## **Supporting Tables and Figures**

## Deep Learning-Generated Potential NMDA Receptor Antagonists Reveal Advantages and Limitations of Artificial Intelligence-Based Molecular Generation

Katherine J. Schultz,<sup>†</sup>Sean M. Colby, <sup>†</sup>Yasemin Yesiltepe, <sup>†</sup>Jamie R. Nuñez, <sup>†</sup>Monee Y. McGrady, <sup>†</sup>Ryan R. Renslow<sup>†\*</sup>

<sup>†</sup> Pacific Northwest National Laboratory, Richland, WA, USA.

## **Table of Contents**

Tables ii

Figures

| Table S1. Chemical p | roperties | used in QSAR | activity | / models. |
|----------------------|-----------|--------------|----------|-----------|
|----------------------|-----------|--------------|----------|-----------|

| Molocular weight                   | Atom count                                    | Molocular polarizability                  |
|------------------------------------|-----------------------------------------------|-------------------------------------------|
|                                    | Atom count                                    |                                           |
| Avg molecular polarizability       | principal components of polarizability tensor | Water accessible surface area incl. ASA+, |
|                                    | (axx, ayy, azz)                               | ASA-, ASA_H, and ASA_P                    |
| Aromatic atom count                | Aromatic bond count                           | Aromatic ring count                       |
| Asymmetric atom count              | Balaban index                                 | Carboaromatic ring count                  |
| Carbo ring count                   | Chiral center count                           | Cyclomatic number                         |
| Dreiding energy                    | Fused aliphatic ring count                    | Fused aromatic ring count                 |
| Fused ring count                   | Harary index                                  | Hyper wiener index                        |
| Maximal projection area            | Maximal projection radius                     | Minimal projection area                   |
| Minimal projection radius          | 3D Van der Waals surface area                 | Platt index                               |
| Ring atom count                    | Ring bond count                               | Ring count                                |
| Polar surface area                 | Randic index                                  | Szeged index                              |
| Aliphatic atom count               | Bond count                                    | Aliphatic bond count                      |
| Rotatable bond count               | Aliphatic ring count                          | Hetero ring count                         |
| Heteroaliphatic ring count         | Heteroaromatic ring count                     | Chain atom count                          |
| Chian bond count                   | Smallest ring size                            | Largest ring size                         |
| Wiener index                       | Wiener polarity                               | Stereoisomer count                        |
| Double-bond stereoisomer count     | Tautomer count                                | Tetrahedral steroisomer count             |
| Markush enumerated structure count | logP at range of pH values                    | рКа                                       |
| h-bond acceptor count              | h-bond donor count                            | h-bond acceptor site count                |
| h-bond donor site count            | Molecular refractivity                        |                                           |

Table S2. AutoDock Vina scores for PCP site antagonist library compounds (standarddeviation in parentheses).

|                     | Actives    | Inactives  | Decoys     |
|---------------------|------------|------------|------------|
| Mean Score          | -6.7 (0.9) | -6.1 (1.2) | -6.2 (0.9) |
| Mean Top Pose Score | -7.6 (0.8) | -6.9 (1.3) | -7.0 (0.8) |

Table S3. Proportion of largest unique substructures present in over 50% of knownactives found in generated compounds.

|                    |                                        | Actives |      | AI Generated |          |
|--------------------|----------------------------------------|---------|------|--------------|----------|
| Num<br>Heteroatoms | Substructure                           | Hits    | %    | Hits         | %        |
| 10                 | D=DD=DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD | 359     | 50.1 | 68           | 0.00649  |
| 10                 | CCCCc1ccccc1                           | 422     | 58.9 | 36           | 0.00343  |
| 9                  | CC(c1ccccc1)N                          | 373     | 52.1 | 2            | 0.000191 |
| 9                  | 00=00=0000                             | 432     | 60.3 | 387          | 0.0369   |
| 8                  | CNCC=CC=CC                             | 429     | 59.9 | 170          | 0.0162   |
| 8                  | CNCCC=CC=C                             | 369     | 51.5 | 193          | 0.0184   |
| 7                  | CC(=CC=C)CC                            | 427     | 59.6 | 361          | 0.0344   |
| 7                  | CC=CC(=C)CC                            | 359     | 50.1 | 409          | 0.0390   |
| 7                  | CC=CCC(N)C                             | 380     | 53.1 | 274          | 0.0261   |
| 7                  | CCC(=CC)C=C                            | 475     | 66.3 | 439          | 0.0419   |
| 7                  | CCCC(=C)C=C                            | 368     | 51.4 | 359          | 0.0342   |
| 7                  | CCCC(=CC)C                             | 392     | 54.8 | 748          | 0.0713   |
| 6                  | CCC(CC)C                               | 409     | 57.1 | 1831         | 0.175    |
| 6                  | CCC(CC)N                               | 406     | 56.7 | 750          | 0.0715   |
| 6                  | CCC(NC)C                               | 390     | 54.5 | 1268         | 0.121    |
| 6                  | CCCC(C)C                               | 367     | 51.3 | 2148         | 0.205    |
| 6                  | CCCC(N)C                               | 405     | 56.6 | 1284         | 0.123    |
| 6                  | CCCCCN                                 | 415     | 58.0 | 2562         | 0.244    |
| 6                  | CCCCNC                                 | 397     | 55.5 | 2624         | 0.250    |
| 6                  | CCNCCC                                 | 399     | 55.7 | 2201         | 0.210    |

## Table S4. Presence of largest unique substructures found in over 50% of actives in eachgenerated finalist compound.

|               | а                          | b                      | С                       | е                  | d                   | е                  | f                      | g                        | h                     | i                        | j                         | k                         | Т                         |      |
|---------------|----------------------------|------------------------|-------------------------|--------------------|---------------------|--------------------|------------------------|--------------------------|-----------------------|--------------------------|---------------------------|---------------------------|---------------------------|------|
| Substructure  | CCC1C2CCC31C2(N=S)CC(=N3)C | COC1CCC(N=C1)CC1C=C1SC | N#CCC=C1SC2CCCC1(C)COC2 | CNCCCSC1(C)CC1CC1C | CCSCCCC1=NCC=NCCC1C | CNCCCSC1(C)CC1CC1C | CNCCCCCC1CCC2=CC=C1CC2 | CCCCC=C=C1C2CCC1CN(C2)CC | CCCCCSCS12CCCC1CNC2CC | CCCNCC1C2NCCC2CC1(CC)NCC | CCCCC1CCC#S21CCCCN(C2C)CC | CCCNCC1C2NCCC2CC1(CCC)NCC | OCCNCC1C2SCCC2CC1(CCC)NCC | Hits |
| CCCCCCC=CC=C  | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 1                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 1    |
| CCCCc1ccccc1  | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CC(c1ccccc1)N | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CCCCC=CC=CC   | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 1                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 1    |
| CNCC=CC=CC    | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CNCCC=CC=C    | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CC(=CC=C)CC   | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 1                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 1    |
| CC=CC(=C)CC   | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CC=CCC(N)C    | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CCC(=CC)C=C   | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CCCC(=C)C=C   | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 0    |
| CCCC(=CC)C    | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 1                      | 0                        | 0                     | 0                        | 0                         | 0                         | 0                         | 1    |
| CCC(CC)C      | 1                          | 0                      | 0                       | 1                  | 1                   | 1                  | 1                      | 1                        | 0                     | 1                        | 0                         | 1                         | 1                         | 8    |
| CCC(CC)N      | 1                          | 1                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 1                        | 0                         | 1                         | 1                         | 5    |
| CCC(NC)C      | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 1                        | 0                         | 1                         | 1                         | 3    |
| CCCC(C)C      | 1                          | 1                      | 1                       | 1                  | 1                   | 1                  | 1                      | 1                        | 0                     | 1                        | 0                         | 1                         | 1                         | 10   |
| CCCC(N)C      | 1                          | 1                      | 0                       | 0                  | 0                   | 0                  | 0                      | 0                        | 0                     | 1                        | 0                         | 1                         | 1                         | 5    |
| CCCCCN        | 1                          | 1                      | 0                       | 0                  | 1                   | 0                  | 1                      | 1                        | 1                     | 1                        | 0                         | 1                         | 1                         | 9    |
| CCCCNC        | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 1                      | 1                        | 1                     | 1                        | 1                         | 1                         | 1                         | 7    |
| CCNCCC        | 0                          | 0                      | 0                       | 0                  | 0                   | 0                  | 0                      | 1                        | 1                     | 1                        | 1                         | 1                         | 1                         | 6    |

| Table S5. | Similarity | of finalist | generated | compounds | to training | set actives. |
|-----------|------------|-------------|-----------|-----------|-------------|--------------|
|-----------|------------|-------------|-----------|-----------|-------------|--------------|

| Generated compound             | L1 nearest therapeutic active                       | L1<br>distance | Tanimoto nearest active         | Tanimoto<br>distance |
|--------------------------------|-----------------------------------------------------|----------------|---------------------------------|----------------------|
| CNCCCCCC1CCC2=<br>CC=C1CC2     | NC12CC3CC(C2)CC(C1)C3                               | 49.72          | CC1(C)CC(CN)CC(C)(C)C1          | 0.51                 |
| CCCCC=C=C1C2CCC<br>1CN(C2)CC   | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 35.66          | C[C@H]1CCC[C@](C)(N)C1          | 0.52                 |
| CCCNCC1C2NCCC2C<br>C1(CCC)NCC  | COc1ccc2c(c1)[C@@]13CCCC[C@<br>@H]3[C@H](C2)N(CC1)C | 45.27          | C1CCC(C2(N3CCCCC3)CCCCC2)CC1    | 0.59                 |
| CCCNCC1C2NCCC2C<br>C1(CC)NCC   | COc1ccc2c(c1)[C@@]13CCCC[C@<br>@H]3[C@H](C2)N(CC1)C | 45.10          | C1CCC(C2(N3CCCCC3)CCCCC2)CC1    | 0.59                 |
| CCC1C2CCC31C2(N=<br>S)CC(=N3)C | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 32.57          | C[C@H]1CCC[C@](C)(N)C1          | 0.51                 |
| CCCCCSCS12CCCC1<br>CNC2CC      | COc1ccc2c(c1)[C@@]13CCCC[C@<br>@H]3[C@H](C2)N(CC1)C | 43.21          | C[C@H]1C[C@@H](C)C[C@@](C)(N)C1 | 0.51                 |
| OCCNCC1C2SCCC2C<br>C1(CCC)NCC  | COc1ccc2c(c1)[C@@]13CCCC[C@<br>@H]3[C@H](C2)N(CC1)C | 47.28          | O=C1CCCN1CC#CCN1CCCC1           | 0.51                 |
| COC1CCC(N=C1)CC1<br>C=C1SC     | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 29.82          | C=CC1(N)CC(C)(C)CC(C)(C)C1      | 0.51                 |
| CCSCCCC1=NCC=NC<br>CC1C        | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 34.99          | C[C@H]1C[C@@H](C)C[C@@](C)(N)C1 | 0.53                 |
| CNCCCSC1(C)CC1C<br>C1CC1C      | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 40.17          | C[C@H]1C[C@@H](C)C[C@@](C)(N)C1 | 0.49                 |
| N#CCC=C1SC2CCCC<br>1(C)COC2    | CC12CC3CC(C1)(C)CC(C2)(C3)N                         | 37.62          | O=C1CCCN1CC#CCN1CCCC1           | 0.50                 |
| CCCCC1CCC#S21CC<br>CCN(C2C)CC  | COc1ccc2c(c1)[C@@]13CCCC[C@<br>@H]3[C@H](C2)N(CC1)C | 43.73          | C[C@H]1C[C@@H](C)C[C@@](C)(N)C1 | 0.51                 |



**Figure S1.** Location of NMDAR PCP site library antagonist actives, inactives, decoys, and validation set (i.e. the set used as the basis for decoy generation with DUD-E) in DarkChem's (a) property space and (b) PCA space

|          |     | precision | recall | f1-score | support |
|----------|-----|-----------|--------|----------|---------|
|          | 0   | 1.00      | 0.97   | 0.98     | 517     |
|          | 1   | 0.92      | 0.99   | 0.95     | 180     |
| micro    | avg | 0.97      | 0.97   | 0.97     | 697     |
| macro    | avg | 0.96      | 0.98   | 0.97     | 697     |
| weighted | avg | 0.98      | 0.97   | 0.97     | 697     |

b)

C)

a)



**Figure S2.** SVM evaluation: (a) precision, recall, and f1; (b) AUPR; (c) confusion matrices, where I = inactive and A = active



**Figure S3.** Tanimoto score distribution of finalist generated candidates and PCP site library actives