Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supporting Information - Potassium Doping-induced Variations on Geometric and Photoelectric Properties of MAPbl₃ Perovskite and MAPbl₃/TiO₂ Junction[†]

Qi Liu,^{a[‡]}, Ming-Gang Ju^b and WanZhen Liang^{a,*}

р

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China Email:liangwz@xmu.edu.cn

^b School of Physics, Southeast University, Nanjing, Jiangsu, People's Republic of China.

Fig.S 1 Optimized structures of SD-MAPbI₃ slabs: a) two K^+ located well separately (isolated), b) common-vertexed (vertical), c) common-edged (coplanar) and d) directly face-to-face adjacent

 $\textbf{Table 1} \text{ Band gaps and conduction band offsets (in eV) for bulk MAPbI_3, TiO_2 and the junction with K^+ doped inside perovskite layers$

Dopants	E _{cb,don} .	E _{cb,acc} .	ΔV_{mix}	E_{cb} - $V_{don.}$	E _{cb} -V _{acc} .	Band Offset
Inside K ⁺	0.932	0.763	8.096	11.621	19.476	0.242

Fig.S 2 Optimized structures of ID-MAPbl₃ slabs: a) two K^+ located well separately (isolated), b) common-vertexed (vertical), c) common-edged (coplanar) and d) directly face-to-face adjacent

Fig.S 3 The *a*) topological structure and its *b*) three views that make two K⁺ doped Pb-I cube neither adjacent directly nor coplanar.

Fig.S 4 Schematic diagram of $MAPbl_3/TiO_2$ heterojunction with different doping manners.

Fig.S 5 Geometric structure for ID-K⁺ set far from MAPbl₃/TiO₂ junction. The purple arrow represents the direction of movement of K⁺ ions during the lattice relaxation.

Fig.S 6 Geometric structure for SD-K⁺ a) near or b) far from the MAPbl₃/TiO₂ junction.

Fig.S 7 Schematic diagram a) and optimized geometric structure b) of ID-K⁺ in PbI₂-terminated MAPbI₃/TiO₂ junction.

 $\label{eq:Fig.S} \textbf{8} \ \text{Plane-average potentials of pristine and interstitially doped $MAPbI_3/TiO_2$ heterojunction.}$

Fig.S 9 Calculated absorption spectra of $MAPbI_3/TiO_2$ junction with and without ID-K⁺. The bulk-like $MAPbI_3$ and anatase TiO_2 are shown for reference.

Fig.S 10 pDOSs of a)pristine TiO₂ and b)trivalent TiO₂⁻ by PBE+SOC.

Fig.S 11 pDOS for interfacial Ti cations with a) and without b) interfacial ID of K⁺ in PbI₂-terminated MAPbI₃/TiO₂ junction in PBE+SOC.