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On the equation of state for products
Common and convenient assumptions for equations of state are constant values for Cv and Γ, independent of density and
temperature. If those assumptions were valid for PETN products, the MD data in figure 1 could be well approximated
with linear fits. However, we can see in figure 1 that this is not the case.
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Figure 1: The explosive products equation of state based on molecular dynamics calculations. Left: internal energy as
a function of temperature. The line corresponding to the heat capacity 3R per mole of atoms is shown for comparison.
Right: pressure as a function of the internal energy density. The points corresponding to the conditions where equilibrium
chemical composition was reached during simulation are encircled.

We used linear functions as the first approximation. The most reliable values were obtained for high temperatures,
so T0 = 3600 K was chosen as reference for the thermal decomposition products. The values of heat capacity Cv and
Grüneisen parameter Γ at each V/V0 were determined from the corresponding graphs as the angular coefficients of straight
lines passing through the five points where equilibrium chemical composition was reached.

The functions Cv = φ(V ) and Γ = γ(V ) of specific volume at T0 are shown in figure 2.
The Grüneisen coefficient depends linearly on V :

γ(V ) = β
V

V0
, β = 0.474. (1)

The parameters of the equations for products must comply with the compatibility conditions, as it is discussed in the
main text. The function γ(V )/V is non-increasing. The second condition leads to the following.

The results of molecular dynamics simulations (see fig. 1, 2) show that for the considered system (∂Cv/∂V )T and
(∂Γ/∂T )V are negative, while (∂Cv/∂T )V is positive. As both Γ and Cv depend on temperature, the representation
becomes indeterminate.

Let us seek for solutions in the form Cv(V, T ) = φ(V )f(T ), Γ(V, T ) = γ(V )g(T ). Then the compatibility condition
transforms to
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Figure 2: Left: heat capacity at constant volume as a function of V/V0. Right: Grüneisen parameter as a function of
V/V0. Temperature T0 = 3600 K.

V
dφ(V )

dV
f(T ) = Tγ(V )φ(V )

(
f(T )

dg(T )

dT
+ g(T )

df(T )

dT

)
. (2)

Partial derivatives were replaced with full ones due to separation of variables. We combine all factors not depending
on temperature in the left part of the equation. As heat capacity at finite temperatures is never zero, both parts may be
divided by f(T ):

V

γ(V )φ(V )

dφ(V )

dV
= α(V, T ) = T

(
dg(T )

dT
+ g(T )

d ln f(T )

dT

)
. (3)

The left part of the equation (3) is a unitless function of only V , the right one is a unitless function of only T . For the
equation (3) to be satisfied at various V and T (i.e. for the variables for Γ and Cv to be actually separated), one must
state α(V, T ) ≡ α ∈ R.

This condition gives the function Cv(V ). Substituting γ(V ) from equation (1), we have

V0
βφ(V )

dφ(V )

dV
= α, (4)

φ(V ) = C0 exp

(
αβ

V

V0

)
. (5)

The fit to MD data gives C0 = 5.42kB , α = −1.07. The corresponding approximation is shown in the left part of fig.
2.

The obtained functions of volume describe simulation data well, but they have undesirable asymptotics at large V .
The parameter Γ fast and infinitely grows with lowering density. This in turn leads to Cv rapidly approaching zero. We
extrapolate the dependency γ(V ) in the region V > V0 at T0 so that limV→∞ γ(V ) = γ∞ = 2

3 . This corresponds to the
Grüneisen parameter of ideal gas. Imposing the continuity of γ(V ) and dγ(V )/d(V/V0) at V = V0, we obtain

γ(V > V0) = γ∞ + (β − γ∞)

(
V

V0

) β
β−γ∞

=
2

3
− 0.18

(
V

V0

)−2.77
. (6)

Then the form of φ(V ) in this range of V is again defined by the left part of the equation (3):

φ(V > V0) = φ(V0)

(
V

V0

)αγ∞
exp

(
α(β − γ∞)2

β

[(
V

V0

) β
β−γ∞

− 1

])
=

= 3.2kB

(
V

V0

)−0.71
exp

(
−0.068

[(
V

V0

)−2.77
− 1

])
.

(7)
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The function φ(V ) and its first derivative are also continuous at V0. The graphs for φ(V ) and γ(V ) in wide range of
densities are shown in figure 3.
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Figure 3: The proposed extrapolation of the dependencies of Cv (left) and Γ (right) on V/V0 at T0 = 3600 K to the low
density region. Points show the molecular dynamics data.

Similarly to the dependencies on V , the right side of the equation (3) includes two functions f(T ) and g(T ), so that
not one of them is determined and there is only the relation between the two. To solve the equation it is necessary to
state the form of one of the functions a priori. The suitable form should give the expressions for f and g in elementary
functions for the equation of state to remain not very demanding computationally.

We state exactly

g(T ) = 1 + λα ln
T

T0
, λ ∈ R. (8)

Then the equation with separable variables is obtained for Cv(T ):

d ln f(T )

dT
=

(1− λ)α

T
(

1 + λα ln T
T0

) , (9)

the solution of which with the boundary condition f(T0) = 1 is

f(T ) =

[
1 + λα ln

T

T0

] 1−λ
λ

= [g(T )]
1−λ
λ . (10)

The parameter λ characterizes the degree of deviation of E(T ) and P (ρE) from linearity (fig. 1) and must be fitted
to reproduce simulation results. To determine λ we expand the temperature dependencies of Cv and Γ to the first order
in ∆T = T − T0 and ∆[ρE] = [ρE]− [ρE]0 near T0, [ρE]0:

f(∆T ) ≈ 1 + (1− λ)α
∆T

T0
, (11)

g(∆[ρE]) ≈ 1 + λα
∆T

T0
≈ 1 + λα

∆[ρE]

ρCv(V )T0
. (12)

In the equation (12) while expressing ∆T through the energy density the dependence of Cv on temperature is not
taken into account as it contributes to the next order in the expansion. In this approximation the simulation data is fitted
with parabolas:

E(T ) = E(T0) + φ(V )

∫ T−T0

0

f(∆T ) d(∆T ) ≈

≈ E(T0) + φ(V )(T − T0)

[
1 +

(1− λ)α

2

T − T0
T0

]
,

(13)
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P ([ρE]) = P ([ρE]0) + γ(V )

∫ [ρE]−[ρE]0

0

g(∆[ρE]) d(∆[ρE]) ≈

≈ P ([ρE]0) + γ(V )([ρE]− [ρE]0)

[
1 +

λα

2

[ρE]− [ρE]0
ρφ(V )T0

]
.

(14)

The non-linear fit gives λ = 1.51, the consistency between the obtained equation of state and the molecular dynamics
data is presented in figure 4.
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Figure 4: Approximation of the molecular dynamics data with Cv and Γ depending on volume and temperature.

The general form of f(T ) and g(T ) in a wide range of temperatures, as well as their approximation in accordance with
the equations (11) and (12), are shown in figure 5.

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

1000 1500 2000 2500 3000 3500 4000 4500

C
v/

at
om

, k
B

T, K

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1000 1500 2000 2500 3000 3500 4000 4500

Γ

T, K

Figure 5: Temperature dependencies of Cv (left) and Γ (right) from 1000 to 4500 K at V = V0. The T0 = 3600 K is
denoted with points, linear segments demonstrate the temperature range and approximations used to determine the value
of λ.

Finally, combining all together, we obtain the following expressions for Cv and Γ:

4



Cv(V, T ) = φ(V )

(
1 + λα ln

T

T0

) 1−λ
λ

, (15)

φ(V ) =


C0 exp

(
αβ V

V0

)
, V ≤ V0,

C0 exp(αβ)
(
V
V0

)αγ∞
exp

(
α(β−γ∞)2

β

[(
V
V0

) β
β−γ∞ − 1

])
, V > V0,

(16)

Γ(V, T ) = γ(V )

(
1 + λα ln

T

T0

)
, (17)

γ(V ) =

β
V
V0
, V ≤ V0,

γ∞ + (β − γ∞)
(
V
V0

) β
β−γ∞

, V > V0,
(18)

where T0 = 3600 K, V0 = 0.56 cm3/g, the parameters fitted to MD data are α = −1.07, β = 0.474, λ = 1.51, C0 = 5.42kB ,
and γ at T0 and infinite volume is γ∞ = 2/3.
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