7 ¹ >	19394.52	1832.28	168.2	0.001163
64	0> -> 75 ¹ 13 ¹ 7 ¹ >	19417.33	1855.082	31.53	0.00023
65	0> -> 78 ¹ 13 ¹ 7 ¹ >	19438.4	1876.152	20.81	0.000146
66	0> -> 87 ¹ 13 ¹ >	19440.32	1878.077	92.67	0.000665

67	0> -> 90 ¹ 13 ¹ >	19486.45	1924.209	277.5	0.001946
68	0> -> 68 ¹ 34 ¹ >	19511.85	1949.608	22.9	0.000163
69	0> -> 91 ¹ 13 ¹ >	19514.46	1952.215	847.1	0.005817
70	0> -> 93 ¹ 13 ¹ >	19552.96	1990.719	393	0.002829
71	0> -> 75 ¹ 13 ² >	19575.76	2013.52	34.41	0.000244
72	0> -> 78 ¹ 13 ² >	19596.83	2034.59	24.16	0.000167
73	0> -> 91 ¹ 13 ¹ 7 ¹ >	19667.3	2105.056	55.31	0.000377
74	0> -> 74 ¹ 34 ¹ >	19670.75	2108.505	21.18	0.000148
75	0> -> 75 ¹ 34 ¹ >	19693.41	2131.163	67.57	0.000465
76	0> -> 76 ¹ 34 ¹ >	19693.89	2131.645	23.35	0.000161
77	0> -> 93 ¹ 13 ¹ 7 ¹ >	19705.8	2143.559	25.45	0.000184
78	0> -> 78 ¹ 34 ¹ >	19714.48	2152.233	35.84	0.000244
79	0> -> 90 ¹ 13 ² >	19797.73	2235.488	21.11	0.000145
80	0> -> 91 ¹ 13 ² >	19825.74	2263.494	59.84	0.00043
81	0> -> 93 ¹ 13 ² >	19864.24	2301.998	29.52	0.000207
82	0> -> 90 ¹ 34 ¹ >	19915.38	2353.131	35.51	0.000239
83	0> -> 91 ¹ 34 ¹ >	19943.38	2381.137	90.94	0.000629
84	0> -> 75 ¹ 58 ¹ >	19976.67	2414.424	29.89	0.00021
85	0> -> 93 ¹ 34 ¹ >	19981.88	2419.641	44.97	0.000306
86	0> -> 75 ¹ 68 ¹ >	20162.61	2600.37	44.38	0.000295
87	0> -> 91 ¹ 58 ¹ >	20226.64	2664.399	26.31	0.000174
88	0> -> 75 ¹ 74 ¹ >	20321.51	2759.266	22.81	0.000159
89	0> -> 75 ² >	20344.17	2781.924	83.43	0.000571
90	0> -> 76 ¹ 75 ¹ >	20344.65	2782.406	25.31	0.000174
91	0> -> 78 ¹ 75 ¹ >	20365.24	2802.995	39.59	0.000263
92	0> -> 90 ¹ 75 ¹ >	20566.14	3003.893	54.75	0.000363
93	0> -> 91 ¹ 75 ¹ >	20594.14	3031.899	97.6	0.000679
94	0> -> 93 ¹ 75 ¹ >	20632.65	3070.402	48.47	0.000329
95	0> -> 108 ¹ >	21184.03	3621.786	20.65	0.000136
96	0> -> 94 ² >	21498.25	3936.008	125.8	0.000784
97	0> -> 94 ² 13 ¹ >	21809.53	4247.287	28.83	0.000188
98	0>-> 94 ² 33 ¹ >	22231.8183	4669.5743	26.16	0.0001631
99	0>-> 94 ² 53 ¹ >	22475.8933	4913.6493	41.58	0.0002487
100	0>-> 94 ² 61 ¹ >	22560.8036	4998.5596	25.39	0.000158
101	0> -> 94 ¹ 91 ¹ 77 ¹ >	22580.6571	5018.4131	36.32	0.0002169
102	0> -> 94 ¹ 91 ¹ 84 ¹ >	22670.7491	5108.5051	26.11	0.0001578

103	0>-> 94 ² 68 ¹ >	22707.6596	5145.4156	56.16	0.0003322
104	0>-> 94 ² 70 ¹ >	22742.3164	5180.0724	44.12	0.0002648
105	0>-> 94 ² 74 ¹ >	22866.5559	5304.3119	62.86	0.0003684
106	0>-> 94 ² 75 ¹ >	22889.2144	5326.9704	134.3	0.0008285
107	0>-> 94 ² 76 ¹ >	22889.6963	5327.4523	64.78	0.0004027
108	0>-> 94 ² 78 ¹ >	22910.2847	5348.0407	102.2	0.0006088
109	0>-> 94 ² 87 ¹ >	23065.0506	5502.8066	30.71	0.0001876
110	0>-> 94 ² 90 ¹ >	23111.1827	5548.9387	87.24	0.0005196
111	0>-> 94 ² 91 ¹ >	23139.1887	5576.9447	271.1	0.001571
112	0>-> 94 ² 93 ¹ >	23177.6920	5615.4480	125.1	0.0007677
113	0>-> 94 ² 91 ¹ 13 ¹ >	23450.4676	5888.2236	42.84	0.0002448

S7. Frequencies and Intensities of Vibrational modes of the Q_x Band of (PP-H)⁻

Transition #	Label	Frequency	Rel.	Line	Dipole
		(1/cm)	Frequency (1/am)	Intensity	Strength
1		0021 4701	(1/cm)	100.4	(a.u.)
1	10>->10>	9021.4701	0	169.1	0.002512
2	0>-> 1 ¹ >	9041.2763	19.8062	402	0.006054
3	0> -> 2 ¹ >	9046.7473	25.2772	162.8	0.002416
4	0> -> 3 ¹ >	9055.3662	33.8961	129.4	0.001922
5	0> -> 8 ¹ >	9088.1167	66.6466	127.8	0.001899
6	0> -> 17 ¹ >	9137.0671	115.597	115.2	0.001713
7	0>-> 42 ¹ >	9345.4585	323.9884	101.9	0.001488
8	0>-> 43 ¹ >	9359.5519	338.0818	197.9	0.002848
9	0> -> 46 ¹ >	9394.9536	373.4835	247.8	0.003653
10	0>-> 48 ¹ >	9430.1697	408.6996	135.4	0.001925
11	0> -> 49 ¹ >	9449.678	428.2079	93.56	0.001353
12	0> -> 52 ¹ >	9513.9112	492.4411	133	0.001915
13	0> -> 53 ¹ >	9521.7206	500.2505	107.6	0.001545
14	0>-> 54 ¹ >	9532.3791	510.909	92.46	0.001369
15	0>-> 61 ¹ >	9640.4841	619.014	400.4	0.005622

16	0> -> 631>	9667.9472	646.4771	129.8	0.001883
17	0>-> 65 ¹ >	9689.2071	667.737	102.9	0.001445
18	0> -> 67 ¹ >	9701.334	679.8639	756.6	0.01117
19	0> -> 74 ¹ >	9749.2372	727.7671	93.45	0.001371
20	0>-> 76 ¹ >	9768.1353	746.6652	136	0.00188
21	0> -> 78 ¹ >	9791.1663	769.6962	381.5	0.005239
22	0> -> 79 ¹ >	9795.8846	774.4145	155.3	0.002221
23	0>-> 82 ¹ >	9814.2044	792.7343	101.7	0.00139
24	0>-> 87 ¹ >	9871.6158	850.1457	803.1	0.01096
25	0> -> 101 ¹ >	10022.5209	1001.051	209.5	0.002804
26	0>-> 103 ¹ >	10035.5796	1014.11	207.5	0.002886
27	0> -> 118 ¹ >	10172.9352	1151.465	122	0.001706
28	0> -> 122 ¹ >	10198.7353	1177.265	381.2	0.005018
29	0> -> 123 ¹ >	10215.8787	1194.409	360.6	0.004761
30	0> -> 125 ¹ >	10241.0716	1219.602	165.8	0.002201
31	0>-> 126 ¹ >	10245.9435	1224.473	211.5	0.002767
32	0> -> 128 ¹ >	10275.6357	1254.166	142.8	0.001941
33	0>-> 131 ¹ >	10311.562	1290.092	971	0.01268
34	0>-> 134 ¹ >	10334.1165	1312.646	111	0.001441
35	0>-> 136 ¹ >	10347.8419	1326.372	369.7	0.005004
36	0>-> 141 ¹ >	10395.0622	1373.592	121	0.001614
37	0>-> 142 ¹ >	10396.5576	1375.088	238.4	0.003244
38	0>-> 145 ¹ >	10413.5682	1392.098	191.5	0.002465
39	0>-> 146 ¹ >	10424.885	1403.415	828.5	0.01079
40	0>-> 149 ¹ >	10467.9235	1446.453	135.9	0.00182
41	0> -> 159 ¹ >	10536.5956	1515.126	142.4	0.00183
42	0>-> 161 ¹ >	10546.4583	1524.988	255.9	0.003342
43	0>-> 170 ¹ >	10561.4592	1539.989	494.7	0.006387
44	0>-> 172 ¹ >	10570.9289	1549.459	103.5	0.001355
45	0>-> 175 ¹ >	10589.1221	1567.652	142.9	0.001926
46	0>-> 176 ¹ >	10610.6902	1589.22	296.3	0.003855
47	0>-> 177 ¹ >	10625.6609	1604.191	126.7	0.001629
48	0>-> 178 ¹ >	10638.2643	1616.794	283.6	0.003575
49	0>-> 179 ¹ >	10663.5007	1642.031	106.6	0.001345
50	0>-> 181 ¹ >	10671.3131	1649.843	399.5	0.005036
51	0>-> 182 ¹ >	10685.8685	1664.398	276.7	0.003471

52	0> -> 183 ¹ >	10710.7534	1689.283	2575	0.03228
53	0> -> 184 ¹ >	10719.9502	1698.48	235.3	0.002962
54	0> -> 185 ¹ >	10722.9216	1701.452	263.2	0.003398
55	0> -> 187 ¹ >	11147.7066	2126.237	177.4	0.002225

S8. Assignment of FCHT simulation of $(PP-H)^{-}$ under vertical gradient approximation

