Supporting Information

for

The Reaction of O(³P) with Alkynes: A Dynamic and Computational Study Focusing on Formyl Radical Production

Andrew D. Buettner,¹ Benjamin J. Dilday,¹ Rachel A. Craigmile,¹ Matthew C. Drummer,¹ Jean M. Standard,¹ and Robert W. Quandt²

¹ Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160

² Department of Chemistry, Bemidji State University, Bemidji, Minnesota 56601-2699

Contents

Section S1. Discussion of Benchmarking Results for the Reaction of O(³P) with Propyne

Figures S1 and S2. Potential energy profiles for species on the triplet state (Figure S1) and singlet state (Figure S2) surfaces in the reaction of $O(^{3}P)$ with propyne calculated at the CCSD(T)/cc-pVTZ level of theory.

Figures S3 and S4. Potential energy profiles for species on the triplet state (Figure S3) and singlet state (Figure S4) surfaces in the reaction of $O(^{3}P)$ with propyne calculated at the CCSD(T)//M06-2X/cc-pVTZ level of theory.

Figure S5. Potential energy profiles of the primary pathway for formation of HCO on the triplet state surface in the $O({}^{3}P)$ + propyne reaction calculated at various levels of theory.

Figure S6. Relaxed potential surface scans showing the variation of energy with C1-O distance in the reactions of $O({}^{3}P)$ with (a) acetylene; (b) propyne; (c) 1-butyne; and (d) 1-pentyne.

Figure S7. Combined potential energy profile including pathways for HCO formation on the triplet and singlet state surfaces in the reactions of $O(^{3}P)$ + propyne, 1-butyne, and 1-pentyne, calculated at the CCSD(T)//M06-2x/cc-pVTZ level of theory.

Tables S1 and S2. Selected bond distances and angles for species on the triplet state (Table S1) and singlet state (Table S2) surfaces in the reaction of $O({}^{3}P)$ with propyne.

Contents - continued

Tables S3 and S4. RMS differences in selected bond distances and angles for species on the triplet state (Table S3) and singlet state (Table S4) surfaces in the reaction of $O(^{3}P)$ with propyne.

Tables S5 and S6. Relative energies on the triplet state (Table S5) and singlet state (Table S6) surfaces for reaction of $O({}^{3}P)$ with propyne, computed at different levels of theory.

Table S7. RMS differences for selected bond lengths and bond angles taken from available stable and transition state structures on the triplet and singlet state surfaces in the reaction of $O(^{3}P)$ with propyne, calculated relative to the CASPT2/aug-cc-pVTZ results from Ref. 43.

Table S8. Energy barriers for transition states on the triplet and singlet surfaces in the reaction of $O(^{3}P)$ with propyne, computed at the CCSD(T)/cc-pVTZ and CCSD(T)//M06-2X/cc-pVTZ levels of theory and compared with the CASPT2/aug-cc-pVTZ results from Ref. 43.

Table S9. Natural atomic charges (Table S9a), natural spin densities (Table S9b), and natural bond orders (Table S9c) for species in the HCO pathway on the triplet state surface in the reaction of O(³P) with propyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S10. Natural atomic charges (Table S10a) and natural bond orders (Table S10b) for species in the HCO pathway on the singlet state surface in the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S11. Natural atomic charges (Table S11a), natural spin densities (Table S11b), and natural bond orders (Table S11c) for species in the HCO pathway on the triplet state surface in the reaction of $O(^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S12. Natural atomic charges (Table S12a) and natural bond orders (Table S12b) for species in the HCO pathway on the singlet state surface in the reaction of $O(^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S13. Natural atomic charges (Table S13a), natural spin densities (Table S13b), and natural bond orders (Table S13c) for species in the HCO pathway on the triplet state surface in the reaction of $O(^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S14. Natural atomic charges (Table S14a) and natural bond orders (Table S14b) for species in the HCO pathway on the singlet state surface in the reaction of $O(^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S15. Relative energies in kJ/mol for the species involved in the entrance barrier the primary HCO formation pathways on the triplet and singlet surfaces for reactions of $O(^{3}P)$ with alkenes.

Contents - continued

Appendix S1. Cartesian coordinates at the CCSD(T)/cc-pVTZ level for species on the triplet and singlet state surfaces in the reaction of $O(^{3}P)$ with propyne.

Appendix S2. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with acetylene.

Appendix S3. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with 1-butyne.

Appendix S4. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with 1-pentyne.

Section S1. Discussion of Benchmarking Results for the Reaction of O(³P) with Propyne

As mentioned in the article, computational results were obtained for all species on the triplet and singlet state potential energy surfaces in the reaction of O(³P) with propyne in order to perform benchmarking studies and select a reliable and efficient method for investigations of reactions involving larger alkynes. Full geometry optimizations were carried out for all reactants, intermediates, transition states, and products on the lowest singlet and triplet surfaces at the following levels of theory: CCSD(T)/cc-pVTZ, MP2(full)/6-311++G(d,p), M06-2X/cc-pVTZ, and B3LYP/6-311G(d,p). Single point energies for all of the species also were determined at the CCSD(T)//M06-2X/cc-pVTZ and CCSD(T)//B3LYP/6-311G(d,p) levels. Only a subset of the pathways on the potential energy surfaces for the O(³P) + propyne reaction, the HCO and CO formation routes, are shown in the article (Figs. 7 and 10); the full potential energy profiles (PEPs) for the triplet and singlet state surfaces obtained at the CCSD(T)//cc-pVTZ level of theory for the reaction of O(³P) with propyne are presented in Figs. S1 and S2, while those obtained at the CCSD(T)//M06-2X/cc-pVTZ level are presented in Figs. S3 and S4, respectively. In addition, a diagram illustrating the HCO formation pathways on the triplet state surface computed at each of the levels of theory is included as Fig. S5.

Comparisons of optimized geometries and relative energies of all the stable and transition state species on the singlet and triplet potential energy surfaces in the reaction of O(³P) with propyne were used to assess the reliability of each level of theory for similar reactions, taking the results from the CCSD(T)/cc-pVTZ level as the standard for comparison. For the geometries, selected bond lengths and angles determined using the B3LYP, M06-2X, and MP2 methods as described in Section III of the article were compared with those obtained at the CCSD(T) level. For this comparison, Tables S1 and S2 list selected bond lengths and angles obtained at each level of theory for all the species on the triplet state and singlet state surfaces, respectively. In addition, while overall summaries of the RMS differences for triplet and singlet state species are reported in Table 2 of the article, more detailed comparisons

including RMS differences in selected bond lengths and angles for all the species are reported at each level of theory for the triplet and singlet state species in Tables S3 and S4, respectively. The atomnumbering scheme referred to in the tables is shown in Figure 4 of the article, and images showing the geometry of each species are presented in Appendix S1.

In addition to the geometrical parameters, relative energies computed at each level of theory have been compared with the CCSD(T)/cc-pVTZ results; all relative energies are measured from the separated O(³P) and propyne reactants and include vibrational zero-point energy corrections. A summary of the overall RMS differences in relative energies on the singlet and triplet surfaces is presented in Table 3 of the article. The relative energies for each species along with differences relative to the CCSD(T)/cc-pVTZ results are presented in Tables S5 and S6 for the triplet and singlet surfaces, respectively. The remainder of this section presents a discussion of the geometrical benchmarking studies followed the benchmarking results for the relative energies and finally a summary of the conclusions of the benchmarking study.

Geometry Comparisons

While the bond lengths and angles obtained at different levels of theory are in general similar, there are some significant differences. In order to make more quantitative comparisons, we have determined the RMS differences in key bond lengths and angles for results at the MP2, M06-2X, and B3LYP levels of theory relative to those obtained at the highest level of theory, CCSD(T). The geometrical parameters themselves are given in Tables S1 and S2, while the RMS differences computed for each individual structure are reported in Tables S3 and S4. Table 2 in the article also provides a summary of the average RMS errors in bond lengths and angles.

The average RMS errors in bond lengths are generally small for all levels of theory when compared with the CCSD(T) results. For the triplet state structures, the average RMS errors range from

0.020 Å for the MP2 level to 0.034 Å for the B3LYP level. For the singlet state structures, the average RMS errors are 0.021 Å or lower. For the bond angles, on the triplet surface the average RMS errors range from 1.1° for M06-2X to 1.7° for B3LYP, while on the singlet surface the average RMS errors range from 1.7° for MP2 to 3.8° for M06-2X. From these results, it appears that the M06-2X method does the best job for geometries on the triplet surface, while the MP2 method does the best job for geometries on the triplet surface, while the MP2 method does the best job for geometries on the triplet surface.

On the triplet surface, the species that shows by far the greatest deviations in bond lengths relative to the optimized CCSD(T) results is IM-0t. For IM-0t, the MP2 bond lengths are in good agreement with the CCSD(T) results (0.019 Å average RMS error). However, the DFT methods fail to adequately characterize the weakly-bound van der Waals complex IM-0t, with average RMS errors in bond length of 0.23 and 0.33 Å, respectively, for M06-2X and B3LYP; the errors occur primarily in the C1-O8 bond distance. Because the error for the IM-0t species is so large for the DFT methods, it swamps out the otherwise generally good agreement of the DFT methods with respect to bond lengths. Other than IM-0t, no other species on the triplet surface exhibits an RMS error in bond length greater than 0.04 Å for the B3LYP or M06-2X methods, with the exception of TS-5t at the B3LYP level (0.11 Å error). On the other hand, the MP2 method shows errors greater than 0.04 Å for numerous species (TS-1t, TS-4t, TS-5t, TS-8t, and TS-15t). Thus, the generally better agreement attained for the DFT methods compared with the MP2 method tends to be masked in the overall results by one very bad geometrical result (IM-0t).

For the triplet state species, the average RMS errors in bond angles vary from 1.1-1.7° for the MP2, M06-2X, and B3LYP methods. The largest errors for individual species again occur for IM-Ot, with RMS errors in bond angles ranging from 2.5° (MP2) to 5.9° (B3LYP). Bond angle errors are below 2.3° for all the other triplet state species for all methods with two exceptions: TS-8t, with errors in bond angle ranging from 2.7-3.0°, and TS-1t, for which the B3LYP method exhibits a 3.6° RMS error in bond angle.

On the singlet surface, the bond lengths predicted by the MP2 and DFT methods all are close to the CCSD(T) results for all structures, with average RMS errors of 0.03 Å or lower for individual species, with a few exceptions. RMS errors for bond lengths in individual species are above 0.03 Å for TS-14s (MP2 and B3LYP), TS-15s and TS-19s (M06-2X), and hydroxyvinylcarbene (MP2 and M06-2X), though none of these errors is larger than 0.07 Å.

Significant deviations, however, are observed for bond angles in some species on the singlet surface. In particular, the average RMS error in bond angle for IM-1s is 10.2° at the B3LYP level, but only 1.6° and 1.7° for the MP2 and M06-2X levels, respectively. The large error from the B3LYP method for IM-1s is a result of large differences in both the C1-C2-C3 and C2-C1-O8 angles. Similarly, large RMS errors of 15.3° and 9.1° are observed at the M06-2X and B3LYP levels, respectively, for the bond angles of TS-8s, whereas the error is only 1.8° at the MP2 level. Finally, the RMS error in bond angle for IM-6s is 8.7° for the M06-2X method, but 0.2-0.3° for the other methods. Average RMS errors for bond angles in the other species are 5° or less for all levels of theory.

Relative Energy Comparisons

Triplet and singlet state PEPs showing relative energies of all species involved in the reaction between O(³P) and propyne are included as Figures S1/S2 and S3/S4, calculated at the CCSD(T)/cc-pVTZ and CCSD(T)//M06-2X/cc-pVTZ levels, respectively. The relative energies at these levels, as well as for the MP2/6-311++G(d,p), B3LYP/6-311G(d,p), CCSD(T)//B3LYP/6-311G(d,p), and M06-2X/cc-pVTZ levels, are presented in Tables S5 and S6 along with differences in energies relative to the CCSD(T)/cc-pVTZ results.

Comparing Figure S1 with S3 and S2 with S4, we see that the qualitative features of the PEPs are similar for the different levels of theory; however, Table 3 of the article shows that RMS errors in relative energies on the singlet and triplet surfaces can be as high as 20-40 kJ/mol in some cases. In

addition, Table S5 includes errors in relative energy for individual species, which may be as high as 60-110 kJ/mol.

An illustration of the differences in relative energies for the various levels of theory is provided by Figure S5, which demonstrates specific trends observed when the PEPs computed at each level of theory are compared with the CCSD(T) results. First, from Fig. S5 and Tables S5 and S6, both DFT methods, M06-2X and B3LYP, tend to underestimate the relative energies for nearly all species. For the both the DFT methods (M06-2X and B3LYP), the relative energies are lower than the CCSD(T) energies for most species by a range of about 2 to 50 kJ/mol. There are only a few exceptions for species in which the DFT relative energies are higher than the CCSD(T) results, in some cases significantly (for example, IM-6s, TS-14s, and TS-15s for the M06-2X method). The average absolute errors in relative energy for the triplet surface are 21 kJ/mol and 33 kJ/mol for the M06-2X and B3LYP methods, respectively. For the singlet surface, the average absolute errors are 29 and 17 kJ/mol for the M06-2X and B3LYP methods, respectively, with the bulk of the difference coming from the three high outliers mentioned above. Thus, the M06-2X method tends to perform somewhat better overall for relative energies than B3LYP when compared with the CCSD(T) results.

While the DFT methods tend to underestimate the relative energies, the MP2 method generally overestimates the energies of species on the triplet surface, with an average absolute error of 32 kJ/mol and the largest errors for individual species in the range of 60-75 kJ/mol. The errors in relative energies for species on the singlet surface exhibit less of a trend, but the MP2 method tends to underestimate energies for singlet state species (with about 2/3 of species with relative energies falling lower in energy than the CCSD(T) results), with an average absolute error of 13 kJ/mol and the largest errors falling in the range of 25-30 kJ/mol.

Finally, the results obtained using CCSD(T) single point energies and DFT-optimized geometries, CCSD(T)//M06-2X and CCSD(T)//B3LYP, provide relative energies that are much closer to the optimized

CCSD(T) results than those provided by the DFT methods alone. However, the results from the CCSD(T)//B3LYP method are generally too high, with average absolute errors of 11 and 28 kJ/mol, respectively, for the triplet and singlet surfaces. Although there is one outlier with a large error in the relative energy (H₂CO + H₂CC product), the vast majority of species exhibit errors in the range of 10-30 kJ/mol for the CCSD(T)//B3LYP method. On the other hand, the CCSD(T)//M06-2X results are in general in very good agreement with the optimized CCSD(T) results, with an average absolute error of 4 kJ/mol for relative energies on the triplet surface and 19 kJ/mol on the singlet surface. The only species at the on the triplet surface at the CCSD(T)//M06-2X level with an error in relative energy greater than 5 kJ/mol is TS-4t (21 kJ/mol error). For the singlet surface at the CCSD(T)//M06-2X level, the largest errors in relative energy for individual species are IM-6s (89 kJ/mol), TS-15s (65 kJ/mol), and TS-8s (12 kJ/mol); errors for the other singlet state species are all lower than 6 kJ/mol.

Summary

To determine the most reliable and efficient computational method for studies of alkyne reactions with O(³P), we have compared geometries and relative energies from the MP2, M06-2X, and B3LYP methods along with relative energies from the CCSD(T)//M06-2X and CCSD(T)//B3LYP methods (all methods are described in Section III of the article).

For triplet state geometries, all methods perform reasonably well, with fairly low average errors in bond lengths and angles. For the DFT methods, the exception occurs for IM-Ot, a weakly-bound intermediate in the entrance channel, which is not well characterized using either the MO6-2X or B3LYP methods. On the other hand, the MP2 method yields bond lengths that are too long by 0.04-0.06 Å for a number of transition states on the triplet surface, which corresponds to significantly worse agreement than for the DFT methods in most cases.

For singlet state species, the average RMS error in bond lengths for each method is similar to or slightly lower than the errors in bond lengths for the triplet state species, and thus all are in reasonably good agreement with the CCSD(T) results. The average RMS error in bond angles for the singlet state species for each method, however, increases by 0.2-2.7° compared with the triplet state results. Although the MP2 method exhibits the best overall agreement for the singlet state geometries, certain structures on the singlet surface could not be located using the MP2 method (IM-5s, TS-15s, and TS-20s), which casts doubt on MP2 as a reliable methodology for studies of similar reactions. Of the DFT methods, M06-2X is better overall than B3LYP for triplet state geometries, while B3LYP appears somewhat better overall for singlet state geometries.

Investigation of the differences in relative energies obtained using the various computational methods leads to the conclusion that MP2 should be discarded as the method of choice for further studies because it consistently overestimates the relative energies on the triplet surface, often by a significant amount, especially for transition states. On the other hand, relative energies obtained from the DFT methods also often show significant deviations in relative energies.

The most reliable method for obtaining accurate relative energies for the triplet species is CCSD(T)//M06-2X by a significant margin, with a 4 kJ/mol RMS error vs. a range of 12-33 kJ/mol for the other methods. For the singlet surface, the most reliable method for accurate relative energies is MP2 by a small margin (13 kJ/mol vs. 17 kJ/mol for B3LYP and 19 kJ/mol for CCSD(T)//M06-2X). However, given that certain singlet state species cannot be located using the MP2 method, as well as the significant overestimation of relative energies for the triplet surface, it has been eliminated as a choice for additional studies. Based upon this analysis, the method of choice for reliability and efficiency in the study of reactions of alkynes with O(3P) is CCSD(T)//M06-2X/cc-pVTZ.

Figure S1. Triplet state potential energy profile for the reaction of O(³P) with propyne computed at the CCSD(T)/cc-pVTZ level of theory. The species shown in red was computed at the CCSD(T)//M06-2X/cc-pVTZ level. The two species shown in blue have small second imaginary frequencies at the CCSD(T)/cc-pVTZ level. Energies are in kJ/mol with the reactants set to zero and are corrected for vibrational zero-point energy.

Reaction Coordinate (Arbitrary Units)

Figure S2. Singlet state potential energy profile for the reaction of $O(^{3}P)$ with propyne computed at the CCSD(T)/cc-PVTZ level of theory. All energies shown are in kJ/mol with the reactants set to zero and are corrected for vibrational zero-point energy.

Reaction Coordinate (Arbitrary Units)

Figure S3. Triplet state potential energy profile for the reaction of O(³P) with propyne computed at the CCSD(T)//M06-2X/cc-pVTZ level of theory.

Figure S4. Singlet state potential energy profile for the reaction of O(³P) with propyne computed at the CCSD(T)//M06-2X/cc-pVTZ level of theory.

Reaction Coordinate (Arbitrary Units)

Figure S5. Potential energy profiles of the primary pathway for formation of HCO on the triplet state surface in the $O(^{3}P)$ + propyne reaction calculated at various levels of theory. All energies shown are in kJ/mol with the reactants set to zero and are corrected for vibrational zero-point energy.

Reaction Coordinate (Arbitrary Units)

Figure S6. Relaxed potential surface scans showing the variation of energy with C1-O distance in the reactions of $O({}^{3}P)$ with (a) acetylene; (b) propyne; (c) 1-butyne; and (d) 1-pentyne. The electronic energy determined relative to separated $O({}^{3}P)$ and alkyne (in kJ/mol) is as a function of the distance between the oxygen atom to the end carbon atom of the triple bond (C1) in angstroms.

Figure S7. Combined potential energy profile including pathways for HCO formation on the triplet and singlet state surfaces in the reactions of $O(^{3}P)$ + propyne, 1-butyne, and 1-pentyne, calculated at the CCSD(T)//M06-2x/cc-pVTZ level of theory. All energies shown are in kJ/mol with the reactants set to zero and are corrected for vibrational zero-point energy. Triplet state species are shown in blues and green, singlet state species are shown in red, yellow, and orange, and the approximate locations of the MECPs are shown in black (all three overlap near the same energy).

Reaction Coordinate

r C2-H6 r C3-H5 r C1-C2 r C1-H4 r C2-C3 r C1-O8 ∠C1-C2-C3 ∠C2-C1-O8 ∠H4-C1-O8 Level/Basis Set Species (C2-H4/7) (C3-H7) 1.462 180.0 C_3H_4 MP2/6-311++G(d,p)1.064 ---1.093 1.218 -----------1.062 1.089 1.197 1.458 180.0 M06-2x/cc-pVTZ -------------1.063 1.091 1.211 1.467 180.0 CCSD(T)/cc-pVTZ -------------1.062 1.094 1.201 1.457 180.0 B3LYP/6-311G(d,p) --------------MP2/6-311++G(d,p)1.064 1.093 1.218 1.461 3.106 179.7 76.5 103.4 IM-0t ---179.4 77.2 102.9 1.062 1.089 1.199 1.457 2.642 M06-2x/cc-pVTZ ---1.091 179.7 73.6 106.5 1.063 1.212 1.466 3.148 CCSD(T)/cc-pVTZ ---1.062 1.093 1.207 1.454 2.409 178.8 81.6 100.3 B3LYP/6-311G(d,p) ---1.108 1.091 1.460 1.473 1.195 129.2 122.3 122.4 IM-1t MP2/6-311++G(d,p)---1.099 1.093 1.417 1.462 1.228 132.2 121.6 121.0 M06-2x/cc-pVTZ ---1.098 1.093 1.429 1.474 1.237 131.5 121.3 121.2 CCSD(T)/cc-pVTZ ---1.097 1.417 1.464 1.238 133.1 121.1 121.2 1.102 ---B3LYP/6-311G(d,p) 1.112 1.088 1.084 1.476 1.455 1.192 121.9 124.6 121.7 IM-2t MP2/6-311++G(d,p)120.6 1.102 1.086 1.081 1.438 1.450 1.221 122.2 123.3 M06-2x/cc-pVTZ 1.088 1.083 1.445 1.459 122.8 123.6 120.6 1.103 1.231 CCSD(T)/cc-pVTZ 1.451 123.5 124.0 120.7 1.108 1.092 1.085 1.439 1.229 B3LYP/6-311G(d,p) 1.083 1.090 1.462 1.491 1.192 122.5 128.1 IM-3t MP2/6-311++G(d,p)-------M06-2x/cc-pVTZ 1.080 1.087 1.441 1.485 1.190 122.2 127.6 ------1.082 1.089 1.451 1.493 1.200 122.3 127.6 CCSD(T)/cc-pVTZ -------1.084 1.098 1.441 1.490 1.198 123.0 127.9 B3LYP/6-311G(d,p) -------1.097 1.081 1.519 1.494 1.186 114.7 128.3 MP2/6-311++G(d,p) IM-4t -------113.9 127.8 M06-2x/cc-pVTZ 1.096 1.078 1.517 1.486 1.173 ------1.097 1.080 1.524 1.494 1.186 114.0 128.1 CCSD(T)/cc-pVTZ ------1.101 1.081 1.523 1.490 1.180 115.0 128.2 B3LYP/6-311G(d,p) -------

Table S1. Selected bond distances and angles for structures on the triplet state potential energy surface of the $O(^{3}P)$ + propyne reaction. Bond distances are in Angstroms and bond angles are in degrees. The atom-numbering scheme is shown in Figure 4. Values in parentheses correspond to the alternative bond distance (e.g., C2-H4 rather than C2-H6).

Species	Level/Basis Set	r C1-H4	r C2-H6 (C2-H4/7)	r C3-H5 (C3-H7)	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠C2-C1-O8	∠H4-C1-O8
IM-5t	MP2/6-311++G(d,p)	1.110	1.102	(1.081)	1.515	1.476	1.209	114.5	125.3	121.0
	M06-2x/cc-pVTZ	1.107	1.100	(1.077)	1.512	1.463	1.196	113.5	124.5	121.0
	CCSD(T)/cc-pVTZ	1.107	1.101	(1.080)	1.518	1.474	1.209	114.4	125.1	121.0
	B3LYP/6-311G(d,p)	1.113	1.106	(1.081)	1.524	1.463	1.200	115.5	125.5	121.3
IM-6t	MP2/6-311++G(d,p)	1.100		1.091	1.483	1.289	1.387	138.3	114.4	107.3
	M06-2x/cc-pVTZ	1.101		1.088	1.480	1.303	1.375	136.5	114.6	107.5
	CCSD(T)/cc-pVTZ	1.100		1.090	1.488	1.315	1.384	136.4	114.4	107.5
	B3LYP/6-311G(d,p)	1.108		1.092	1.483	1.307	1.373	138.3	115.6	107.6
IM-7t	MP2/6-311++G(d,p)	1.103	1.095	(1.079)	1.509	1.289	1.371	125.5	116.4	107.4
	M06-2x/cc-pVTZ	1.103	1.091	(1.077)	1.508	1.303	1.361	124.0	116.4	107.6
	CCSD(T)/cc-pVTZ	1.040	1.094	(1.078)	1.513	1.315	1.370	124.9	116.7	108.1
	B3LYP/6-311G(d,p)	1.111	1.097	(1.079)	1.516	1.306	1.355	125.5	118.1	107.9
TS-1t	MP2/6-311++G(d,p)	1.066		1.093	1.211	1.453	1.846	171.8	102.4	99.2
	M06-2x/cc-pVTZ	1.064		1.091	1.217	1.452	1.967	171.4	99.7	98.5
	CCSD(T)/cc-pVTZ	1.065		1.092	1.231	1.463	1.987	169.0	100.9	100.0
	B3LYP/6-311G(d,p)	1.063		1.094	1.217	1.452	2.079	173.2	97.3	97.3
TS-2t	MP2/6-311++G(d,p)	1.106	1.231	1.085	1.462	1.447	1.203	128.9	122.0	122.9
	M06-2x/cc-pVTZ	1.098	1.232	1.083	1.433	1.434	1.223	132.7	120.9	122.0
	CCSD(T)/cc-pVTZ	1.098	1.248	1.084	1.442	1.448	1.232	132.1	120.5	122.2
	B3LYP/6-311G(d,p)	1.100	1.251	1.086	1.435	1.437	1.233	133.5	119.8	122.4
TS-3t	MP2/6-311++G(d,p)	1.282	(1.479)	1.090	1.394	1.489	1.197	134.9	141.0	131.1
	M06-2x/cc-pVTZ	1.307	(1.440)	1.092	1.380	1.483	1.208	136.1	137.5	131.5
	CCSD(T)/cc-pVTZ	1.302	(1.454)	1.094	1.390	1.494	1.218	136.4	137.7	131.0
	B3LYP/6-311G(d,p)	1.315	(1.446)	1.095	1.382	1.488	1.216	137.1	138.0	131.2

Species	Level/Basis Set	r C1-H4	r C2-H6 (C2-H4/7)	r C3-H5 (C3-H7)	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠C2-C1-O8	∠H4-C1-O8
TS-4t	MP2/6-311++G(d,p)	1.128	1.080	1.089	2.027	1.283	1.190	114.2	111.1	125.4
	M06-2x/cc-pVTZ	1.119	1.077	1.087	2.154	1.300	1.188	114.2	106.8	123.6
	CCSD(T)/cc-pVTZ	1.121	1.080	1.088	2.145	1.317	1.201	114.7	107.5	123.8
	B3LYP/6-311G(d,p)	1.125	1.079	1.091	2.253	1.304	1.191	114.8	108.2	123.5
TS-5t	MP2/6-311++G(d,p)		(1.082)	1.094	2.142	1.479	1.148	116.9	113.9	
	M06-2x/cc-pVTZ		(1.077)	1.092	2.253	1.466	1.132	114.3	110.7	
	CCSD(T)/cc-pVTZ		(1.081)	1.093	2.238	1.478	1.145	115.8	112.3	
	B3LYP/6-311G(d,p)		(1.081)	1.101	2.493	1.465	1.134	116.0	110.2	
TS-6t	MP2/6-311++G(d,p)		(1.238)	1.081	1.454	1.480	1.200	120.9	128.1	
	M06-2x/cc-pVTZ		(1.230)	1.078	1.445	1.476	1.190	120.8	127.8	
	CCSD(T)/cc-pVTZ		(1.247)	1.079	1.455	1.486	1.200	121.0	127.9	
	B3LYP/6-311G(d,p)		(1.245)	1.080	1.451	1.483	1.197	122.3	128.3	
TS-7t	MP2/6-311++G(d,p)		1.089	1.083	2.103	1.466	1.152	106.4	115.7	
	M06-2x/cc-pVTZ		1.087	1.081	2.142	1.455	1.138	105.4	113.8	
	CCSD(T)/cc-pVTZ		1.088	1.083	2.142	1.465	1.150	105.6	114.9	
	B3LYP/6-311G(d,p)		1.090	1.085	2.223	1.455	1.141	106.2	114.4	
TS-8t	MP2/6-311++G(d,p)		(1.078)	1.083	1.324	2.214	1.166	128.5	166.0	
	M06-2x/cc-pVTZ		(1.073)	1.079	1.305	2.321	1.170	126.2	165.5	
	CCSD(T)/cc-pVTZ		(1.076)	1.081	1.326	2.352	1.180	127.6	161.8	
	B3LYP/6-311G(d,p)		(1.075)	1.081	1.307	2.424	1.176	126.8	165.5	
TS-9t	MP2/6-311++G(d,p)		1.083	1.086	1.338	2.129	1.164	115.2	169.9	
	M06-2x/cc-pVTZ		1.080	1.081	1.337	2.186	1.157	115.0	169.4	
	CCSD(T)/cc-pVTZ									
	B3LYP/6-311G(d,p)		1.082	1.085	1.333	2.285	1.162	114.1	171.3	

Species	Level/Basis Set	r C1-H4	r C2-H6 (C2-H4/7)	r C3-H5 (C3-H7)	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠C2-C1-O8	∠H4-C1-O8
TS-10t	MP2/6-311++G(d,p)	1.111	1.088	1.295	1.466	1.456	1.204	120.2	124.7	122.2
	M06-2x/cc-pVTZ	1.102	1.086	1.339	1.450	1.449	1.216	121.0	123.4	121.6
	CCSD(T)/cc-pVTZ	1.103	1.087	1.337	1.459	1.460	1.222	122.0	124.1	121.6
	B3LYP/6-311G(d,p)	1.108	1.091	1.356	1.460	1.451	1.220	123.2	124.4	121.8
TS-11t	MP2/6-311++G(d,p)	1.099	1.477	1.089	1.509	1.332	1.236	132.5	120.1	123.8
	M06-2x/cc-pVTZ	1.094	1.441	1.086	1.487	1.336	1.251	133.7	120.1	123.1
	CCSD(T)/cc-pVTZ	1.094	1.458	1.087	1.496	1.352	1.258	132.9	119.7	123.1
	B3LYP/6-311G(d,p)	1.098	1.454	1.089	1.489	1.346	1.257	134.5	119.8	122.8
TS-12t	MP2/6-311++G(d,p)	1.101	(1.257)	1.089	1.501	1.299	1.380	145.6	114.4	107.7
	M06-2x/cc-pVTZ	1.100	(1.271)	1.084	1.499	1.286	1.367	144.4	114.9	108.1
	CCSD(T)/cc-pVTZ	1.101	(1.282)	1.086	1.505	1.300	1.376	144.6	114.8	108.0
	B3LYP/6-311G(d,p)	1.106	(1.280)	1.088	1.506	1.292	1.363	144.2	115.8	108.2
TS-13t	MP2/6-311++G(d,p)	1.103	1.092	(1.079)	1.512	1.330	1.245	124.7	123.7	121.9
	M06-2x/cc-pVTZ	1.099	1.089	(1.076)	1.503	1.341	1.251	123.5	123.0	121.9
	CCSD(T)/cc-pVTZ	1.100	1.091	(1.079)	1.509	1.352	1.255	124.6	123.8	121.9
	B3LYP/6-311G(d,p)	1.105	1.094	(1.079)	1.512	1.347	1.249	125.4	124.4	122.0
TS-14t	MP2/6-311++G(d,p)	1.116	1.086	(1.081)	2.178	1.331	1.186	98.0	119.4	125.9
	M06-2x/cc-pVTZ	1.113	1.084	(1.078)	2.219	1.329	1.174	97.8	118.1	126.0
	CCSD(T)/cc-pVTZ	1.114	1.085	(1.080)	2.186	1.345	1.187	100.0	119.7	126.0
	B3LYP/6-311G(d,p)	1.117	1.087	(1.080)	2.219	1.336	1.180	100.6	119.5	125.8
TS-15t	MP2/6-311++G(d,p)	1.096	1.071	(1.064)	2.106	1.205	1.321	113.9	113.7	111.9
	M06-2x/cc-pVTZ	1.096	1.069	(1.064)	2.210	1.217	1.308	113.1	111.4	112.8
	CCSD(T)/cc-pVTZ	1.097	1.070	(1.066)	2.211	1.234	1.319	114.8	112.6	112.7
	B3LYP/6-311G(d,p)	1.103	1.070	(1.064)	2.272	1.223	1.304	115.0	113.7	113.0

Table S2. Selected bond distances and angles for structures on the singlet state potential energy surface of the $O(^{3}P)$ + propyne reaction. Bond distances are in Angstroms and bond angles are in degrees. The atom numbering scheme is shown in Figure 4. Values in parentheses correspond to the alternative bond distance (e.g., C2-H4 rather than C2-H5).

Species	Level/Basis Set	r C1-H4	r C2-H5 (C2-H4/7)	r C3-H7	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠ C2-C1-O8	∠H4-C1-O8
IM-1s	MP2/6-311++G(d.p)	1.112		1.115	1.437	1.457	1.231	116.8	121.0	122.7
	M06-2x/cc-pVTZ	1.112		1.109	1.425	1.452	1.216	118.1	122.9	122.5
	CCSD(T)/cc-pVTZ	1.113		1.094	1.443	1.462	1.226	115.1	123.3	122.7
	B3LYP/6-311G(d,p)	1.103		1.097	1.393	1.459	1.243	125.0	108.6	124.5
trans-IM-2s	MP2/6-311++G(d,p)	1.110	1.086	1.087	1.475	1.343	1.218	120.4	124.1	121.1
	M06-2x/cc-pVTZ	1.108	1.083	1.084	1.475	1.326	1.202	120.4	124.1	121.2
	CCSD(T)/cc-pVTZ	1.108	1.084	1.085	1.478	1.341	1.215	120.3	124.2	121.2
	B3LYP/6-311G(d,p)	1.113	1.086	1.086	1.475	1.334	1.208	121.2	124.3	121.2
cis-IM-2s	MP2/6-311++G(d,p)	1.107	1.087	1.086	1.487	1.343	1.218	121.4	124.2	120.4
	M06-2x/cc-pVTZ	1.105	1.083	1.083	1.486	1.326	1.202	120.8	124.0	120.3
	CCSD(T)/cc-pVTZ	1.105	1.084	1.083	1.489	1.341	1.216	121.1	124.0	120.4
	B3LYP/6-311G(d,p)	1.110	1.086	1.085	1.486	1.333	1.209	121.6	124.5	120.5
IM-3s	MP2/6-311++G(d,p)		1.084	1.093	1.321	1.511	1.171	122.5	179.6	
	M06-2x/cc-pVTZ		1.080	1.090	1.307	1.508	1.159	123.1	179.8	
	CCSD(T)/cc-pVTZ		1.081	1.092	1.319	1.512	1.171	122.6	179.7	
	B3LYP/6-311G(d,p)		1.084	1.094	1.310	1.513	1.165	123.8	179.9	
IM-5s	MP2/6-311++G(d,p)									
	M06-2x/cc-pVTZ	1.105	1.093		1.511	1.445	1.196	115.6	123.0	122.7
	CCSD(T)/cc-pVTZ	1.105	1.094		1.515	1.464	1.209	115.0	123.2	122.5
	B3LYP/6-311G(d,p)	1.109	1.099		1.523	1.453	1.200	115.5	123.2	123.0
IM-6s	MP2/6-311++G(d,p)	1.085		1.083	1.437	1.326	1.490	156.3	55.1	113.7
	M06-2x/cc-pVTZ	1.081		1.077	1.438	1.308	1.496	141.4	53.9	113.1
	CCSD(T)/cc-pVTZ	1.083		1.081	1.439	1.325	1.486	156.3	55.3	113.9
	B3LYP/6-311G(d,p)	1.086		1.062	1.437	1.318	1.485	155.8	55.1	114.1

Species	Level/Basis Set	r C1-H4	r C2-H5 (C2-H4/7)	r C3-H7	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠ C2-C1-O8	∠H4-C1-O8
TS-2s	MP2/6-311++G(d,p)	1.112	1.336	1.096	1.455	1.395	1.226	116.0	125.6	121.5
	M06-2x/cc-pVTZ	1.109	1.311	1.093	1.446	1.380	1.211	117.7	125.4	121.5
	CCSD(T)/cc-pVTZ	1.110	1.321	1.094	1.460	1.394	1.222	115.7	125.3	121.6
	B3LYP/6-311G(d,p)	1.117	1.325	1.097	1.443	1.383	1.218	120.6	125.8	121.8
TS-3s	MP2/6-311++G(d,p)	1.141	1.953	1.105	1.408	1.470	1.220	119.7	137.4	122.7
	M06-2x/cc-pVTZ	1.121	2.068	1.107	1.418	1.454	1.212	119.0	129.0	122.2
	CCSD(T)/cc-pVTZ	1.132	2.009	1.102	1.425	1.476	1.218	117.1	134.3	122.4
	B3LYP/6-311G(d,p)	1.130	2.064	1.110	1.412	1.456	1.221	121.9	129.0	122.6
TS-6s	MP2/6-311++G(d,p)		1.084	1.446	1.438	1.503	1.178	120.8	145.8	
	M06-2x/cc-pVTZ		1.081	1.492	1.493	1.446	1.161	122.6	139.4	
	CCSD(T)/cc-pVTZ		1.083	1.449	1.462	1.478	1.183	122.6	139.6	
	B3LYP/6-311G(d,p)		1.085	1.492	1.471	1.467	1.171	123.8	141.0	
TS-8s	MP2/6-311++G(d,p)	1.498	1.086	1.085	1.449	1.418	1.183	115.9	148.6	142.5
	M06-2x/cc-pVTZ	1.506	1.093	1.078	1.396	1.422	1.153	107.2	168.4	132.5
	CCSD(T)/cc-pVTZ	1.517	1.083	1.083	1.450	1.423	1.181	118.3	146.5	142.7
	B3LYP/6-311G(d,p)	1.541	1.093	1.082	1.420	1.426	1.163	113.0	160.2	137.0
TS-9s	MP2/6-311++G(d,p)	1.106	1.090	1.099	2.051	1.340	1.170	100.8	115.3	163.5
	M06-2x/cc-pVTZ	1.114	1.085	1.095	2.041	1.321	1.155	104.0	114.1	162.8
	CCSD(T)/cc-pVTZ	1.105	1.087	1.094	2.065	1.337	1.170	105.3	113.5	163.4
	B3LYP/6-311G(d,p)	1.102	1.089	1.095	2.085	1.327	1.161	110.4	113.8	163.7
TS-10s	MP2/6-311++G(d,p)	1.379	1.084	1.087	1.389	1.442	1.201	98.0	147.9	120.3
	M06-2x/cc-pVTZ	1.374	1.079	1.082	1.368	1.428	1.189	98.0	149.4	117.7
	CCSD(T)/cc-pVTZ	1.385	1.081	1.084	1.380	1.447	1.200	98.5	149.3	119.0
	B3LYP/6-311G(d,p)	1.397	1.082	1.085	1.372	1.438	1.193	99.4	150.0	118.3

Species	Level/Basis Set	r C1-H4	r C2-H5 (C2-H4/7)	r C3-H7	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠ C2-C1-O8	∠H4-C1-O8
TS-11s	MP2/6-311++G(d,p)	1.764	1.072	1.652	1.958	1.258	1.153	110.4	129.0	147.9
	M06-2x/cc-pVTZ	1.696	1.068	1.587	1.996	1.234	1.136	107.6	130.7	146.3
	CCSD(T)/cc-pVTZ	1.726	1.070	1.605	1.989	1.250	1.149	108.4	130.2	146.9
	B3LYP/6-311G(d,p)	1.765	1.070	1.643	2.010	1.238	1.142	109.1	129.2	148.3
TS-12s	MP2/6-311++G(d,p)		1.093	1.084	1.457	1.475	1.176	91.2	167.9	
	M06-2x/cc-pVTZ		1.089	1.077	1.496	1.444	1.156	91.9	162.2	
	CCSD(T)/cc-pVTZ		1.090	1.080	1.469	1.472	1.176	89.6	168.1	
	B3LYP/6-311G(d,p)		1.094	1.080	1.469	1.463	1.165	92.3	166.6	
TS-13s	MP2/6-311++G(d,p)	1.554	1.470	1.086	1.422	1.338	1.175	133.8	147.0	117.8
	M06-2x/cc-pVTZ	1.527	1.484	1.083	1.398	1.317	1.163	138.2	148.3	115.5
	CCSD(T)/cc-pVTZ	1.587	1.457	1.083	1.423	1.337	1.170	133.6	147.9	117.4
	B3LYP/6-311G(d,p)	1.636	1.429	1.085	1.408	1.327	1.163	135.0	149.5	116.8
TS-14s	MP2/6-311++G(d,p)	1.094	1.072	1.490	1.842	1.267	1.214	75.3	119.4	133.3
	M06-2x/cc-pVTZ	1.093	1.070	1.561	1.779	1.247	1.215	77.9	117.8	130.6
	CCSD(T)/cc-pVTZ	1.093	1.072	1.584	1.788	1.266	1.222	80.9	118.5	130.3
	B3LYP/6-311G(d,p)	1.090	1.073	1.533	1.870	1.257	1.206	78.9	119.6	132.0
TS-15s	MP2/6-311++G(d,p)									
	M06-2x/cc-pVTZ	1.105	1.086	1.331	1.449	1.454	1.214	123.9	123.3	121.4
	CCSD(T)/cc-pVTZ	1.104	1.093	1.391	1.510	1.416	1.210	117.7	122.4	123.2
	B3LYP/6-311G(d,p)	1.108	1.098	1.409	1.515	1.410	1.202	118.1	122.4	123.4
TS-16s	MP2/6-311++G(d,p)	1.090		1.085	1.415	1.390	2.117	126.4		
	M06-2x/cc-pVTZ	1.086		1.081	1.424	1.366	2.121	122.7		
	CCSD(T)/cc-pVTZ	1.085		1.082	1.443	1.370	2.135	127.3		
	B3LYP/6-311G(d,p)	1.088		1.083	1.431	1.372	2.121	124.8		

Species	Level/Basis Set	r C1-H4	r C2-H5 (C2-H4/7)	r C3-H7	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠ C2-C1-O8	∠H4-C1-O8
TS-17s	MP2/6-311++G(d,p)	1.092	1.092		1.416	1.357	1.328	92.3	128.6	110.6
	M06-2x/cc-pVTZ	1.089	1.088		1.407	1.346	1.324	92.4	128.9	110.2
	CCSD(T)/cc-pVTZ	1.089	1.089		1.420	1.354	1.334	93.0	128.3	110.5
	B3LYP/6-311G(d,p)	1.091	1.093		1.420	1.342	1.331	93.0	128.8	110.0
TS-18s	MP2/6-311++G(d,p)	1.100		1.080	2.069	1.312	1.237	126.9	86.4	121.6
	M06-2x/cc-pVTZ	1.099		1.078	2.066	1.295	1.223	127.8	86.1	121.6
	CCSD(T)/cc-pVTZ	1.098		1.079	2.106	1.312	1.234	126.3	86.3	121.7
	B3LYP/6-311G(d,p)	1.104		1.081	2.130	1.299	1.226	127.5	88.3	122.0
TS-19s	MP2/6-311++G(d,p)	1.436		1.082	1.435	1.325	1.813	153.2	50.2	
	M06-2x/cc-pVTZ	1.366		1.079	1.434	1.312	1.766	152.7	50.4	
	CCSD(T)/cc-pVTZ	1.397		1.080	1.450	1.325	1.837	150.4	48.9	
	B3LYP/6-311G(d,p)	1.387		1.081	1.441	1.319	1.833	149.8	48.9	
TS-20s	MP2/6-311++G(d,p)									
	M06-2x/cc-pVTZ	1.112	1.162	1.081	1.823	1.318	1.444	169.8	46.6	103.3
	CCSD(T)/cc-pVTZ	1.115	1.183	1.082	1.821	1.332	1.475	168.4	46.4	102.8
	B3LYP/6-311G(d,p)	1.116	1.183	1.083	1.836	1.325	1.472	167.1	45.9	103.0
TS-21s	MP2/6-311++G(d,p)	1.085		1.097	1.608	1.323	1.436	141.7	53.7	116.6
	M06-2x/cc-pVTZ	1.082		1.094	1.603	1.316	1.413	142.9	54.2	117.1
	CCSD(T)/cc-pVTZ	1.083		1.096	1.634	1.329	1.427	140.7	53.6	116.9
	B3LYP/6-311G(d,p)	1.084		1.094	1.648	1.316	1.426	141.3	53.1	117.0
cyclopropanone	MP2/6-311++G(d,p)		1.085	1.085	1.471	1.577	1.203	57.6	147.6	
	M06-2x/cc-pVTZ		1.082	1.082	1.462	1.562	1.190	57.7	147.7	
	CCSD(T)/cc-pVTZ		1.083	1.083	1.474	1.579	1.201	57.6	147.7	
	B3LYP/6-311G(d,p)		1.086	1.086	1.471	1.573	1.195	57.7	147.7	

Species	Level/Basis Set	r C1-H4	r C2-H5 (C2-H4/7)	r C3-H7	r C1-C2	r C2-C3	r C1-O8	∠C1-C2-C3	∠ C2-C1-O8	∠H4-C1-O8
cyclopropenol	MP2/6-311++G(d,p)	1.086	1.080		1.486	1.320	1.412	63.6	121.7	107.7
	M06-2x/cc-pVTZ	1.084	1.076		1.476	1.299	1.405	63.9	121.9	107.8
	CCSD(T)/cc-pVTZ	1.084	1.078		1.490	1.315	1.410	63.8	122.0	107.9
	B3LYP/6-311G(d,p)	1.087	1.079		1.487	1.305	1.412	64.0	122.4	107.3
vinoxycarbene	MP2/6-311++G(d,p)	1.125	1.087	1.083		1.329	1.304			106.3
	M06-2x/cc-pVTZ	1.122	1.084	1.080		1.315	1.298			106.3
	CCSD(T)/cc-pVTZ	1.126	1.085	1.081		1.329	1.311			106.1
	B3LYP/6-311G(d,p)	1.129	1.087	1.082		1.320	1.305			106.3
methoxyacetylene	MP2/6-311++G(d,p)	1.092		1.062		1.215	1.441			109.9
	M06-2x/cc-pVTZ	1.089		1.060		1.196	1.435			109.8
	CCSD(T)/cc-pVTZ	1.091		1.061		1.210	1.443			109.9
	B3LYP/6-311G(d,p)	1.092		1.060		1.201	1.447			110.0
hydroxyvinyl-	MP2/6-311++G(d,p)			1.082	1.414	1.327	1.769	158.3	53.4	
carbene	M06-2x/cc-pVTZ			1.079	1.408	1.315	1.749	158.5	53.4	
	CCSD(T)/cc-pVTZ			1.080	1.430	1/327	1.878	153.0	49.6	
	B3LYP/6-311G(d,p)			1.081	1.416	1.322	1.881	152.5	49.8	

RMS Diff in RMS Diff in RMS Diff in RMS Diff in Bond Dist. Bond Species Bond Dist. Bond Species Level Level (Å) (Å) Angle (°) Angle (°) Propyne MP2 0.0044 0.00 IM-7t MP2 0.0279 0.56 M06-2x 0.0084 0.00 M06-2x 0.0266 0.60 **B3LYP** 0.0072 0.00 **B3LYP** 0.0299 0.89 IM-0t MP2 0.0191 2.46 TS-1t MP2 0.0638 1.89 M06-2x 0.2264 2.94 M06-2x 0.0120 1.77 **B3LYP** 0.3305 5.86 **B3LYP** 0.0419 3.55 IM-1t MP2 0.0238 1.61 TS-2t MP2 0.0163 2.08 M06-2x 0.0086 0.45 M06-2x 0.0101 0.42 **B3LYP** 0.0074 0.93 **B3LYP** 0.0056 0.91 IM-2t MP2 MP2 2.09 0.0207 1.02 TS-3t 0.0159 M06-2x 0.0063 0.39 M06-2x 0.0094 0.34 **B3LYP** 0.0050 0.47 **B3LYP** 0.0075 0.49 IM-3t MP2 0.0062 0.38 TS-4t MP2 0.0504 2.29 0.0074 0.0096 M06-2x 0.07 M06-2x 0.51 **B3LYP** 0.0063 0.54 **B3LYP** 0.0446 0.45 IM-4t MP2 0.0023 0.51 TS-5t MP2 0.0430 1.37 M06-2x 0.0076 0.22 M06-2x 0.0105 1.55 **B3LYP** 0.0037 0.71 **B3LYP** 0.1143 1.49 IM-5t MP2 0.0020 0.13 TS-6t MP2 0.0049 0.16 M06-2x 0.0075 0.0109 0.16 0.62 M06-2x **B3LYP** 0.0071 0.69 **B3LYP** 0.0028 0.96 IM-6t MP2 0.0119 1.10 TS-7t MP2 0.0175 0.80 M06-2x 0.0077 0.13 M06-2x 0.0071 0.79 **B3LYP** 0.0075 1.30 **B3LYP** 0.0367 0.55

Table S3. RMS differences in selected bond distances (in Å) and angles (in degrees) for species on the triplet state surface. The differences are calculated relative to the CCSD(T)/cc-pVTZ optimized geometries. Note that TS-9t is not listed because the structure could not be located at the CCSD(T)/cc-pVTZ level.

		RMS Diff in	RMS Diff in
Species	Level	Bond Dist.	Bond
		(Å)	Angle (°)
TS-8t	MP2	0.0621	3.04
	M06-2x	0.0174	2.80
	B3LYP	0.0334	2.68
TS-10t	MP2	0.0192	1.14
	M06-2x	0.0064	0.70
	B3LYP	0.0090	0.72
TS-11t	MP2	0.0155	0.54
	M06-2x	0.0106	0.52
	B3LYP	0.0045	0.94
TS-12t	MP2	0.0105	0.65
	M06-2x	0.0085	0.14
	B3LYP	0.0067	0.63
TS-13t	MP2	0.0100	0.09
	M06-2x	0.0055	0.79
	B3LYP	0.0042	0.58
TS-14t	MP2	0.0067	1.17
	M06-2x	0.0159	1.57
	B3LYP	0.0143	0.38
TS-15†	MP2	0 0445	0 94
10 101	M06-2×	0.0083	1.21
	B3LYP	0.0261	0.65

Table S3 - continued.

		RMS Diff in	RMS Diff in			RMS Diff in	RMS Diff in
Species	Level	Bond Dist.	Bond	Species	Level	Bond Dist.	Bond
		(Å)	Angle (°)			(Å)	Angle (°)
IM-1s		Bond	Angle	TS-3s		Bond	Angle
	MP2	0.0103	1.64		MP2	0.0242	2.36
	M06-2x	0.0123	1.70		M06-2x	0.0265	3.26
	B3LYP	0.0240	10.24		B3LYP	0.0249	4.16
trans-IM-2s	MP2	0.0026	0.12	TS-6s	MP2	0.0158	4.52
	M06-2x	0.0083	0.09		M06-2x	0.0293	0.14
	B3LYP	0.0048	0.52		B3LYP	0.0210	1.30
cis-IM-2s	MP2	0.0023	0.20	TS-8s	MP2	0.0085	1.84
	M06-2x	0.0083	0.17		M06-2x	0.0255	15.32
	B3LYP	0.0049	0.38		B3LYP	0.0177	9.08
IM-3s	MP2	0.0018	0.16	TS-9s	MP2	0.0066	2.81
	M06-2x	0.0079	0.29		M06-2x	0.0140	0.89
	B3LYP	0.0050	0.86		B3LYP	0.0101	3.01
IM-5s	MP2			TS-10s	MP2	0.0053	1.15
	M06-2x	0.0104	0.39		M06-2x	0.0113	0.83
	B3LYP	0.0077	0.42		B2LYP	0.0076	0.81
IM-6s	MP2	0.0023	0.17	TS-11s	MP2	0.0281	1.45
	M06-2x	0.0090	8.66		M06-2x	0.0170	0.69
	B3LYP	0.0090	0.33		B3LYP	0.0243	1.08
TS-2s	MP2	0.0067	0.26	TS-12s	MP2	0.0061	1.13
	M06-2x	0.0102	1.15		M06-2x	0.0197	4.46
	B3LYP	0.0092	2.86		B3LYP	0.0067	2.16

Table S4. RMS differences in selected bond distances (in Å) and angles (in degrees) for species on the singlet state surface. The differences are calculated relative to the optimized CCSD(T)/cc-pVTZ geometries.

		RMS Diff in	RMS Diff in			RMS Diff in	RMS Diff in
Species	Level	Bond Dist.	Bond	Species	Level	Bond Dist.	Bond
		(Å)	Angle (°)			(Å)	Angle (°)
TS-13s	MP2	0.0147	0.58	TS-20s	MP2		
	M06-2x	0.0302	2.88		M06-2x	0.0160	0.90
	B3LYP	0.0243	1.29		B3LYP	0.0066	0.80
TS-14s	MP2	0.0448	3.71	TS-21s	MP2	0.0125	0.58
	M06-2x	0.0131	1.79		M06-2x	0.0164	1.30
	B3LYP	0.0403	1.65		B3LYP	0.0087	0.49
TS-15s	MP2			cyclo-	MP2	0.0023	0.06
	M06-2x	0.0380	3.81	propanone	M06-2x	0.0105	0.06
	B3LYP	0.0089	0.26		B3LYP	0.0043	0.09
TS-16s	MP2	0.0173	0.94	cyclo-	MP2	0.0031	0.25
	M06-2x	0.0105	4.64	propenol	M06-2x	0.0098	0.09
	B3LYP	0.0084	2.57		B3LYP	0.0050	0.41
TS-17s	MP2	0.0039	0.43	vinoxy-	MP2	0.0033	0.19
	M06-2x	0.0083	0.50	carbene	M06-2x	0.0087	0.16
	B3LYP	0.0062	0.41		B3LYP	0.0049	0.17
TS-18s	MP2	0.0165	0.34	methoxy-	MP2	0.0033	0.04
	M06-2x	0.0201	0.89	acetylene	M06-2x	0.0079	0.12
	B3LYP	0.0130	1.38		B3LYP	0.0049	0.07
TS-19s	MP2	0.0215	2.21	hydroxyl-	MP2	0.0547	4.65
	M06-2x	0.0357	1.97	vinylcarbene	M06-2x	0.0656	4.76
	B3LYP	0.0069	0.43		B3LYP	0.0075	0.37

Species	B3LYP Rel. E	M06-2X Rel. E	MP2 Rel. E	CCSD(T) //B3LYP Rel. E	CCSD(T) //M06-2X Rel. E	CCSD(T) Rel. E	Δ B3LYP - CCSD(T)	Δ M06-2X - CCSD(T)	Δ MP2 - CCSD(T)	Δ CCSD(T)// B3LYP- CCSD(T)	Δ CCSD(T)// M06-2X - CCSD(T)
Propyne + $O(^{3}P)$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
IM-0t	-18.43	-14.11	-4.48	6.34	-1.02	-4.22	-14.21	-9.88	-0.25	10.56	3.20
IM-1t	-243.17	-241.21	-182.52	-201.68	-213.41	-212.44	-30.73	-28.77	29.92	10.76	-0.97
IM-2t	-257.14	-246.86	-193.29	-210.81	-225.61	-224.92	-32.22	-21.94	31.63	14.10	-0.69
IM-3t	-312.80	-300.47	-276.05	-270.11	-281.36	-279.71	-33.09	-20.76	3.66	9.60	-1.65
IM-4t	-264.73	-255.97	-243.15	-232.85	-242.21	-240.93	-23.80	-15.04	-2.23	8.08	-1.29
IM-5t	-170.32	-181.40	-161.58	-151.49	-157.69	-156.78	-13.54	-24.62	-4.79	5.29	-0.91
IM-6t	-115.70	-104.85	-28.01	-68.59	-82.06	-81.37	-34.34	-23.48	53.36	12.78	-0.69
IM-7t	-98.18	-91.38	-18.43	-55.45	-67.94	-67.60	-30.57	-23.77	49.18	12.16	-0.34
TS-1t	-17.52	0.40	78.66	22.53	17.99	16.48	-34.00	-16.08	62.18	6.05	1.51
TS-2t	-66.91	-55.04	2.97	-6.33	-27.36	-26.89	-40.02	-28.15	29.86	20.56	-0.47
TS-3t	-71.26	-54.06	-5.32	-16.03	-30.49	-28.95	-42.32	-25.11	23.63	12.92	-1.54
TS-4t	-105.38	-84.18	-21.10	-56.68	-48.13	-69.31	-36.07	-14.86	48.21	12.63	21.18
TS-5t	-192.07	-197.65	-170.01	-187.11	-176.73	-175.39	-16.68	-22.26	5.38	-11.72	-1.34
TS-6t	-143.71	-132.92	-109.20	-92.06	-110.54	-108.83	-34.88	-24.09	-0.37	16.77	-1.71
TS-7t	-207.78	-196.40	-171.84	-183.17	-184.17	-183.17	-24.61	-13.23	11.33	0.00	-1.00
TS-8t	-122.17	-88.28	-39.45	-62.43	-71.01	-72.52	-49.64	-15.76	33.08	10.10	1.51
TS-9t	-92.08	-78.57	-36.10	-46.31	-52.61	-49.00	-43.08	-29.57	12.90	2.69	-3.61
TS-10t	-41.96	-44.14	4.97	6.04	-10.37	-9.53	-32.44	-34.61	14.49	15.56	-0.85
TS-11t	-40.26	-18.47	51.94	25.77	5.65	7.05	-47.30	-25.51	44.89	18.73	-1.39
TS-12t	86.00	95.43	146.73	137.40	118.59	119.30	-33.30	-23.87	27.43	18.10	-0.71
TS-13t	-28.31	-23.11	63.05	29.51	11.72	12.96	-41.27	-36.07	50.08	16.54	-1.25
TS-14t	-92.75	-76.79	-21.17	-46.41	-56.48	-55.95	-36.81	-20.85	34.78	9.54	-0.53

Table S5. Relative energies on the triplet surface for reaction of $O({}^{3}P)$ with propyne, computed at different levels of theory. Energy differences (Δ) also are reported between each level and the optimized CCSD(T) results. All energies are in kJ/mol.

TS-15t	3.94	26.21	121.26	57.99	46.32	46.57	-42.63	-20.36	74.69	11.41	-0.25
$^{3}C_{2}H_{4} + CO$	-226.67	-217.95	-214.42	-217.69	-215.91	-214.14	-12.53	-3.81	-0.28	-3.55	-1.77
$CH_2CH + HCO$	-114.74	-92.88	-47.69	-79.63	-86.11	-87.44	-27.31	-5.44	39.75	7.81	1.33
$CH_3CH + CO$	-194.80	-200.68	-198.25	-200.35	-191.40	-190.97	-3.83	-9.71	-7.28	-9.38	-0.43
$CH_3 + HCCO$	-144.83	-118.68	-90.23	-92.69	-104.19	-103.32	-41.52	-15.37	13.08	10.63	-0.87
$^{3}CH_{2} + CH_{2}CO$	-112.37	-110.90	-98.89	-81.84	-87.94	-87.44	-24.94	-23.46	-11.46	5.59	-0.51
$C_2H_2 + {}^{3}H_2CO$	-32.88	-12.75	14.80	9.92	-0.65	-5.53	-27.35	-7.22	20.33	15.46	4.88

				CCSD(T)	CCSD(T)					Δ	Δ
	B3LYP	M06-2X	MP2	//B3LYP	//M06-2X	CCSD(T)	Δ	Δ	Δ	CCSD(T)//	CCSD(T)//
Species	Dal E	Dal E	B3LYP –	M06-2X -	MP2 –	B3LYP -	M06-2X -				
Species	Kel. E	Kel. E	CCSD(T)	CCSD(T)	CCSD(T)	CCSD(T)	CCSD(T)				
IM-1s	-216.44	-208.86	-178.62	-168.75	-190.60	-191.60	-24.84	-17.26	12.98	22.85	1.00
IM-2s-trans	-489.61	-490.07	-482.05	-458.25	-477.43	-477.39	-12.22	-12.68	-4.66	19.14	-0.04
IM-2s-cis	-482.60	-482.43	-473.28	-452.32	-469.90	-469.85	-12.76	-12.58	-3.43	17.53	-0.05
IM-3s	-499.39	-500.79	-488.43	-460.83	-477.02	-475.94	-23.45	-24.85	-12.48	15.12	-1.08
IM-5s	-163.04	-167.04		-137.88	-154.00	-153.43	-9.60	-13.60		15.56	-0.57
IM-6s	-355.50	-290.18	-347.81	-320.56	-257.76	-346.37	-9.13	56.19	-1.44	25.81	88.60
TS-2s	-198.56	-203.23	-179.06	-156.07	-179.64	-178.70	-19.85	-24.53	-0.36	22.63	-0.94
TS-3s	-215.73	-210.17	-178.40	-166.39	-190.08	-190.05	-25.68	-20.12	11.66	23.66	-0.02
TS-6s	-166.25	-143.45	-161.83	-140.45	-156.85	-154.59	-11.67	11.14	-7.24	14.14	-2.26
TS-8s	-154.20	-143.34	-141.58	-107.37	-121.23	-133.11	-21.09	-10.23	-8.47	25.74	11.88
TS-9s	-136.47	-121.90	-116.80	-95.89	-113.13	-114.18	-22.29	-7.72	-2.62	18.29	1.05
TS-10s	-199.56	-188.49	-181.48	-154.76	-174.41	-175.50	-24.06	-12.99	-5.98	20.74	1.10
TS-11s	-146.22	-140.15	-149.08	-116.07	-124.73	-127.15	-19.07	-13.00	-21.93	11.07	2.41
TS-12s	-257.86	-252.71	-248.36	-221.31	-242.00	-239.13	-18.72	-13.58	-9.23	17.82	-2.87
TS-13s	-126.91	-108.29	-103.62	-78.31	-94.16	-97.01	-29.90	-11.28	-6.62	18.70	2.84
TS-14s	-94.47	-96.16	-81.06	-43.40	-67.09	-70.21	-24.26	-25.95	-10.85	26.81	3.11
TS-15s	-160.72	-40.53		-133.41	-89.19	-151.66	-9.07	111.13		18.25	62.47
TS-16s	-226.07	-188.74	-191.43	-196.28	-217.82	-221.75	-4.32	33.02	30.32	25.47	3.94
TS-17s	-168.41	-177.00	-144.78	-129.36	-151.62	-151.55	-16.86	-25.44	6.77	22.19	-0.07
TS-18s	-124.02	-119.23	-88.46	-89.84	-108.41	-108.74	-15.28	-10.49	20.27	18.89	0.33
TS-19s	-80.83	-89.01	-62.20	-47.38	-72.72	-74.43	-6.40	-14.58	12.23	27.05	1.70
TS-20s	-30.57	-52.46		-0.23	-26.80	-26.67	-3.90	-25.80		26.43	-0.14

Table S6. Relative energies on the singlet surface for reaction of $O({}^{3}P)$ with propyne, computed at different levels of theory. Energy differences (Δ) also are reported between each level and the optimized CCSD(T) results. All energies are in kJ/mol.

TS-21s	70.39	47.88	93.46	113.69	84.46	83.80	-13.41	-35.93	9.65	29.88	0.66
TS-cis-trans-IM-2s	-455.60	-458.79	-452.26	-429.98	-447.70	-447.95	-7.65	-10.84	-4.31	17.97	0.25
cyclopropanone	-405.48	-420.92	-403.42	-375.59	-391.80	-390.39	-15.09	-30.53	-13.03	14.81	-1.40
cyclopropenol	-301.32	-337.79	-315.06	-275.69	-299.55	-299.50	-1.82	-38.29	-15.57	23.81	-0.05
vinoxycarbene	-191.69	-202.20	-157.95	-162.72	-184.54	-184.75	-6.94	-17.45	26.80	22.03	0.21
methoxyacetylene	-312.76	-331.79	-304.79	-276.42	-299.00	-300.01	-12.75	-31.78	-4.78	23.59	1.01
hydroxyvinylcarbene	-114.79	-123.87	-82.35	-73.86	-99.67	-102.93	-11.87	-20.94	20.58	29.07	3.25
$C_2H_4 + CO$	-482.23	-484.33	-487.72	-481.72	-484.15	-484.52	2.29	0.19	-3.20	2.80	0.37
$C_2H_2 + H_2 + CO$	-309.06	-313.25	-337.48	-316.78	-312.54	-318.89	9.83	5.64	-18.59	2.11	6.35
$H_2 + H_2CCCO$	-326.69	-307.30	-304.63	-278.33	-287.07	-292.26	-34.42	-15.04	-12.37	13.93	5.19
$C_2H_2 + H_2CO$	-306.90	-306.03	-316.62	-284.97	-297.55	-303.74	-3.15	-2.28	-12.88	18.77	6.19
$H_2CO + H_2CC$	-133.76	-126.99	-104.78	-236.48	-122.41	-122.33	-11.44	-4.66	17.55	-114.16	-0.09

Table S7. RMS differences for selected bond lengths and bond angles taken from available stable and transition state structures on the triplet and singlet state surfaces in the reaction of O(³P) with propyne, calculated relative to the CASPT2/aug-cc-pVTZ results from Ref. 43. Bond length differences are reported in Angstroms and bond angle differences in degrees. The atom-numbering scheme is shown in Figure 4.

	Triplet State RMS errors					
Bond/Angle	MP2	M06-2X	CCSD(T)	B3LYP		
C1-H4	0.020	0.018	0.019	0.022		
С2-Н6	0.013	0.012	0.002	0.005		
С3-Н5	0.010	0.011	0.002	0.018		
C1-C2	0.068	0.028	0.041	0.009		
C2-C3	0.018	0.013	0.007	0.010		
C1-O8	0.074	0.038	0.045	0.011		
∠ C1-C2-C3	2.65	0.85	1.79	1.60		
∠ C2-C1-O8	3.30	2.65	2.30	2.52		
∠ H4-C1-O8	1.56	1.89	0.44	1.98		
avg bond error (Å)	0.034	0.020	0.020	0.012		
avg angle error (deg.)	2.51	1.77	1.51	2.03		

		Singlet State	e RMS errors			
Bond/Angle	MP2	M06-2X	CCSD(T)	B3LYP		
C1-H4	0.008	0.038	0.024	0.011		
С2-Н5	0.011	0.057	0.033	0.054		
С3-Н7	0.015	0.037	0.022	0.026		
C1-C2	0.012	0.023	0.020	0.030		
C2-C3	0.007	0.021	0.010	0.013		
C1-O8	0.007	0.017	0.005	0.013		
∠ C1-C2-C3	0.97	1.98	1.36	4.54		
∠ C2-C1-O8	3.29	3.98	2.17	7.75		
∠ H4-C1-O8	0.32	0.91	0.69	1.10		
avg bond error (Å)	0.010	0.032	0.019	0.025		
avg angle error (deg.)	1.53	2.29	1.41	4.46		
		CASPT2/	CCSD(T)/	CCSD(T) –	CCSD(T)//	CCSD(T)// M06-2X –
-----------------	--------------	----------	-------------------	-----------	-------------------	-----------------------
T	D .		cc-pVTZ	CASPT2	M06-2X	CASPT2
Transition	Barrier	Barrier	Barrier		Barrier	
State	Relative 10:	(kJ/mol)	(KJ/MOI)	(KJ/MOI)	kJ/mol	(kJ/mol)
TS-1t						
$(TS1)^{\circ}$	O + propyne	7.11	16.48	9.37	17.99	10.88
TS-2t cis						
(TS3 cis)	IM-1t cis	177.82	185.55	7.73	186.05	8.23
TS-2t trans						
(TS3 trans)	IM-1t trans	182.84			187.94	5.10
TS-3t cis						
(TS4 cis)	IM-1t cis	183.68	183.49	-0.19	182.92	-0.76
TS-3t trans						
(TS4 trans)	IM-1t trans	208.36			215.53	7.17
TS-4t	$CH_2CH +$					
(TS10)	НСО	10.04	18.13	8.09	37.98	27.94
TS-2s						
(TS17)	IM-1s	7.53	12.9	5.37	10.96	3.43
TS-3s						
(TS14)	IM-1s	-1.26	1.55	2.81	0.52	1.78
TS-6s						
(TS16)	IM-3s	311.29	321.35	10.06	320.17	8.88
TS-11s						
(TS19)	IM-2s trans	351.50	350.24	-1.26	352.7	1.20
			RMS Error:	6.64	RMS Error:	10.68

Table S8. Energy barriers for transition states on the triplet and singlet surfaces in the reaction of $O(^{3}P)$ with propyne, computed at the CCSD(T)/cc-pVTZ and CCSD(T)//M06-2X/cc-pVTZ levels of theory and compared with the CASPT2/aug-cc-pVTZ results from Ref. 43. Energy differences (Δ) are reported between each level and the CASPT2 results.

^{*a*} CASPT2/aug-cc-pVTZ results are taken from Ref. 43.

^b The labeling scheme from Ref. 43 is listed in parentheses.

Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	CH₂CH + HCO
C1	-0.2475	-0.1855	0.1769	0.2431	0.2817	0.2294	0.3338
C2	0.0177	0.0988	0.2499	-0.0863	-0.1424	-0.0663	-0.0432
C3	-0.6690	-0.6778	-0.7590	-0.5420	-0.3101	-0.4866	-0.5316
H4	0.2371	0.2461	0.1281	0.1261	0.1144	0.1588	0.1200
H5	0.2394	0.2452	0.2444	0.2389	0.1880	0.2192	0.2042
H6	0.2315	0.2361	0.2341	0.3291	0.1845	0.1915	0.1622
H7	0.2318	0.2361	0.2335	0.2268	0.1880	0.2271	0.2084
08	-0.0410	-0.1990	-0.5079	-0.5356	-0.5041	-0.4731	-0.4538

Table S9a. Natural atomic charges for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

Table S9b. Natural spin densities for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory.

Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	CH₂CH + HCO
C1	0.0213	-0.1433	-0.0783	0.0147	-0.0573	0.5820	0.6132
C2	0.0267	0.4132	1.6405	1.1719	0.7423	0.7726	1.0420
C3	-0.0023	-0.0196	-0.0453	0.5697	1.0032	-0.0837	-0.1572
H4	-0.0008	0.0128	-0.0017	-0.0069	0.0003	0.1402	0.1326
H5	0.0025	0.0249	0.0529	0.0345	-0.0004	0.0536	0.0004
H6	0.0000	0.0077	0.0357	-0.0713	0.0131	0.0039	0.0418
H7	-0.0001	0.0076	0.0339	0.0021	-0.0004	0.0359	0.0731
08	1.9527	1.6968	0.3624	0.2852	0.2991	0.4955	0.2543

Table S9c. Natural bond orders for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory.

Bond	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	CH₂CH + HCO
C1-C2	2.9141	2.7722	1.2878	1.1871	1.2400	0.2863	0.0000
C2-C3	1.0463	1.0515	1.0525	1.1697	1.0545	2.0378	2.0509
C1-H4	0.9911	0.9831	0.9609	0.9609	0.9612	0.9624	0.9783
C2-H6	0.0000	0.0000	0.0000	0.4753	0.9778	0.9876	0.9907
C3-H5	0.9814	0.9788	0.9781	0.9775	0.9845	0.9730	0.9763
C3-H6	0.9821	0.9819	0.9804	0.3276	0.0000	0.0000	0.0000
C3-H7	0.9821	0.9819	0.9815	0.9905	0.9845	0.9770	0.9715
C1-08	0.0151	0.1014	1.7385	1.7840	1.7817	1.5960	2.0892
C2-08	0.0144	0.0790	0.0106	0.0000	0.0000	0.0113	

				TS-4s		
Atom	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	CH₂CH + HCO
C1	0.2340	0.3373	0.4060	0.4184	0.4028	0.3338
C2	0.2179	-0.2341	-0.3258	-0.2895	-0.2965	-0.0432
C3	-0.7437	-0.3870	-0.2687	-0.3450	-0.2993	-0.5316
H4	0.1223	0.1167	0.1049	0.1063	0.0984	0.1200
H5	0.2247	0.3324	0.2021	0.2156	0.2152	0.1622
H6	0.2267	0.2090	0.1948	0.1988	0.2011	0.2042
H7	0.2785	0.1944	0.2068	0.1918	0.1886	0.2084
08	-0.5604	-0.5687	-0.5201	-0.4963	-0.5103	-0.4538

Table S10a. Natural atomic charges for species in the HCO pathway on the singlet state surface for the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

Table S10b. Natural bond order for species in the HCO pathway on the singlet state surface for the reaction of $O(^{3}P)$ with propyne, computed at the M06-2X/cc-pVTZ level of theory.

				TS-4s		
Bond	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	CH ₂ CH + HCO
C1-C2	1.0979	1.0632	1.0161	0.9895	1.0235	0.0000
C2-C3	1.0743	1.3904	1.9688	2.0025	1.9654	2.0509
C1-H4	0.9482	0.9552	0.9607	0.9575	0.9588	0.9783
C2-H5	0.0000	0.2663	0.9813	0.9575	0.9801	0.9907
C3-H5	0.9738	0.3878	0.0000	0.0000	0.0000	0.0000
C3-H6	0.9809	0.9917	0.9891	0.9883	0.9904	0.9763
C3-H7	0.9519	0.9700	0.9867	0.9869	0.9854	0.9715
C1-08	1.9408	1.9749	2.0120	2.0401	2.0060	2.0892
C2-08	0.0126	0.0000	0.0000	0.0000	0.0000	

							CH₃CHCH +
Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	НСО
C1	-0.2530	-0.1911	0.1785	0.2189	0.2801	0.2343	0.3338
C2	0.0180	0.1000	0.2542	-0.0760	-0.1261	-0.0766	-0.0567
C3	-0.4615	-0.4717	-0.5491	-0.3202	-0.1225	-0.2832	-0.3210
C4	-0.5615	-0.5595	-0.5713	-0.6160	-0.6534	-0.6027	-0.6081
H5	0.2394	0.2472	0.1282	0.1264	0.1151	0.1577	0.1200
H6	0.2239	0.2280	0.2215	0.2251	0.1888	0.2239	0.1577
H7	0.2239	0.2277	0.2312	0.3257	0.1835	0.1880	0.2047
H8	0.2073	0.2120	0.1986	0.2268	0.2284	0.2153	0.2095
Н9	0.2043	0.2076	0.2164	0.2265	0.2067	0.2161	0.2095
H10	0.1990	0.1997	0.2051	0.2079	0.2132	0.2062	0.2044
011	-0.0396	-0.1998	-0.5135	-0.5449	-0.5137	-0.4789	-0.4538

Table S11a. Natural atomic charges for species in the HCO pathway on the triplet state surface for the reaction of $O({}^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

Table S11b. Natural spin densities for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory.

							CH₃CHCH +
Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	НСО
C1	-0.0015	-0.1364	-0.0712	0.0213	-0.0524	0.5867	0.6132
C2	0.0471	0.4062	1.6421	1.1519	0.7463	0.7798	1.0491
C3	-0.0029	-0.0191	-0.0443	0.5031	0.9380	-0.0798	-0.1453
C4	0.0038	0.0218	0.0434	0.0264	-0.0212	0.0495	0.0663
H5	0.0003	0.0123	-0.0026	-0.0070	0.0016	0.14023	0.1326
H6	0.0008	0.0063	0.0240	0.0066	-0.0005	0.0350	0.0005
H7	0.0012	0.0101	0.0491	-0.0702	0.0081	0.0036	0.0401
H8	-0.0003	-0.0008	-0.0009	0.0328	0.0551	-0.0017	-0.0041
H9	-0.0004	-0.0009	-0.0015	0.0082	0.0177	-0.0012	-0.0041
H10	-0.0006	0.0007	0.0045	0.0040	0.0083	-0.0019	-0.0027
011	1.9524	1.6998	0.3574	0.3228	0.2990	0.4896	0.2543

							CH₃CHCH +
Bond	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	НСО
C1-C2	2.9152	2.7756	1.2854	1.3310	1.3878	0.4261	
C2-C3	1.0354	1.0398	1.0388	1.1231	1.0424	2.0197	2.0171
C3-C4	1.0123	1.0087	1.0094	1.0285	1.0371	0.9941	1.0089
C1-H5	0.9909	0.9837	0.9623	0.9624	0.9615	0.9640	0.9783
C2-H5	0.0000	0.0000	0.0000	0.0000	0.0000	0.0068	
C2-H6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C2-H7	0.0000	0.0000	0.0000	0.4516	0.9794	0.9893	0.9905
C3-H6	0.9734	0.9729	0.9774	0.9793	0.9754	0.9716	0.9679
C3-H7	0.9733	0.9726	0.9684	0.4138	0.0000	0.0000	0.0000
C4-H8	0.9909	0.9909	0.9905	0.9768	0.9768	0.9931	0.9861
C4-H9	0.9909	0.9910	0.9903	0.9852	0.9856	0.9930	0.9861
C4-H10	0.9901	0.9899	0.9898	0.9916	0.9886	0.9963	0.9930
C1-011	0.0153	0.0884	1.7399	1.6190	1.6299	1.4427	2.0892
C2-011	0.0146	0.0910	0.0121	0.0098	0.0000	0.0104	

Table S11c. Natural bond orders for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory.

				TS-4s		CH₃CHCH +
Atom	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	HCO
C1	0.2311	0.2748	0.3988	0.4167	0.4090	0.3338
C2	0.2040	0.0222	-0.3480	-0.3143	-0.3206	-0.0567
C3	-0.5345	-0.4057	-0.0482	-0.1314	-0.0856	-0.3210
C4	-0.5993	-0.6165	-0.6480	-0.6295	-0.6270	-0.6081
H5	0.1227	0.1119	0.1049	0.1054	0.0958	0.1200
H6	0.2270	0.2210	0.1939	0.2202	0.1878	0.1577
H7	0.2839	0.3046	0.2048	0.1953	0.2111	0.2047
H8	0.2086	0.2114	0.2368	0.2065	0.2206	0.2095
Н9	0.2064	0.2144	0.2376	0.2138	0.2206	0.2095
H10	0.2185	0.2270	0.2040	0.2200	0.2102	0.2044
011	-0.5685	-0.5650	-0.5367	-0.5027	-0.5219	-0.4538

Table S12a. Natural atomic charges for species in the HCO pathway on the singlet state surface for the reaction of $O({}^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

Table S12b. Natural bond orders for species in the HCO pathway on the singlet state surface for the reaction of $O(^{3}P)$ with 1-butyne, computed at the M06-2X/cc-pVTZ level of theory.

				TS-4s		CH₃CHCH +
Bond	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	НСО
C1-C2	1.1043	1.1942	1.0330	0.9913	1.0297	
C2-C3	1.0769	1.3380	1.9188	1.9646	1.9245	2.0171
C3-C4	1.0120	0.9943	1.0281	1.0292	1.0296	1.0089
C1-H5	0.9496	0.9539	0.9629	0.9588	0.9586	0.9783
C2-H5	0.0000	0.0000	0.0000	0.0000	0.0000	
C2-H6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C2-H7	0.0000	0.0000	0.9813	0.9738	0.9792	0.9905
C3-H6	0.9699	0.9790	0.9807	0.9784	1.0296	0.9679
C3-H7	0.9264	0.6855	0.0000	0.0000	0.0000	0.0000
C4-H8	0.9906	0.9946	0.9822	0.9897	0.9845	0.9861
C4-H9	0.9918	0.9938	0.9818	0.9850	0.9845	0.9861
C4-H10	0.9894	0.9912	0.9961	0.9839	0.9911	0.9930
C1-011	1.9319	1.8108	1.9986	2.0413	2.0027	2.0892
C2-O11	0.0177	0.0082	0.0000	0.0000	0.0000	

							CH₃CH₂CHCH +
Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	НСО
C1	-0.2529	-0.1907	0.1788	0.2204	0.2811	0.2353	0.3338
C2	0.0218	0.1045	0.2592	-0.0730	-0.1240	-0.0745	-0.0549
C3	-0.4684	-0.4790	-0.5571	-0.3257	-0.1261	-0.2878	-0.3242
C4	-0.3548	-0.3517	-0.3606	-0.4145	-0.4475	-0.3949	-0.4008
C5	-0.5851	-0.5860	-0.5829	-0.5781	-0.5760	-0.5748	-0.5762
H6	0.2393	0.2470	0.1282	0.1263	0.1153	0.1573	0.1200
H7	0.2225	0.2264	0.2203	0.2244	0.1878	0.2232	0.1585
H8	0.2225	0.2264	0.2302	0.3262	0.1841	0.1883	0.2036
Н9	0.1969	0.2039	0.1923	0.2201	0.2221	0.1986	0.1973
H10	0.2035	0.2038	0.2087	0.2214	0.2006	0.2077	0.2014
H11	0.1931	0.1935	0.1930	0.1942	0.1969	0.1997	0.1993
H12	0.1935	0.1935	0.1971	0.1961	0.1961	0.1976	0.1944
H13	0.2060	0.2081	0.2068	0.2076	0.2039	0.2042	0.2016
014	-0.0379	-0.1996	-0.5139	-0.5454	-0.5143	-0.4799	-0.4538

Table S13a. Natural atomic charges for species in the HCO pathway on the triplet state surface for the reaction of $O({}^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

Table S13b. Natural spin densities for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory.

							CH ₃ CH ₂ CHCH +
Atom	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	НСО
C1	-0.0016	-0.1351	-0.0713	0.0212	-0.0519	0.5881	0.6132
C2	0.0454	0.4028	1.6407	1.1509	0.7446	0.7774	1.0469
C3	-0.0028	-0.0194	-0.0450	0.5013	0.9382	-0.0802	-0.1467
C4	0.0029	0.0219	0.0428	0.0290	-0.0178	0.0490	0.0656
C5	-0.0004	0.0016	0.0066	0.0061	0.0093	-0.0001	-0.0022
H6	0.0003	0.0121	-0.0024	-0.0069	0.0015	0.1400	0.1326
H7	0.0014	0.0081	0.0241	0.0072	0.0002	0.0348	0.0004
H8	0.0006	0.0081	0.0496	-0.0698	0.0078	0.0036	0.0404
Н9	-0.0003	-0.0009	-0.0015	0.0309	0.0518	-0.0019	-0.0029
H10	0.0000	-0.0009	-0.0016	0.0066	0.0185	-0.0009	-0.0035
H11	0.0000	0.0000	-0.0002	-0.0003	-0.0003	0.0006	0.0008
H12	0.0001	-0.0001	-0.0002	0.0003	-0.0002	-0.0001	0.0000
H13	0.0001	0.0006	0.0014	0.0013	-0.0006	0.0012	0.0011
014	1.9543	1.7011	0.3571	0.3222	0.2989	0.4885	0.2543

							CH ₃ CH ₂ CHCH +
Bond	IM-0t	TS-1t	IM-1t	TS-2t	IM-2t	TS-4t	HCO
C1-C2	2.9156	2.7758	1.2856	1.3320	1.2440	0.4336	
C2-C3	1.0343	1.0395	1.0392	1.1740	1.0424	1.9972	2.0201
C3-C4	1.0054	1.0026	1.0005	1.0186	1.0251	1.0071	0.9984
C4-C5	1.0183	1.0175	1.0180	1.0105	1.0191	1.0129	1.0164
C1-H6	0.9910	0.9838	0.9624	0.9611	0.9631	0.9540	0.9783
C2-H6	0.0000	0.0000	0.0000	0.0000	0.0000	0.0077	
C2-H7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C2-H8	0.0000	0.0000	0.0000	0.2985	0.9791	0.9849	0.9904
C3-H7	0.9726	0.9723	0.9765	0.9759	0.9747	0.9682	0.9670
C3-H8	0.9730	0.9723	0.9677	0.5171	0.0000	0.0000	0.0000
C4-H9	0.9814	0.9814	0.9814	0.9711	0.9674	0.9814	0.9842
C4-H10	0.9814	0.9814	0.9812	0.9800	0.9760	0.9757	0.9768
C5-H11	0.9908	0.9910	0.9913	0.9944	0.9908	0.9903	0.9900
C5-H12	0.9906	0.9910	0.9909	0.9936	0.9906	0.9910	0.9896
C5-H13	0.9908	0.9901	0.9897	0.9929	0.9906	0.9925	0.9914
C1-014	0.0152	0.1071	1.7400	1.6210	1.7762	2.0708	2.0892
C2-O14	0.0140	0.0724	0.0122	0.0060	0.0000	0.0104	

Table S13c. Natural bond orders for species in the HCO pathway on the triplet state surface for the reaction of $O(^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory.

				TS-4s		CH ₃ CH ₂ CHCH +
Atom	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	НСО
C1	0.2303	0.2777	0.4003	0.4171	0.3980	0.3338
C2	0.2140	0.0145	-0.3437	-0.3115	-0.32070	-0.0549
C3	-0.5436	-0.3992	-0.0507	-0.1337	-0.0832	-0.3242
C4	-0.3900	-0.4110	-0.4481	-0.4221	-0.4285	-0.4008
C5	-0.5824	-0.5818	-0.5796	-0.5743	-0.5722	-0.5762
H6	0.1228	0.1114	0.1052	0.1054	0.1016	0.1200
H7	0.2259	0.2189	0.1920	0.1941	0.2166	0.1585
H8	0.2829	0.3044	0.2051	0.2204	0.1926	0.2036
H9	0.2108	0.2196	0.2310	0.2114	0.2123	0.1973
H10	0.1991	0.2074	0.2310	0.1995	0.1994	0.2014
H11	0.1974	0.1982	0.1941	0.1954	0.1966	0.1993
H12	0.1930	0.1947	0.1941	0.1972	0.2010	0.1944
H13	0.2100	0.2113	0.2065	0.2043	0.2058	0.2016
014	-0.5702	-0.5661	-0.5372	-0.5027	-0.5193	-0.4538

Table S14a. Natural atomic charges for species in the HCO pathway on the singlet state surface for the reaction of $O({}^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory. The atom-numbering scheme is shown in Figure 4 of the manuscript.

				TS-4s		CH ₃ CH ₂ CHCH +
Bond	IM-1s	TS-2s	cis-IM-2s	(cis-trans)	trans-IM-2s	НСО
C1-C2	1.1047	1.0855	1.0325	0.9918	1.0296	
C2-C3	1.0777	1.1896	1.9216	1.9654	1.9259	2.0201
C3-C4	1.0005	1.0054	1.0223	1.0201	1.0206	0.9984
C4-C5	1.0176	1.0167	1.0228	1.0150	1.0145	1.0164
C1-H6	0.9487	0.9511	0.9626	0.9586	0.9613	0.9783
C2-H6	0.0000	0.0000	0.0000	0.0000	0.0000	
C2-H7	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
C2-H8	0.0000	0.0000	0.9806	0.9737	0.9783	0.9904
C3-H7	0.9696	0.9678	0.9812	0.9776	0.9782	0.9670
C3-H8	0.9288	0.8223	0.0000	0.0000	0.0000	0.0000
C4-H9	0.9795	0.9764	0.9740	0.9746	0.9744	0.9842
C4-H10	0.9821	0.9823	0.9740	0.9809	0.9819	0.9768
C5-H11	0.9902	0.9904	0.9892	0.9908	0.9912	0.9900
C5-H12	0.9917	0.9900	0.9892	0.9906	0.9899	0.9896
C5-H13	0.9914	0.9898	0.9904	0.9909	0.9905	0.9914
C1-O14	1.9324	1.9428	1.9980	2.0409	2.0021	2.0892
C2-O14	0.0154	0.0183	0.0000	0.0000	0.0000	

Table S14b. Natural bond orders for species in the HCO pathway on the singlet state surface for the reaction of $O(^{3}P)$ with 1-pentyne, computed at the M06-2X/cc-pVTZ level of theory.

Table S15. Relative energies in kJ/mol for the species involved in the entrance barrier the primary HCO formation pathways on the triplet and singlet surfaces for reactions of $O(^{3}P)$ with alkenes. Results are reported at the CCSD(T)//M06-2X/cc-pVTZ level.

Species	ethylene	propene	1-butene	1-pentene
alkene + $O(^{3}P)$	0.0	0.0	0.0	0.0
IM-0t	1.6	1.9	-1.0	-1.1
TS-1t	17.6	11.8	10.6	11.2
IM-1t	-87.7	-88.6	-88.4	-88.5
TS-2t	48.0	42.9	41.0	40.4
IM-2t	-123.1	-113.3	-114.7	-114.7
TS-4t	-64.5	-66.8	-67.4	-66.8
MECP	-88.4	-110.9	-111.5	-113.0
IM-1s	-325.9	-336.3	-338.2	-337.7
TS-2s	-75.9	-100.7	-102.9	-103.3
IM-2s	-443.8	-429.3	-431.6	-423.9
HCO +	-106.8	-98.3	-97.1	-95.6
fragment	(CH ₃)	(CH ₃ CH ₂)	(CH ₃ CH ₂ CH ₂)	(CH ₃ CH ₂ CH ₂ CH ₂)

Appendix S1. Cartesian coordinates in Å computed at the CCSD(T)/cc-pVTZ level for species on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with propyne. Electronic energies (E_{el}) and vibrational zero-point energies (E_{VZP}), both in hartrees, also are reported. For transition states, the imaginary frequency is reported in cm⁻¹. Also included are the Cartesian coordinates of the MECP near IM-1t and IM-1s, obtained at the CCSD/cc-pVTZ level.

Propyn	ne			
E _{el} = -1	16.4354728	Ev	_{zp} = 0.0553088	
C C	0.000000	-0.000003 -0.000005	1.429552 0.218364	
С	0.000000	-0.000011	-1.248151	
Н	0.000000	0.000001	2.492325	
Н	0.000000	1.021284	-1.631559	
H	0.884439	-0.510638	-1.631541	
н	-0.884439	-0.510638	-1.631541	
IM-0t				_
E _{el} = -1	91.4113566	Ev	_{zp} = 0.0556229	
-				11
С	0.218567	-1.502857	0.000867	1 1
Ċ	0.708505	-0.394645	-0.001697	
С	1.294791	0.949494	0.000192	
Н	-0.210397	-2.475381	-0.000031	
Н	0.508078	1.704160	-0.026330	
Н	1.939662	1.087852	-0.868712	
Н	1.893164	1.103973	0.899196	
0	-2.182710	0.533431	-0.000037	
IM-1t				
E _{el} = -1	91.4941089	Ev	_{7P} = 0.0590701	
C,		•		
С	-0.921438	0.479410	0.000002	\neg
С	0.492263	0.687328	0.000350	
С	1.619447	-0.262759	0.000140	
Н	-1.566018	1.368821	0.000322	
Н	1.231281	-1.286121	-0.001227	
Н	2.248326	-0.123858	0.883347	-
Н	2.249627	-0.121954	-0.881831	
0	-1.402587	-0.660098	-0.000634	

Cartesian Coordinates of Species on the Triplet State Surface in the $O(^{3}P)$ + Propyne Reaction

IM-2t		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	<pre>P = 0.0568910 0.013753 0.049122 -0.043650 0.092795 -1.006984 0.149767 0.841827 -0.096618</pre>	
IM-3t		
$ \begin{array}{c} E_{el} = -191.5198433 \\ C & 0.926532 \\ C & -0.513698 \\ 0.699458 \\ C & -1.459268 \\ H & -0.892364 \\ H & -0.916277 \\ H & -2.113061 \\ H & -2.113061 \\ O & 1.538738 \\ \end{array} $	P = 0.0591805 0.000003 -0.000074 -0.000067 0.000135 -0.001903 -0.877160 0.879760 -0.000001	
111-41		
$E_{el} = -191.5030684 \qquad E_{VZ}$ $C -0.872662 0.519731$ $C 0.642974 0.675483$ $C 1.387224 -0.619587$ $H 0.885672 1.299176$ $H 0.851879 -1.557027$ $H 0.886267 1.300000$ $H 2.467867 -0.621417$ $O -1.504613 -0.484311$	P = 0.0571791 0.000373 -0.000205 0.000098 -0.869414 -0.000846 0.868164 0.001003 -0.000063	
IIVI-St		
E _{el} = -191.4710874 E _{vz}	_P = 0.0572458	
C-0.8116900.422210C0.6957860.601869C1.458614-0.659657H-1.3777261.373645H0.9374701.225960H0.9374271.225994H2.517386-0.873894O-1.383853-0.642279	-0.000041 0.000058 -0.000024 -0.000188 0.874823 -0.874712 -0.000120 0.000030	

IM-6t			
E _{el} = -191.4418989	Ev	_{ZP} = 0.0567825	
C 0.810130	-0.547968	0.000362	
C -0.677011	-0.585311	-0.000126	
C -1.651801	0.297577	-0.000836	
н 1.220956	-1.081458	-0.870711	
н –1.433158	1.365399	0.001451	
н 1.222152	-1.081922	0.869970	
н –2.694762	0.002347	0.003094	
0 1.349613	0.726231	-0.000025	
IIVI-/T			_
E - 101 /2E0E00	F		
c _{el} = -191.4358588	Ev	ZP - U.UJJY842	
C 0 742200	0 515667	0 001027	
	U.JLJ00/	-0.00192/	
	0 5655/3	0.001480	
н 1.522419	1 0002243	-0.00191/	
	1 070000	0 972160	
н 1 230540	1 502720	0.012100	
н 2.577/70	1.JU2/38 _0 788736	0.001002	
	-0.707770	_0 000050 _0 00050	
0 -1.339021	-0.707470	-0.000032	•
TS-1t			
E _{el} = -191.4032174	Ev	_{zp} = 0.0553682	
Imag freq = 497.6 <i>i</i>			
[CCSD(T)/cc-n)/T7 ra	asult includas s	econd imaginary	
			I
Trequency of 877, and	though the oth	er levels do not.j	
	0.055105	0.001000	
C 0.690979	0.877132	-0.001328	
C -0.467976	0.462188	-0.001353	
C -1.726377	-0.283733	-0.000338	
н 1.500059	1.569546	-0.002757	
н –1.518024	-1.355586	-0.003/22	
н –2.317956	-0.039901	-0.883766	
	-0.044596	0.005040	
0 1./01412	-0.833381	0.005948	
TS-2t			
E _{el} = -191.4177592	Ev	_{ZP} = 0.0533919	
Imag freq = 1877.5 <i>i</i>			
			\neg π
C -0.909020	0.475589	-0.056977	
C 0.525680	0.618134	-0.035243	
C 1.597665	-0.354889	-0.036312	
Н -1.506855	1.390447	0.045578	
Н 1.366994	-1.387887	0.197349	
Н 1.218264	0.487344	0.994651	-
Н 2.578704	-0.075162	-0.391652	
0 -1.425842	-0.639896	-0.141844	

TS-3t			
$\begin{array}{c} E_{el} = -191.4185814\\ Imag \ freq = 1737.9 \textit{i}\\ C \qquad -0.878468\\ C \qquad 0.500985\\ C \qquad 1.696758\\ H \qquad -0.457795\\ H \qquad 1.458655\\ H \qquad 1.957486\\ H \qquad 2.551485\\ O \qquad -1.678185 \end{array}$	E _{v2} 0.414050 0.583132 -0.302400 1.345757 -1.138377 -0.708227 0.240145 -0.488499	<pre>2p = 0.0534302 0.126543 0.103588 -0.029310 -0.680078 -0.694288 0.951288 -0.430017 -0.043979</pre>	
TS-4t			a subject of the state of the
$E_{el} = -191.4337223$ Imag freq = 337.1 <i>i</i>	Ε _ν	_{ZP} = 0.0531968	
C 0.965612	0.639823	-0.058005	
C 1.548242 H -1.085370	-0.538230 1.229473	0.032913 0.828435	
Н 2.628701	-0.632874	-0.054166	T V
Н 1.273118	1.661438	-0.222813	
H = 0.969479 O = 1.506528	-1.441331 -0.575472	0.192725 - 0.043697	
0 10000020	0.070172	0.010097	
TS-5t			
TS-5t	-		
TS-5t $E_{el} = -191.4747274$	Evz	_{zp} = 0.0538004	
TS-5t E _{el} = -191.4747274 Imag freq = 315.2 <i>i</i>	E _{vz}	_{ZP} = 0.0538004	
TS-5t E _{el} = -191.4747274 Imag freq = 315.2 <i>i</i> C 1.358925	E _{v:}	_{zp} = 0.0538004 0.000586	
TS-5t E _{el} = -191.4747274 Imag freq = 315.2 <i>i</i> C 1.358925 C -0.868973	E _{v;} 0.560990 0.768052	_{ZP} = 0.0538004 0.000586 -0.000809	
TS-5t E _{el} = -191.4747274 Imag freq = 315.2 <i>i</i> C 1.358925 C -0.868973 C -1.632033 V 1.55401	0.560990 0.768052 -0.497247	0.000586 -0.000809 0.000202	
TS-5t $E_{el} = -191.4747274$ Imag freq = 315.2 <i>i</i> C 1.358925 C -0.868973 C -1.632033 H -1.185401 H -0.956472	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623	<pre>zp = 0.0538004 0.000586 -0.000809 0.000202 0.000637 0.000948</pre>	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882	<pre>zp = 0.0538004 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918</pre>	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898	0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480	0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480	<pre>0.0538004 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280</pre>	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480	<pre>zp = 0.0538004</pre>	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480	zp = 0.0538004 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280 zp = 0.0548084	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480	<pre>zp = 0.0538004</pre>	
TS-5t $E_{el} = -191.4747274$ Imag freq = 315.2 <i>i</i> C 1.358925 C -0.868973 C -1.632033 H -1.185401 H -0.956472 H -2.274017 H -2.273758 O 1.692767 TS-6t $E_{el} = -191.4503852$ Imag freq = 1725.2 <i>i</i> C -0.884498 C -0.884498	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _v	<pre>zp = 0.0538004</pre>	
TS-5t $E_{el} = -191.4747274$ Imag freq = 315.2 <i>i</i> C 1.358925 C -0.868973 C -1.632033 H -1.185401 H -0.956472 H -2.274017 H -2.273758 O 1.692767 TS-6t $E_{el} = -191.4503852$ Imag freq = 1725.2 <i>i</i> C -0.884498 C 0.564574 C 1.443675	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _{v2} 0.529413 0.664209 -0.533393	$z_{P} = 0.0538004$ 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280 $z_{P} = 0.0548084$ -0.031855 -0.024910 -0.055610	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _v 0.529413 0.664209 -0.533393 1.640928	$z_{P} = 0.0538004$ 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280 $z_{P} = 0.0548084$ -0.031855 -0.024910 -0.055610 -0.173092	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _v 0.529413 0.664209 -0.533393 1.640928 -1.509654	<pre>zp = 0.0538004</pre>	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _v 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _v 0.529413 0.664209 -0.533393 1.640928 -1.509654 0.166676	$z_{P} = 0.0538004$ 0.000586 -0.000809 0.000202 0.000948 -0.884918 0.885707 -0.000280 $z_{P} = 0.0548084$ -0.031855 -0.024910 -0.055610 -0.173092 -0.057009 1.027895 -0.42602	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{v2} 0.560990 0.768052 -0.497247 1.801482 -1.356623 -0.580882 -0.578898 -0.534480 E _{v2} 0.529413 0.664209 -0.533393 1.640928 -1.509654 0.166676 -0.411726 -0.480950	$z_{P} = 0.0538004$ 0.000586 -0.000809 0.000202 0.000637 0.000948 -0.884918 0.885707 -0.000280 $z_{P} = 0.0548084$ -0.031855 -0.024910 -0.055610 -0.173092 -0.057009 1.027895 -0.148608 0.003133	

TS-10t			
$E_{el} = -191.4112276$ $Imag freq = 1804.5i$ $C \qquad -0.826413$ $C \qquad 0.625859$ $C \qquad 1.515504$ $H \qquad -1.374142$ $H \qquad 1.124353$ $H \qquad 1.070888$ $H \qquad 2.578708$ $O \qquad -1.411188$	E _{vz} 0.441130 0.581400 -0.575745 1.398881 0.082280 1.561710 -0.671791 -0.631474	$\begin{array}{c} -0.026715\\ -0.017605\\ -0.059522\\ -0.033060\\ 1.036390\\ -0.164775\\ -0.216414\\ 0.000114 \end{array}$	
TS-11t			
E _{el} = -191.4043329 Imag freq = 1483.0 <i>i</i>	E _{vz}	_{2P} = 0.0528905	e
C 0.847827 C -0.643126 C -1.641490 H 1.394888 H -1.412431 H 0.261449 H -2.677456 O 1.381786	$\begin{array}{c} -0.474236\\ -0.593752\\ 0.315955\\ -1.377310\\ 1.377688\\ -0.802824\\ 0.008284\\ 0.663295\end{array}$	$\begin{array}{c} -0.047902 \\ -0.075443 \\ -0.008630 \\ -0.335989 \\ -0.046728 \\ 1.048667 \\ 0.043829 \\ 0.010259 \end{array}$	
TS-12t			
E _{el} = -191.3591352 Imag freq = 2085.4 <i>i</i>	E _{vz}	_{ZP} = 0.0504483	Q (************************************
C 0.796575 C -0.706703 C -1.727042 H 1.151409 H -2.075609 H 1.151958 H -1.896273 O 1.436441	-0.528934 -0.452172 0.354002 -1.099621 1.382528 -1.100221 -0.931150 0.688886	-0.000110 0.000395 0.000090 -0.871705 -0.000684 0.870865 -0.000973 0.000031	
TS-13t			
E _{el} = -191.4019724 Imag freq = 1520.9 <i>i</i>	E _{vz}	_{zp} = 0.052784	
$\begin{array}{ccc} C & -0.771147 \\ C & 0.736487 \\ C & 1.551623 \\ H & -1.240453 \\ H & -0.227958 \\ H & 1.143417 \\ H & 2.616675 \\ O & -1.424182 \end{array}$	0.438901 0.503853 -0.574126 1.400524 0.666154 1.514899 -0.728700 -0.633080	-0.035328 -0.054714 -0.019909 -0.291062 1.089379 -0.098268 0.050945 -0.011411	

TS-14t		
$\begin{array}{c} E_{el} = -191.4283826 & E_{VZF} \\ Imag \ freq = 542.5 \textit{i} \\ \\ C & -0.945889 & 0.127276 \\ C & 1.096902 & 0.607606 \\ C & 1.696507 & -0.572734 \\ H & -0.860481 & -0.297503 \\ H & 1.231084 & 1.442610 \\ H & 0.756734 & 0.863285 \\ H & 1.768461 & -1.519327 \\ O & -1.747614 & -0.182744 \\ \end{array}$	b = 0.0529479 0.462772 -0.149665 0.088011 1.489099 0.529913 -1.153305 -0.427088 -0.355666	
TS-15t		
F 101 3880850 F	- 0.0516085	
$L_{el} = -191.3880830$ L_{VZF}	5 - 0.0510985	
111ag 11eq - 570.51		
C = 0.571195 = 0.993580	0.00000	
C = -0.519814 1.216908	0.000000	
C 0.611959 1.708440	0.000000	
Н -1.132265 -1.215431	-0.916443	
Н -1.132265 -1.215431	0.916443	
н -1.583040 1.337779	0.00000	
Н 1.675362 1.781725	0.00000	
0 0.633970 -1.529032	0.000000	
30.11		
C ₂ H ₄		
$E_{el} = -78.3307418$ E_{VZP}	= 0.045/300	
C -0.728276 0.000055	-0.000087	
C 0.728264 -0.000097	-0.000034	
H = -1.294557 = -0.837600	-0.392500	
H = -1.294405 0.837551	0.392907	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-0.03/303	
n 1.29441/ -0.3923//	0.83/0/9	
¹ CO		
E _{el} = -113.1555787 E _{VZF}	a = 0.0049040	
C 0.000000 0.000000	-0.649263	
0 0.000000 0.000000	0.486513	

³ CH ₃ C	СН		
E _{el} = -	78.3236483	E _{VZF}	= 0.0474600
С	-0.812181	0.019083	-0.251861
С	0.615803	0.026675	0.121672
Н	-1.627916	0.701718	-0.057400
Н	1.122444	-0.856338	-0.274715
H	0.750444	0.021375	1.210211
Н	1.134076	0.908198	-0.275147
² HCC	0		
E _{el} = -	151.6810022	Ev	_{ZP} = 0.0187215
С	-0.023175	0.054162	-0.000062
С	1.269691	-0.146362	0.000016
Н	2.094591	0.542205	0.000062
0	-1.196710	0.001374	0.000027
² CH ₃			
E _{el} = -	39.7609764	E _{VZF}	= 0.0297807
С	0.000002	0.000013	0.000000
н	-0.917474	0.567507	0.000000
н	-0.032803	-1.078291	0.000000
Н	0.950263	0.510703	0.000000
² HCO	1		
E _{el} = -	113.6841865	Fvr	_{7P} = 0.0129884
	0.00.1000	L V.	
C	0 112260	0 612251	0 00000
с н	-0 7/6222	1 333010	0.000000
0	-0.740223 -0.004067	-0.563491	0.000000
	-0.004007	-0.505491	0.000000
² CH ₂ C	CH		
E _{el} = -	77.7527401	E _{VZ}	_P = 0.0365090
С	0.714665	-0.151392	-0.000163
С	-0.590107	0.031437	-0.000025
Н	-1.022600	1.032435	-0.000014
H	1.598175	0.468769	0.000131
н	-1.285473	-0.801358	0.000092

- 2				
[°] CH ₂	2			
E _{ol} =	-39.0778538	Eve	a = 0.0173453	T
ci		V2		
С	0.00000	0.106218	0.000000	
Н	0.990830	-0.318633	0.000000	
Н	-0.990830	-0.318672	0.00000	
¹ CH ₂	co			
		_		
E _{el} =	-152.3583728	Ev	_{ZP} = 0.0314531	
с	-0.102925	0.000357	-0.000224	
С	1.216154	0.000027	-0.000022	
Н	1.738815	-0.942553	0.000315	
Н	1.741650	0.940704	0.000316	
0	-1.269980	-0.000056	0.000106	
¹ C ₂ H	2			
E _{el} =	-77.1876481	Evz	_P = 0.0250277	
•••				
С	0.604840	0.000040	0.00000	
С	-0.604844	-0.000052	0.000000	
Н	1.668394	-0.000063	0.000000	
н	-1.668373	0.000136	0.00000	
³ H₂C	0			
E _{el} =	-114.2170385	Ev	_{zp} = 0.0234261	
		v		
с	-0.595466	-0.000003	-0.106894	
н	-1.069606	0.925801	0.235429	
н	-1.069631	-0.925777	0.235437	
0	0.714004	-0.000001	0.021312	
				•

MECP in the Vicinity of IM-1t and IM-1s in the $O(^{3}P)$ + Propyne Reaction (CCSD/cc-pVTZ level)

MECE	MECP for $\Omega(^{3}P)$ + propyne			
$E_{el} = -$	E _{el} = -191.447999 E _{VZP} (est.) = 0.058087			
C	1 589241	_0 234829	0 089866	
C	0.415502	0.472358	0.624792	
Н	2.447428	-0.217245	0.755962	
Н	1.874565	0.180006	-0.883931	
Н	1.283591	-1.272371	-0.097767	
С	-0.874469	0.419862	-0.025111	
Н	-1.302006	1.379010	-0.360297	
0	-1.498742	-0.625712	-0.106033	

IM-1s			
	_		
E _{el} = -191.4841039	E _{vz}	_P = 0.0570007	
C -0.705557	0.824872	0.066602	
C 0.436951	0.526816	-0.762913	
C 1.544316	-0.138523	-0.078813	
н _0.798025	1.901081	0.333211	
н 1.720504	0.116414	0.970680	
н 1.057708	-1.141840	-0.064841	
Н 2.462421	-0.225786	-0.654014	
0 -1.556129	-0.006094	0.364268	
cis-IM-2s			
E _{el} = -191.5941817	E _{vz}	_P = 0.0611006	I I I I I I I I I I I I I I I I I I I
C 0.816140	0.442711	0.000115	
C _0.662860	0.611866	0.000156	
C -1.481879	-0.450044	-0.000217	
Н 1.403507	1.378479	0.000612	
Н -1.047563	1.625518	0.000512	
H -1.065883	-1.450496	-0.000559	
Н -2.558179	-0.338521	-0.000189	
0 1.377356	-0.635652	-0.000420	
trana INA 2a			
trans-livi-25			
trans-livi-25			
E _{el} = -191.5970577	E _{vz}	_P = 0.0611038	Q 🔎
$E_{el} = -191.5970577$	E _{vz}	P = 0.0611038	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$	E _{vz} 0.349684 -0.456138	P = 0.0611038 0.000185 0.000130	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$	E _{vz} 0.349684 -0.456138 0.145211	P = 0.0611038 0.000185 0.000130 -0.000109	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$ $H \qquad 0.511698$	E _{vz} 0.349684 -0.456138 0.145211 1.445296	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$ $H \qquad 0.511698$ $H \qquad -0.449686$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$ $H \qquad 0.511698$ $H \qquad -0.449686$ $H \qquad -1.834593$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$ $H \qquad 0.511698$ $H \qquad -0.449686$ $H \qquad -1.834593$ $H \qquad -2.687599$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877	<pre>p = 0.0611038</pre>	
$\begin{array}{c} \text{trans-inv-2s}\\ \text{E}_{el} = -191.5970577\\ \text{C} & 0.675114\\ \text{C} & -0.563389\\ \text{C} & -1.762412\\ \text{H} & 0.511698\\ \text{H} & -0.449686\\ \text{H} & -1.834593\\ \text{H} & -2.687599\\ \text{O} & 1.795538 \end{array}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185	
$\label{eq:endergy} \begin{array}{c} \text{Irans-IIV-2S} \\ \text{E}_{el} = -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{array}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185	
$E_{el} = -191.5970577$ $C \qquad 0.675114$ $C \qquad -0.563389$ $C \qquad -1.762412$ $H \qquad 0.511698$ $H \qquad -0.449686$ $H \qquad -1.834593$ $H \qquad -2.687599$ $O \qquad 1.795538$ $IM-3s$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531	<pre>P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185</pre>	
$\begin{aligned} \text{E}_{\text{el}} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185 P = 0.0609160	
$\begin{aligned} \text{E}_{el} &= -191.5970577\\ \text{C} & 0.675114\\ \text{C} & -0.563389\\ \text{C} & -1.762412\\ \text{H} & 0.511698\\ \text{H} & -0.449686\\ \text{H} & -1.834593\\ \text{H} & -2.687599\\ \text{O} & 1.795538\\ \end{aligned}$ $\begin{aligned} \textbf{IM-3s}\\ \text{E}_{el} &= -191.5963193\\ \text{C} & 0.763224 \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185 $P = 0.0609160$ -0.000024	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000330 -0.000257 -0.000245 -0.000185 $P = 0.0609160$ -0.000024 0.000024	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$ $\begin{aligned} \text{IM-3s} \\ \text{E}_{el} &= -191.5963193 \\ \text{C} & 0.763224 \\ \text{C} & -0.477510 \\ \text{C} & -1.676369 \\ \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141 -0.340649	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000257 -0.000245 -0.000185 $P = 0.0609160$ -0.000024 0.000024 0.000012	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$ $\begin{aligned} \text{IM-3s} \\ \text{E}_{el} &= -191.5963193 \\ \text{C} & 0.763224 \\ \text{C} & -0.477510 \\ \text{C} & -1.676369 \\ \text{H} & -0.592590 \\ \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141 -0.340649 1.656011 1.656011	<pre>P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000257 -0.000245 -0.000185 P = 0.0609160 -0.00024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.000024 0.00012 0.000012 0.000012 0.000012</pre>	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$ $\begin{aligned} \text{IM-3s} \\ \text{E}_{el} &= -191.5963193 \\ \text{C} & 0.763224 \\ \text{C} & -0.477510 \\ \text{C} & -1.676369 \\ \text{H} & -0.592590 \\ \text{H} & -1.364164 \\ \text{H} & -2.205627 \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141 -0.340649 1.656011 -1.385558	<pre>P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000257 -0.000245 -0.000185 P = 0.0609160 -0.000024 0.000026 0.00012 0.00012 0.000162 -0.000100 0.002062 </pre>	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$ $\begin{aligned} \text{IM-3s} \\ \text{E}_{el} &= -191.5963193 \\ \text{C} & 0.763224 \\ \text{C} & -0.477510 \\ \text{C} & -1.676369 \\ \text{H} & -0.592590 \\ \text{H} & -1.364164 \\ \text{H} & -2.295697 \\ \text{H} & -2.295697 \\ \text{H} & -2.295697 \\ \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141 -0.340649 1.656011 -1.385558 -0.176481 0.176655	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000257 -0.000245 -0.000185 $P = 0.0609160$ -0.000024 0.000024 0.000012 0.00012 0.000162 -0.000100 -0.883960 0.884059	
$\begin{aligned} \text{Frans-IN-2S} \\ \text{E}_{el} &= -191.5970577 \\ \text{C} & 0.675114 \\ \text{C} & -0.563389 \\ \text{C} & -1.762412 \\ \text{H} & 0.511698 \\ \text{H} & -0.449686 \\ \text{H} & -1.834593 \\ \text{H} & -2.687599 \\ \text{O} & 1.795538 \\ \end{aligned}$ $\begin{aligned} \text{IM-3s} \\ \text{E}_{el} &= -191.5963193 \\ \text{C} & 0.763224 \\ \text{C} & -0.477510 \\ \text{C} & -1.676369 \\ \text{H} & -0.592590 \\ \text{H} & -1.364164 \\ \text{H} & -2.295697 \\ \text{H} & -2.295697 \\ \text{H} & -2.295637 \\ \text{O} & 1.962872 \end{aligned}$	E _{vz} 0.349684 -0.456138 0.145211 1.445296 -1.533663 1.227946 -0.415877 -0.119531 E _{vz} 0.134508 0.581141 -0.340649 1.656011 -1.385588 -0.176481 -0.176655 -0.268217	P = 0.0611038 0.000185 0.000130 -0.000109 0.000417 0.000257 -0.000245 -0.000185 $P = 0.0609160$ -0.000024 0.000012 0.00012 0.000162 -0.000100 -0.883960 0.884059 -0.000299	

Cartesian Coordinates of Species on the Singlet State Surface in the $O(^{3}P)$ + Propyne Reaction

IM-5s			
$F_{\rm el} = -191.4692482$	E.,		
L ^{el} = 131.4032402	LV.	<u>Zp</u> – 0.0500055	
a	0 0 0 1 5 7 1	0 105104	
0.683/04	-0.3615/1	0.125184	
C _0.62133/	0.407220	0.158047	
C -1.804601	-0.366453	-0.222545	
Н 0.587245	-1.431889	0.381991	
H -0.493981	1.451398	-0.143205	
н _0.958541	0.407814	1.231064	
Н -2.607208	0.373611	-0.400982	
0 1.740736	0.140486	-0.179123	
IM-6s			
F 101 F 475000	-	0.0015200	
$E_{el} = -191.54/5883$	Ev	_{ZP} = 0.0615386	
C -1.073278	-0.596437	-0.000288	
C 0.264857	-0.065935	0.001265	
C 1.588984	-0.112851	-0.000629	
Н -1.521913	-0.943006	0.922904	
н -1.519248	-0.943737	-0.924482	
Н 2.085982	-1.070958	0.001416	T T
н 2.173104	0.796283	-0.000750	
0 -0.737663	0.851594	-0.000147	
	00001001		
TC 2.			
15-25			
E _{el} = -191.4781260	Ev	_{zP} = 0.0559359	
Imag freg = 912.5 <i>i</i>			
C 0 751792	0 407270	0 102/20	
C 0.596516	0.407370	0.103439	
C 0.586516	0.335236	-0.300097	
	-0.249//5	0.186540	
H =1.032991	1.243331	0.830913	
H 0.958428	-0.613108	-0.8/3/41	
H 1.432/32	-0.859164	1.083908	
H 2.582/06	-0.231128	-0.218416	
0 -1.540695	-0.482633	-0.095779	
TS-3s			
$E_{ol} = -191.4823795$	Fvr	$_{7D} = 0.0558661$	
$\lim_{n \to 0} \frac{1}{100} = \frac{1}{1$	L V.		
11110g 11Cy - 220.21			
0 0 0 0 0 1 2 5	0 414000	0 150507	
-0.66/1/5	0.414022	0.15253/	
0.490333	0.306631	-0.6/1866	
1.664368	-0.3/6150	-0.094795	
н –0.500654	1.393210	0.696367	
н 2.000663	0.273929	0.728986	
Н 2.489333	-0.489691	-0.793865	
Н 1.394859	-1.330515	0.375598	
0 -1.699856	-0.223667	0.256407	

13-43			
$\begin{split} E_{el} &= -191.5849652\\ Imag freq &= 205.4i\\ C & -0.760259\\ C & 0.622057\\ C & 1.641113\\ H & -0.973623\\ H & 0.758854\\ H & 1.511021\\ H & 2.628048\\ O & -1.617721 \end{split}$	E _v 0.195069 0.500820 -0.353347 0.475674 1.462107 -1.313453 -0.116984 -0.320325	$\begin{array}{c} 0.371119\\ -0.125137\\ 0.014299\\ 1.419982\\ -0.610530\\ 0.500223\\ -0.361758\\ -0.313701 \end{array}$	
TS-6s			
E _{el} = -191.4680114	Ev	_{ZP} = 0.0550066	
Imag freq = 1703.2 <i>i</i>			
C 0 823102	0 28/122	-0 286549	
C -0.555312	0.284122	0.115228	
C -1.645902	-0.422350	-0.055801	
Н -0.836295	1.601051	0.020230	
H = -1.397854 H = -2.589610	-1.470013 -0.139290	-0.502084	
Н –1.023930	0.120090	1.135505	
0 1.764484	-0.330276	0.083749	
TS-8s			
F 191 / 588/33	E.,		
E _{el} = -191.4588433 Imag freg = 1615 6 <i>i</i>	Ev	_{zp} = 0.0540196	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i>	Ev	_{zp} = 0.0540196	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714	E _v	_{ZP} = 0.0540196 0.034502	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714 C 0.660938	E _v 0.369659 0.591614	_{ZP} = 0.0540196 0.034502 -0.135128	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714 C 0.660938 C 1.533907	Ev 0.369659 0.591614 -0.528205	0.034502 -0.135128 -0.038064	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714 C 0.660938 C 1.533907 H 0.899124 H 0.180950	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672</pre>	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714 C 0.660938 C 1.533907 H 0.899124 H 0.180950 H 1.115461	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767	0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782	
E _{el} = -191.4588433 Imag freq = 1615.6 <i>i</i> C -0.761714 C 0.660938 C 1.533907 H 0.899124 H 0.180950 H 1.115461 H 2.397403	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360	0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072	
$\begin{array}{l} E_{el} = -191.4588433\\ Imag \ freq = 1615.6 \textit{i}\\ \\ C \qquad -0.761714\\ C \qquad 0.660938\\ C \qquad 1.533907\\ H \qquad 0.899124\\ H \qquad 0.180950\\ H \qquad 1.115461\\ H \qquad 2.397403\\ O \qquad -1.648966 \end{array}$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	$\begin{array}{c} 0.034502\\ -0.135128\\ -0.038064\\ -0.521895\\ 0.991672\\ -0.198782\\ 0.613072\\ -0.006491 \end{array}$	
$E_{ei} = -191.4588433$ $Imag freq = 1615.6i$ $C -0.761714$ $C 0.660938$ $C 1.533907$ $H 0.899124$ $H 0.180950$ $H 1.115461$ $H 2.397403$ $O -1.648966$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491	
$E_{ei} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $TS-9s$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491	
$E_{ei} = -191.4588433$ $Imag freq = 1615.6i$ $C -0.761714$ $C 0.660938$ $C 1.533907$ $H 0.899124$ $H 0.180950$ $H 1.115461$ $H 2.397403$ $O -1.648966$ $TS-9s$ $E_{ei} = -191.4519343$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 2P = 0.0543194</pre>	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $\textbf{TS-9s}$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 2P = 0.0543194</pre>	
$\begin{split} \textbf{E}_{el} &= -191.4588433 \\ \textbf{Imag freq} &= 1615.6i \\ \textbf{C} & -0.761714 \\ \textbf{C} & 0.660938 \\ \textbf{C} & 1.533907 \\ \textbf{H} & 0.899124 \\ \textbf{H} & 0.180950 \\ \textbf{H} & 1.115461 \\ \textbf{H} & 2.397403 \\ \textbf{O} & -1.648966 \\ \hline \textbf{TS-9s} \\ \textbf{E}_{el} &= -191.4519343 \\ \textbf{Imag freq} &= 1763.9i \end{split}$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 2P = 0.0543194</pre>	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $\textbf{TS-9s}$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$ $C \qquad -0.985668$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 zp = 0.0543194 0.419178</pre>	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $TS-9s$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$ $C \qquad -0.985668$ $C \qquad 0.848416$ $C \qquad 1.697452$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev -0.290443 0.626173 0.354602	<pre>2P = 0.0540196 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 2P = 0.0543194 0.419178 0.170968 0.179587</pre>	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C -0.761714$ $C 0.660938$ $C 1.533907$ $H 0.899124$ $H 0.180950$ $H 1.115461$ $H 2.397403$ $O -1.648966$ $TS-9s$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$ $C -0.985668$ $C 0.848416$ $C 1.687453$ $H -0.132971$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev Ev	$z_{P} = 0.0540196$ 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 $z_{P} = 0.0543194$ 0.419178 0.170968 -0.178597 1.121483	
$\begin{split} \textbf{E}_{el} &= -191.4588433 \\ \textbf{Imag freq} &= 1615.6i \\ \textbf{C} & -0.761714 \\ \textbf{C} & 0.660938 \\ \textbf{C} & 1.533907 \\ \textbf{H} & 0.899124 \\ \textbf{H} & 0.180950 \\ \textbf{H} & 1.115461 \\ \textbf{H} & 2.397403 \\ \textbf{O} & -1.648966 \\ \hline \textbf{TS-9s} \\ \textbf{E}_{el} &= -191.4519343 \\ \textbf{Imag freq} &= 1763.9i \\ \textbf{C} & -0.985668 \\ \textbf{C} & 0.848416 \\ \textbf{C} & 1.687453 \\ \textbf{H} & -0.132971 \\ \textbf{H} & 1.039052 \\ \end{split}$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev Ev	$z_{P} = 0.0540196$ 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 $z_{P} = 0.0543194$ 0.419178 0.170968 -0.178597 1.121483 0.020957	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $TS-9s$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$ $C \qquad -0.985668$ $C \qquad 0.848416$ $C \qquad 1.687453$ $H \qquad -0.132971$ $H \qquad 1.039052$ $H \qquad 2.655116$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev Ev -0.290443 0.626173 -0.354603 -0.304454 1.685680 -0.204451	$z_{P} = 0.0540196$ 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 $z_{P} = 0.0543194$ 0.419178 0.170968 -0.178597 1.121483 0.020957 -0.650455	
$E_{el} = -191.4588433$ $Imag freq = 1615.6i$ $C \qquad -0.761714$ $C \qquad 0.660938$ $C \qquad 1.533907$ $H \qquad 0.899124$ $H \qquad 0.180950$ $H \qquad 1.115461$ $H \qquad 2.397403$ $O \qquad -1.648966$ $TS-9s$ $E_{el} = -191.4519343$ $Imag freq = 1763.9i$ $C \qquad -0.985668$ $C \qquad 0.848416$ $C \qquad 1.687453$ $H \qquad -0.132971$ $H \qquad 1.039052$ $H \qquad 2.655116$ $H \qquad 1.408114$ $O \qquad -1.783814$	Ev 0.369659 0.591614 -0.528205 1.574565 1.075150 -1.513767 -0.463360 -0.408874 Ev Ev -0.290443 0.626173 -0.354603 -0.304454 1.685680 -0.204451 -1.397669 0.041766	$z_{P} = 0.0540196$ 0.034502 -0.135128 -0.038064 -0.521895 0.991672 -0.198782 0.613072 -0.006491 $z_{P} = 0.0543194$ 0.419178 0.170968 -0.178597 1.121483 0.020957 -0.650455 -0.003456 -0.369728	

TS-10s			
E _{el} = -191.4765064 Imag freq = 1941.3 <i>i</i>	E _{v2}	_{zp} = 0.0555353	
C 0.584066	-0.041910	-0.120382	
C -0.566659	0.717541	-0.058304	
	-0.358254	0.06/0/3	
H = 0.21/339	-1.109004	-0.061331	
H = -2.319608	-0.305586	0.817235	
н –1.771546	-0.998082	-0.772304	
0 1.759426	-0.152320	0.093214	
TS-11s			
E _{el} = -191.4506122	E _{VZ}	_{zP} = 0.0480588	Y
Imag freq = 1046.2 <i>i</i>			
C -0.854025	0.309750	-0.000566	
C 0.870211	-0.682543	-0.000202	
C 1.804657	0.148064	0.000210	
Н 0.183726	1.689007	-0.000475	
Н 0.525609	-1.695673	-0.000479	
H 2.826492	0.459635	0.001021	
H 1.015091	1.540214	-0.000109	
0 -1.954572	-0.081351	0.000424	
TS-12s			
E _{el} = -191.5031580	Evz	_{7P} = 0.0579509	
Imag freg = $698.9i$			
C 0.589774	0.311676	0.000519	
C -0.826489	0.703474	0.000207	
C -1.210086	-0.717409	0.000388	
Н -1.050990	1.286219	-0.892826	
H -1.053065	1.290062	0.890220	
H -1.147018	-1.261478	-0.930681	
Н -1.141637	-1.263852	0.929685	
0 1.634190	-0.229675	-0.000385	
TS-13s			
E _{el} = -191.4404659	Evz	_{ZP} = 0.0493919	
Imag freq = 1977.1 <i>i</i>			
C -0.715270	0.074946	0.155556	
C 0.623721	0.276421	-0.282158	
C 1.795585	-0.272762	0.052036	
H -0.605341	1.550441	0.730110	
Н 0.077397	1.597350	0.002386	
Н 2.704637	0.127089	-0.376971	
1.884228	-1.088032	U./59/82 _0 083/80	
-1./03042	-0.332303	-0.003407	

TS-14s			
$\begin{split} E_{ei} &= -191.4342745\\ Imag freq &= 1407.5i\\ C & -0.599219\\ C & 0.934310\\ C & 1.309400\\ H & -0.525416\\ H & 1.138173\\ H & 1.818065\\ H & 0.038279\\ O & -1.542006\\ \end{split}$	E _{v2} -0.099694 0.711934 -0.492093 0.161892 1.746504 -1.362807 -1.177853 -0.011077	0.411443 -0.018526 -0.125628 1.469735 -0.211778 -0.494021 0.525573 -0.361656	
TS-15s			
$E_{el} = -191.4674153$ $Imag freq = 589.4i$ $C \qquad 0.687862$ $C \qquad -0.608757$ $C \qquad -1.800005$ $H \qquad 0.568685$ $H \qquad -0.484448$ $H \qquad -2.614918$ $H \qquad -1.206281$ $O \qquad 1.757795$ $TS-16s$	E _{v2} -0.371952 0.401453 -0.305445 -1.463010 1.487174 0.434322 -0.096621 0.161725	2p = 0.0555259 0.073593 0.090498 -0.204973 0.191276 0.127753 -0.220626 1.035369 -0.111060	
13-103			
E _{el} = -191.4953246	E _{VZ}	_{zP} = 0.0567371	
Imag freq = 687.3 <i>i</i>			
C -1.040637 C 0.096748 C 1.422001 H -1.244665 H -1.841357 H 1.694217 H 2.193622 O -0.458811	$\begin{array}{c} -0.843949\\ 0.043252\\ -0.303920\\ -1.563240\\ -0.575841\\ -1.337407\\ 0.450232\\ 1.206744\end{array}$	0.042498 0.017529 0.040500 -0.744290 0.719237 -0.126870 0.118956 -0.071274	
TS-17s			
E _{el} = -191.4709586 Imag freq = 598.6 <i>i</i>	E _{vz}	_{zp} = 0.0591100	
C 0.431741 C -0.889405 C -1.149370 H 0.772936 H -1.480493 H -2.164859 H 1.012638 O 1.437748	0.508379 0.523091 -0.733178 1.283278 1.417318 -0.981430 -1.046976 -0.307743	0.226422 -0.294480 0.139022 0.911347 -0.489200 0.457508 -0.563110 -0.092791	

TS-18s			
E _{el} = -191.4505185 Imag freq = 322.3 <i>i</i> C -1.300057	–0.420335	_{zp} = 0.0549763 0.000158	
C 0.785179 C 1.702437	-0.714865 0.223806	-0.000144 0.000123	
Н -1.507392	-0.966222	-0.930264	
H -1.507241 H 2.708548	-0.966888 -0.196469	0.930256	
Н 1.569535	1.294230	0.000650	
0 -1.048601	0.787964	-0.000115	
TS-19s			
E _{el} = -191.4373995	Ev	_{ZP} = 0.0549252	
Imag treq = 1456.9 <i>i</i>			
C -1.018902	-0.876736	-0.119112	
C 0.214742	-0.118468	-0.042505	
C 1.538004	-0.072957	0.001250	
H -1.504741	0.368172	-0.526248	
H -1.310446 H 2.104306	-1.241308 -0.991613	-0.029324	
Н 2.053003	0.873927	0.069343	
0 -0.718148	0.924974	0.071884	•
TS 20c			
13-205			
E _{el} = -191.4200419	Ev	_{zp} = 0.0557593	
Imag freq = 565.6 <i>i</i>			
C 1.481680	-0.466490	-0.048642	
C -0.308860	-0.137106	-0.099166	
Н 1.480131	-0.001033 -0.779564	1.021246	
н 0.199699	-1.142468	-0.458419	
Н -2.224688	-0.974568	-0.050196	
H -2.109945	0.868477	0.252298	
0 0.674512	0./6/43/	-0.029946	
TS-21s			
		0.055.555	
$E_{el} = -191.3773386$	Ev	_{zp} = 0.0551320	
Imag freq = 1199.5 <i>i</i>			
C 1.086472	-0.527729	0.094491	
C -0.425893	0.034351	-0.163101	
C -1.695071	-0.281389	0.073144	
Н 1.173643	-0.956482	1.085002	
н 1.814551 Н _0.006008	-0.829/34 -0.903980	-U.054362 -0.793797	
н –2.335702	0.597887	0.202309	
0 0.695058	0.842614	0.016705	

Cyclopropanone			
E _{el} = -191.5637711	Ev	_{zp} = 0.0609519	
C 0.384017	0.000222	0.000923	
C -0.861438	0.789172	-0.000269	
C -0.861430	-0.789342	-0.000302	
н –1.159686	1.283814	-0.916344	
н –1.164382	1.282942	0.914993	
н –1.161526	-1.283712	-0.916151	
н -1.164381	-1.281872	0.915614	
0 1.585386	-0.000185	-0.000028	
Cyclopropenol			
F 101 5300003	-	0.000044	
$E_{el} = -191.5289992$	E _{V.}	$_{\rm ZP} = 0.0608011$	
C -0.220884	-0.000037	0.484242	
C 0.983129	-0.657706	-0.096605	
C 0.983130	0.657727	-0.096518	
Н -0.412118	-0.000170	1.551504	
н 1.474044	-1.575536	-0.375593	
н 1.474092	1.575547	-0.375428	
Н -1.282138	0.000179	-1.122816	
0 -1.465767	0.000009	-0.178048	
Vinoxycarbene			
E _{el} = -191.4835172	Ev	_{zp} = 0.0590238	
C 1.850591	-0.002593	0.000351	
C = 0.485408	0.400341	-0.000246	
C = -1.714238	-0.105314	0.000210	
н 1.762339	1.120043	0.000346	
н _0.216776	1.451148	-0.000414	
н –2.565322	0.559558	0.000346	
н –1.874989	-1.174396	0.000366	
0 0.623635	-0.463870	-0.000317	
Methoxyacetylene			
E 101 5206027	E	- 0.0602001	
L ^{el} 131.3200037	Ev	_{ZP} – 0.0002901	
C 1.502212	0.394480	0.000015	
C -0.718650	-0.179802	-0.000282	
C -1.854969	0.234552	0.000140	
H 1.400881	1.006405	-0.896994	
Н 2.462492	-0.113889	0.006360	
Н 1.392906	1.014023	0.890816	
Н -2.858948	0.577878	-0.000005	
0 0.503889	-0.647474	0.000073	

Hydroxyvinylcarbene			
E _{el} = -191.4518517	Ev	_{zP} = 0.0585235	
C -1.002459	-0.948042	-0.168942	
C 0.196095	-0.100019	-0.001695	
C 1.317833	-0.049931	0.003/9/	
H -0.900725	1.101/93	-0./81480	
H -1.383575	-1.201203	0.8312/5	
H 2.150500	-0.922935	-0.059345	
Н 1.960966	0.931693	0.087604	
0 -0.755248	0.891275	0.115523	
¹ C ₂ H ₄			
E _{el} = -78.4388032	E _{VZ}	_P = 0.0508085	
C 0.668385	0.00000	-0 000028	
C = -0.668385	0.000000	0.0000020	
н 1 233484	-0.924119	0.000066	
н 1.233486	0.924118	0.000050	
н _1.233484	-0.924116	-0.000007	
H = -1.233483	0.924117	0.000008	
1 1.255405	0.924117	0.000000	
¹ CO			
F 442 4FFF707	-	0.0040040	
$E_{el} = -113.1555/8/$	E _V	_{ZP} = 0.0049040	
C 0.000000	0.000000	-0.649263	
0 0.000000	0.000000	0.486513	
C ₂ H ₂			
E _{el} = -77.1876481	E _{vzr}	o = 0.0250277	
	VLI		
C 0.604840	0.000040	0.000000	
C -0.604844	-0.000052	0.000000	
н 1.668394	-0.000063	0.000000	
н -1.668373	0.000136	0.000000	
H-			
E _{el} = -1.1723367	E _{VZF}	o = 0.0100470	
н 0.000000	0.000000	0.371322	
Н 0.000000	0.000000	-0.371322	

H₂CO)		
E _{el} = -	-112.5043207	E _{vz}	_{ZP} = 0.0276323
С О Н Н	0.557633 -0.710848 1.170492 1.170493	0.000000 0.000000 -0.947199 0.947199	$\begin{array}{c} -0.000002\\ 0.000000\\ 0.000004\\ 0.000004\end{array}$
H ₂ CC	CO		
E _{el} = -	-190.3403774	E _{vz}	_{zp} = 0.0372247
С С Н Н О	0.687198 -0.572905 -1.808576 -2.676227 -2.004223 1.855769	0.006148 -0.372147 0.138499 -0.513273 1.207503 0.083847	-0.000199 -0.000153 0.000094 0.000522 -0.000206 0.000154
H₂CC	2		
E _{el} = -	-77.1170417	E _{VZ}	_P = 0.0235193
С С Н Н	0.824672 -0.482319 -1.026392 -1.027730	-0.000107 -0.000021 0.940269 -0.939499	0.000000 -0.000001 0.000001 0.000001

Appendix S2. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with acetylene. Electronic energies (E_{el} , hartrees) are reported at the CCSD(T)//M06-2X/cc-pVTZ level with vibrational zero-point energies (E_{vZP} , hartrees) at the M06-2X/cc-pVTZ level. For transition states, the imaginary frequency is reported in cm⁻¹. Also included are the Cartesian coordinates of the MECP near IM-1t and IM-1s, obtained at the CCSD/cc-pVTZ level.

Acetylene	
E _{el} = -77.3244964 E _{VZP} = 0.0275154	
C 0.00000 0.00000 -0.59690 C 0.00000 0.00000 0.59690	
H 0.00000 0.00000 -1.65949 H 0.00000 0.00000 1.65949	
IM-0t	
E _{el} = -152.3931674 E _{VZP} = 0.0280224	
C 0.95952 -0.59779 0.00000 C 0.95950 0.59781 0.00000	
H 0.95520 -1.66059 -0.00000	J 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
cis-IM-1t	
E _{el} = -152.4795525 E _{vzP} = 0.0306953	
C 0.00000 0.43933 0.00000	
C 1.20765 -0.30796 0.00000 H 0.07873 1.53534 0.00000	
H 1.38395 -1.37304 0.00000	
O -1.08858 -0.11882 0.00000	
trans-IM-1t	
E _{el} = -152.4781056 E _{VZP} = 0.0302548	
C 0.06155 0.34704 0.00005	
$\begin{array}{c} -1.20583 \\ H \\ 0.01962 \\ 1.45347 \\ 0.00000 \\ \end{array}$	
H -2.21768 0.08092 -0.00048	
0 1.13296 -0.23186 -0.00005	

Species in the HCO Formation Pathways on the Triplet State Surface for $O(^{3}P)$ + Acetylene

TS-1t	
E _{el} = -152.3855426 E _{VZP} = 0.0274827 Imag freq = 531.7 <i>i</i>	
C1.12594-0.33697-0.00000C0.386450.626340.00000H1.65726-1.258490.00000H0.041071.633280.00000O-1.34658-0.263880.00000	
TS-2t	
$E_{el} = -152.469259$ $E_{VZP} = 0.0284570$ imag freq = 608.8 <i>i</i>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
2	
СН	
E _{el} = -38.4725438 E _{vzP} = 0.0065539	
C 0.00000 0.00000 0.15962 H 0.00000 0.00000 -0.95770	
² HCO	
E _{el} = -113.6841865 E _{VZP} = 0.0129884	
C0.112360.613350.00000H-0.746221.333940.00000O-0.00407-0.563490.00000	

MECP for O(°P) + acetylene	
$E_{el} = -152.459792$ E_{VZP} (est.) = 0.028240	
C -0.08585 0.26119 0.004722 C 1.21925 -0.17964 -0.314883 H 0.02696 1.36812 0.189710 H 2.00449 -0.27395 0.430467 O 1.16666 0.27397 0.0430467	

MECP in the Vicinity of IM-1t and IM-1s in the $O(^{3}P)$ + Acetylene Reaction (M06-2x/cc-pVTZ level)

Species in the HCO Formation Pathways on the Singlet State Surface for $O(^{3}P)$ + Acetylene

Note that ²HCO and ²CH are listed in the triplet section but also appear as products on the singlet surface.

IM-	1s			
E _{el} :	-152.4714822	E _{VZP} :	= 0.0303712	
С	0.62749	0.45914	-0.00009	
С	-0.63122	0.45442	-0.00034	
Н	1.64387	0.79023	0.00075	
Н	-1.65048	0.77619	0.00132	
0	0.00363	-0.88097	0.00006	

Appendix S3. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO formation pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with 1-butyne. Electronic energies (E_{el} , hartrees) are reported at the CCSD(T)//M06-2X/cc-pVTZ level with vibrational zero-point energies (E_{VZP} , hartrees) at the M06-2X/cc-pVTZ level. For transition states, the imaginary frequency is reported in cm⁻¹. Also included are the Cartesian coordinates of the MECP near IM-1t and IM-1s, obtained at the CCSD/cc-pVTZ level.

1-b	utyne			
E _{el} =	= -155.6741384	E _{VZP}	= 0.0849069	
с	1.35472	-1.16629	-0.04444	
С Н	1.94529 2.93930	-0.26254 -0.63612	-0.00005 0.00015	
С	0.82689	0.16508	0.00004	
С	-0.55044	0.65238	-0.00001	
Н	-0.69923	1.28709	-0.87523	
С	-1.56823	-0.49004	0.00000	
Н	-1.43943	-1.11630	0.88098	
H	-1.43956	-1.11620	-0.88107	
Н	-2.58289	-0.09487	0.00013	
Н	-0.69927	1.28712	0.87519	
IM-	Ot			
E	- 220 6400660	F	- 0.096212	
E _{el} :	= -230.6490669	Ev	_{ZP} = 0.086212	
С	1.35472	-1.16629	-0.04444	11
С	0.17830	-0.93407	0.00318	
С	-1.25124	-0.63946	0.05781	
С	-1.54814	0.85766	-0.05133	
Н	2.39471	-1.37784	-0.08508	
Н	-1.65189	-1.03473	0.99281	
H	-1.74765	-1.18049	-0.74962	
H	-1.0/296	1.40203	0.76177	
H	-1.16069	1.25/20	-0.986/2	
н	-2.62255	1.03009	-0.01333	
0	1.68240	1.39959	0.03610	
IM-	1t			
E _{el} :	= -230.7330048	E _{VZP}	= 0.0887018	
С	1.41452	0.18217	0.25863	
С	0.15792	0.05780	-0.38273	
С	-1.18130	0.59456	-0.12901	
С	-2.21393	-0.50857	0.13564	
Н	1.40785	0.84137	1.15091	
Н	-1.49830	1.19081	-0.98993	
Н	-1.13366	1.28011	0.72606	
Н	-2.27215	-1.18748	-0.71328	
H	-1.94039	-1.08872	1.01545	
H	-3.19841	-0.07392	0.29952	
0	2.44647	-0.36474	-0.09798	

Species in the HCO Formation Pathways on the Triplet State Surface for $O(^{3}P) + 1$ -Butyne

IM-2t	
E _{el} = -230.7407415 E _{VZP} = 0.0864818	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
IM-5t	
E _{el} = -230.7205393 E _{VZP} = 0.0870053	
C-1.004830.56746-0.39589C0.294951.086720.03566C-1.87541-0.485330.13654H0.250111.553931.03374H0.650081.88207-0.62892	
C 1.40313 0.05210 0.11126 O 1.26690 -1.11397 -0.12417 H 2.38707 0.45527 0.42242	
H -2.80450 -0.54793 -0.43139 H -2.14368 -0.29586 1.18350 H -1.38129 -1.46149 0.08866	
TS-1t	
E _{el} = -230.6425147 E _{VZP} = 0.0856090 imag freq = 469.2 <i>i</i>	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

TS-2t	
$E_{el} = -230.6604580 \qquad E_{VZP} = 0.0826687$ imag freq = 1803.3 <i>i</i> $C 1.45312 -0.29724 -0.04554$ H $ 2.35271 -0.88542 -0.26877$ C $ 0.21921 -1.00866 0.02508$ C $ -1.16325 -0.64787 0.14779$ H $ -1.82069 -1.38070 0.59821$ C $ -1.63603 0.75634 -0.08712$ H $ -1.06379 1.23202 -0.88105$ H $ -1.47358 1.35437 0.81372$ H $ -2.69471 0.77463 -0.33793$ H $ -0.54004 -1.29779 -0.91225$ O $ 1.50023 0.92343 0.09335$	
TS-4t	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
TS-10t	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	

15-14t				
E = 230 6770867 E = 0.0826727				
$L_{el} = -2.50.0770807$ $L_{VZP} = 0.0820737$				
C -1.13528 0.46363 -0.30372				
C -0.27311 1.29879 0.27560				
C -1.69887 -0.85494 0.00654				
Н -0.01681 1.18258 1.32758				
Н -0.02224 2.25135 -0.17480				
C 1.46907 0.15279 -0.35647				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
H 1.40647 $0.1/823$ $-1.46/56$ H 1.20002 1.61922 0.66401				
H = 2.78468 = 0.86045 = 0.002491				
H = 2.78408 = -0.80043 = -0.09249 H = 1.44129 = -1.14424 = 1.03075				
11 -1.44129 -1.14424 1.05075	•			
² HCO				
$E_{el} = -113.6837609$ $E_{VZP} = 0.0132749$				
Н -0.86747 1.20854 0.00000				
C 0.06196 0.58132 0.00000				
0 0.06196 -0.58706 0.00000				
2011 01101				
СН3СНСН				
$E_{1} = -116.9944237$ $E_{1} = -0.0665246$				
E _{el} = -116.9944237 E _{VZP} = 0.0665246				
$E_{el} = -116.9944237$ $E_{VZP} = 0.0665246$ C 1.35591 -0.15660 0.00000				
$E_{el} = -116.9944237 \qquad E_{VZP} = 0.0665246$ $C 1.35591 -0.15660 0.00000$ $C 0.21255 0.47145 -0.00000$				
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				
$E_{el} = -116.9944237 \qquad E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{array}$				
$\begin{split} E_{el} &= -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} E_{el} &= -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} E_{el} &= -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} E_{el} &= -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} \mbox{E}_{el} &= -116.9944237 & \mbox{E}_{VZP} = 0.0665246 \\ \hline C & 1.35591 & -0.15660 & 0.00000 \\ \hline C & 0.21255 & 0.47145 & -0.00000 \\ \hline H & 0.21049 & 1.55948 & 0.00000 \\ \hline C & -1.13888 & -0.19697 & 0.00000 \\ \hline H & -1.04018 & -1.28059 & 0.00006 \\ \hline H & -1.71153 & 0.10054 & -0.87945 \\ \hline H & -1.71157 & 0.10063 & 0.87940 \\ \hline H & 1.67528 & -1.18735 & -0.00001 \\ \hline \mbox{2CH_3CCH_2$} \\ \hline \mbox{$E_{el}$} = -117.2055935 & \mbox{E_{VZP}} = 0.0660122 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				
$\begin{split} E_{el} &= -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} E_{el} = -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
$\begin{split} E_{el} = -116.9944237 & E_{VZP} = 0.0665246 \\ C & 1.35591 & -0.15660 & 0.00000 \\ C & 0.21255 & 0.47145 & -0.00000 \\ H & 0.21049 & 1.55948 & 0.00000 \\ C & -1.13888 & -0.19697 & 0.00000 \\ H & -1.04018 & -1.28059 & 0.00006 \\ H & -1.71153 & 0.10054 & -0.87945 \\ H & -1.71157 & 0.10063 & 0.87940 \\ H & 1.67528 & -1.18735 & -0.00001 \\ \end{split}$				
MECP for O(³ P) + 1-butyne				
--	---------------	-----------------------	---------------	--
E _{el} :	= -231.090855	E _{vzP} (est	.) = 0.087008	
С	-1.30036	-0.24347	0.35820	
C	-0.18071	-0.97128	-0.12762	
С	1.23947	-0.64584	-0.03483	
С	1.54379	0.85597	0.06552	
Н	-1.89934	-0.71870	1.15603	
Н	1.79781	-1.11707	-0.84609	
н	1.58092	-1.14999	0.88353	
н	1.16998	1.38076	-0.81084	
Н	1.06229	1.28891	0.94005	
Н	2.61875	1.01164	0.13991	
0	-1.63826	0.81290	-0.15431	

MECP in the Vicinity of IM-1t and IM-1s in the $O(^{3}P) + 1$ -Butyne Reaction (M06-2x/cc-pVTZ level)

Species in the HCO Formation Pathways on the Singlet State Surface for $O(^{3}P) + 1$ -Butyne

Note that ${}^{2}HCO$ and ${}^{2}CH_{3}CHCH$ are listed in the triplet section but also appear as products on the singlet surface.

IM-	-1s			
E:	= -230 723308	F. con	= 0.0863121	
-ei	2000/20000	-VZP	0.0000121	
C	1 18677	-0 61003	_0 12056	
c	0 1936/	1 02803	0 23220	
н	1 83387	-1.102095	-0.84661	
н	1 35434	-1 20046	0 81528	
C	1 52933	0.86234	0.09781	
C	-1.22201	-0.23041	0.34213	
н	-1.54178	-0.53273	1.36277	
0	-1.78523	0.64733	-0.28648	
Н	1.22042	1.44677	-0.76678	
Н	2.60128	0.99055	0.23651	
н	1.01098	1.26245	0.96768	
cis-	104.2-			
013	1111-25			
cis	11VI-25			20
E	220 8262950	F	- 0 0003633	
E _{el} :	= -230.8362950	E _{VZP}	= 0.0903623	
E _{el} :	= -230.8362950	E _{vzp}	= 0.0903623	
E _{el} :	-1.35461	E _{VZP}	= 0.0903623	
E _{el} : C H	-1.35461 1.08622	E _{vzp} 0.20073 -1.30078	= 0.0903623 -0.00888 -0.84430	
E _{el} : C H C	-1.35461 1.08622 -0.18423	E _{vzp} 0.20073 -1.30078 1.09324	= 0.0903623 -0.00888 -0.84430 0.00342	
E _{el} : C H C U	-1.35461 1.08622 -0.18423 1.08041	E _{vzp} 0.20073 -1.30078 1.09324 0.66300	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411	
E _{el} : С Н С Н	-1.35461 1.08622 -0.18423 1.08041 1.85774	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402	
E _{el} : С Н С Н С	-1.35461 1.08622 -0.18423 1.08041 1.85774 1.52999 2.61341	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 0.83022	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 0.06306	
E _{el} : C H C H C H C H C H	-1.35461 1.08622 -0.18423 1.08041 1.85774 1.52999 2.61341 0.39129	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 -0.83022 2.15599	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 -0.06306 0.00869	
End Eer	-1.35461 1.08622 -0.18423 1.08041 1.85774 1.52999 2.61341 -0.39129	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 -0.83022 2.15599 1.27850	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 -0.06306 0.00869 0.88858	
E e e e e e e e e e e e e e e e e e e e	-1.35461 1.08622 -0.18423 1.08041 1.52999 2.61341 -0.39129 1.18347 -2.33479	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 -0.83022 2.15599 -1.27950 0.71145	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 -0.06306 0.00869 0.88858 -0.03834	
E e e e e e e e e e e e e e e e e e e e	-1.35461 1.08622 -0.18423 1.08041 1.52999 2.61341 -0.39129 1.18347 -2.33479 -1 30552	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 -0.83022 2.15599 -1.27950 0.71145 -1.00565	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 -0.06306 0.00869 0.88858 -0.03834 0.01066	
E _{el} : С Н С Н С Н С Н Н Н Н Н Н Н	-1.35461 1.08622 -0.18423 1.08041 1.52999 2.61341 -0.39129 1.18347 -2.33479 -1.30552	E _{vzp} 0.20073 -1.30078 1.09324 0.66300 1.42018 -0.76230 -0.83022 2.15599 -1.27950 0.71145 -1.00565	= 0.0903623 -0.00888 -0.84430 0.00342 0.00411 0.01402 -0.00714 -0.06306 0.00869 0.88858 -0.03834 0.01066	

trans-IM-2s			
E _{el} = -230.8420696	$E_{VZP} = 0$	0.0902298	Q (
$\begin{array}{cccc} & -1.39882 \\ 0 & -2.45265 \\ H & -1.35989 \\ C & -0.08666 \\ H & -0.08109 \\ C & 1.03219 \\ H & 0.93906 \\ C & 2.41636 \\ H & 2.41225 \\ H & 2.96623 \\ H & 2.96623 \\ \end{array}$	$\begin{array}{c} 0.33099\\ -0.24958\\ 1.43849\\ -0.32991\\ -1.41377\\ 0.38933\\ 1.47321\\ -0.16155\\ -1.24948\\ 0.18750\\ 0.18752\end{array}$	$\begin{array}{c} -0.00000\\ 0.00000\\ -0.00001\\ 0.00000\\ -0.00000\\ 0.00000\\ 0.00001\\ -0.00000\\ -0.00002\\ 0.87591\\ -0.87590\end{array}$	
TS-2s			
$E_{el} = -230.7211560$ imag freq = 439.3 <i>i</i> C 1.21362 H -0.95006 C 0.19275 C -1.15149 H -1.86322 C -1.63475 H -2.62992 H -0.95276 H -1.68815 H 1.44284 O 1.86506	$E_{VZP} = 0$ 0.16596 -1.37210 1.00707 0.59211 1.23137 -0.82262 -0.82629 1.21471 -1.34607 0.35484 -0.61395	$\begin{array}{c} 0.0848514\\ 0.35798\\ 0.73125\\ -0.20231\\ -0.16252\\ -0.68344\\ 0.08853\\ 0.52945\\ 0.81439\\ -0.86554\\ 1.42903\\ -0.30566\end{array}$	
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	E _{VZP} = 0.01411 -1.48874 0.96151 0.59781 1.35522 -0.79018 -0.80531 1.99110 -1.15660 -0.13499 -0.55752	$\begin{array}{c} 0.0893794\\ 0.40340\\ 0.35152\\ 0.01503\\ -0.13719\\ -0.42455\\ 0.03924\\ 0.77783\\ -0.13745\\ -0.89802\\ 1.49026\\ -0.38531 \end{array}$	

Appendix S4. Cartesian coordinates at the M06-2X/cc-pVTZ level for species in the HCO formation pathways on the triplet and singlet state surfaces in the reaction of $O({}^{3}P)$ with 1-pentyne. Electronic energies (E_{el} , hartrees) are reported at the CCSD(T)//M06-2X/cc-pVTZ level with vibrational zero-point energies (E_{VZP} , hartrees) at the M06-2X/cc-pVTZ level. For transition states, the imaginary frequency is reported in cm⁻¹. Also included are the Cartesian coordinates of the MECP near IM-1t and IM-1s, obtained at the CCSD/cc-pVTZ level.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1-p	entyne			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E _{el} :	= -194.9141125	E _{VZP}	= 0.1136469	
$\begin{array}{c} C & -1.49585 & 0.16724 & -0.00000 \\ C & -0.11115 & 0.62896 & 0.00001 \\ C & 0.89525 & -0.52606 & 0.00002 \\ C & 2.32938 & -0.01792 & -0.00001 \\ H & -3.61899 & -0.60541 & -0.00002 \\ H & 0.05652 & 1.26034 & 0.87598 \\ H & 0.71239 & -1.15143 & -0.87473 \\ H & 0.71241 & -1.15140 & 0.87479 \\ H & 0.05654 & 1.26034 & -0.87596 \\ H & 2.52669 & 0.59469 & 0.88102 \\ H & 2.52663 & 0.59472 & -0.88103 \\ H & 3.04125 & -0.84207 & -0.00005 \end{array}$	С	-2.61987	-0.24552	-0.00001	
$\begin{array}{c} C & -0.11115 & 0.62896 & 0.00001 \\ C & 0.89525 & -0.52606 & 0.00002 \\ C & 2.32938 & -0.01792 & -0.00001 \\ H & -3.61899 & -0.60541 & -0.00002 \\ H & 0.05652 & 1.26034 & 0.87598 \\ H & 0.71239 & -1.15143 & -0.87473 \\ H & 0.71241 & -1.15140 & 0.87479 \\ H & 0.05654 & 1.26034 & -0.87596 \\ H & 2.52669 & 0.59469 & 0.88102 \\ H & 2.52663 & 0.59472 & -0.88103 \\ H & 3.04125 & -0.84207 & -0.00005 \end{array}$	С	-1.49585	0.16724	-0.00000	
C 0.89525 -0.52606 0.00002 C 2.32938 -0.01792 -0.00001 H -3.61899 -0.60541 -0.00002 H 0.05652 1.26034 0.87598 H 0.71239 -1.15143 -0.87473 H 0.71241 -1.15140 0.87479 H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{vZP} = 0.1148404 \bigcirc \bigcirc	С	-0.11115	0.62896	0.00001	
C 2.32938 -0.01792 -0.00001 H -3.61899 -0.60541 -0.00002 H 0.05652 1.26034 0.87598 H 0.71239 -1.15143 -0.87473 H 0.71241 -1.15140 0.87479 H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 \bigcirc	С	0.89525	-0.52606	0.00002	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	2.32938	-0.01792	-0.00001	
H 0.05652 1.26034 0.87598 H 0.71239 -1.15143 -0.87473 H 0.71241 -1.15140 0.87479 H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 Image: Constant of the second sec	Н	-3.61899	-0.60541	-0.00002	
H 0.71239 -1.15143 -0.87473 H 0.71241 -1.15140 0.87479 H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 Image: Constant of the second se	Н	0.05652	1.26034	0.87598	
H 0.71241 -1.15140 0.87479 H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 Image: Constant of the second sec	Н	0.71239	-1.15143	-0.87473	
H 0.05654 1.26034 -0.87596 H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 Image: Constant of the second sec	Н	0.71241	-1.15140	0.87479	
H 2.52669 0.59469 0.88102 H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot E _{el} = -269.8892767 E _{VZP} = 0.1148404 \bigcirc	Н	0.05654	1.26034	-0.87596	
H 2.52663 0.59472 -0.88103 H 3.04125 -0.84207 -0.00005 IM-Ot Eel = -269.8892767 Evzp = 0.1148404 Image: Constraint of the second seco	Н	2.52669	0.59469	0.88102	
H 3.04125 $-0.84207 -0.00005$ IM-0t $E_{el} = -269.8892767$ $E_{VZP} = 0.1148404$	Н	2.52663	0.59472	-0.88103	
IM-0t E _{el} = -269.8892767 E _{VZP} = 0.1148404	Н	3.04125	-0.84207	-0.00005	
IM-0t $E_{el} = -269.8892767$ $E_{VZP} = 0.1148404$					
E _{el} = -269.8892767 E _{VZP} = 0.1148404	IM·	-0t			
$E_{el} = -269.8892767$ $E_{VZP} = 0.1148404$					
	Eat	= -269.8892767	Fuz	= 0.1148404	
	-61		- VZF		
	C	2 18120	_0 88297	0 09386	
	ч	2.10120	0 85114	0.18693	
C = 0.98625 = 0.92718 = 0.00918	C	0.98625	_0.92718	_0.00918	
C = 0.46836 = 0.96687 = 0.12252	C	-0.46836	-0.96687	_0.12252	
H = 0.85707 = 1.68871 = 0.60005	н	-0.85707	-1.68871	0.60005	
C = 1.12574 0.39746 0.10959	Ċ	-1.12574	0.39746	0.10959	
H = -0.73414 1.10680 -0.61892	н	-0.73414	1,10680	-0.61892	
H = -0.82779 0.76979 1.09071	н	-0.82779	0.76979	1.09071	
C = -2.64133 0.30499 0.01012	C	-2.64133	0.30499	0.01012	
H = -0.73780 = -1.34039 = -1.11329	н	-0.73780	-1.34039	-1.11329	
0 1.92773 1.70183 -0.07330	0	1,92773	1.70183	-0.07330	
H = -2.94629 = -0.05457 = -0.97387	н	-2.94629	-0.05457	-0.97387	
H = -3.10707 1.27637 0.16964	н	-3.10707	1.27637	0.16964	
H = -3.04183 = -0.38539 = 0.75400	н	-3.04183	-0.38539	0.75400	

Species in the HCO Formation Pathways on the Triplet State Surface for $O(^{3}P) + 1$ -Pentyne

IM-1t		
$\begin{split} E_{el} &= -269.9731778\\ C &= -2.07863\\ H &= -3.00052\\ C &= -0.96150\\ C &= 0.38993\\ H &= 0.90685\\ C &= 1.21928\\ H &= 0.68402\\ H &= 1.28958\\ C &= 2.60953\\ H &= 0.30519\\ O &= -2.01913\\ H &= 3.15166\\ H &= 2.54886\\ H &= 3.19575 \end{split}$	$E_{VZP} = 0.1174783$ $\begin{array}{r} -0.10963 & -0.19527 \\ -0.48385 & -0.66182 \\ -0.98207 & -0.14175 \\ -0.78345 & 0.38656 \\ -1.74200 & 0.47607 \\ 0.17637 & -0.48485 \\ 1.12344 & -0.55504 \\ -0.23134 & -1.49456 \\ 0.39029 & 0.09614 \\ -0.36334 & 1.39614 \\ 1.02684 & 0.26657 \\ -0.55349 & 0.17053 \\ 0.82098 & 1.09626 \\ 1.06588 & -0.52519 \end{array}$	
$\begin{array}{c} \text{IM-2t} \\ \text{E}_{el} = -269.9805360 \\ \text{C} & -2.04342 \\ \text{H} & -3.01078 \\ \text{C} & -0.97082 \\ \text{C} & 0.35437 \\ \text{H} & 0.55135 \\ \text{C} & 1.26723 \\ \text{H} & 1.28579 \\ \text{H} & 0.83589 \\ \text{C} & 2.67935 \\ \text{H} & -1.17749 \\ \text{O} & -1.91452 \\ \text{H} & 3.31742 \\ \text{H} & 2.66476 \\ \text{H} & 3.12892 \\ \end{array}$	$E_{VZP} = 0.1153033$ $0.05492 -0.12621$ $0.43436 -0.49384$ $1.00834 -0.04625$ $0.63003 0.41580$ $0.64409 1.48262$ $-0.15909 -0.46463$ $0.28509 -1.46446$ $-1.16046 -0.59317$ $-0.26466 0.09720$ $2.02411 -0.37139$ $-1.12110 0.18152$ $-0.86102 -0.55304$ $-0.73698 1.07991$ $0.72236 0.20571$	
$\begin{array}{ll} \textbf{IM-5t} \\ \textbf{E}_{el} = -269.9595783 \\ \textbf{C} & -0.36491 \\ \textbf{C} & 1.02927 \\ \textbf{C} & -1.31868 \\ \textbf{H} & 1.15797 \\ \textbf{H} & 1.39395 \\ \textbf{C} & 2.01011 \\ \textbf{O} & 1.71015 \\ \textbf{H} & 3.06617 \\ \textbf{C} & -2.67397 \\ \textbf{H} & -1.45965 \\ \textbf{H} & -0.89239 \\ \textbf{H} & -2.55841 \\ \textbf{H} & -3.11797 \\ \textbf{H} & -3.36187 \end{array}$	$E_{VZP} = 0.1163025$ $0.70227 -0.26195$ $1.07768 -0.01660$ $-0.14463 0.46764$ $1.60097 0.94558$ $1.78496 -0.76965$ $-0.08138 0.00765$ $-1.23371 -0.11624$ $0.21437 0.16529$ $-0.23198 -0.23522$ $0.24639 1.48499$ $-1.14883 0.57784$ $-0.65751 -1.23125$ $0.75734 -0.34100$ $-0.85984 0.32896$	

TS-1t	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
TS-2t	
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	

TS-	10t			
E _{el} : ima	= -269.9021628 ig freq = 1585.5 <i>i</i>	E _{VZP}	= 0.1118352	
	0 1			
С	-0.37983	0.88007	0.15254	
C	1.04850	1.05919	-0.01265	
C	-1.26961	-0.25338	0.45598	
н	1.44283	2.06342	0.07788	
Н	0.31444	0.99445	-1.01737	
С	1.98753	-0.04951	-0.05518	
0	1.67272	-1.22710	-0.08019	
Н	3.04558	0.25942	-0.08369	
С	-2.59215	-0.21290	-0.30798	
Н	-1.46395	-0.26056	1.53489	
Н	-0.71432	-1.17113	0.23647	
Н	-3.13313	0.70936	-0.09964	
Н	-3.22363	-1.05215	-0.02148	
Н	-2.41619	-0.26686	-1.38184	
TS-	14t			
E _{el} :	-269.9164746	E _{VZP}	= 0.1117987	
ima	ig freq = 391.5 <i>i</i>			
	0 1			
С	-0.43900	0.68231	-0.30666	
C	0.54545	1.36750	0.27539	
C	-1.22134	-0.52500	-0.00220	
Н	0.78588	1.20181	1.32454	
Н	0.94140	2.27288	-0.16820	
С	2.09212	-0.03192	-0.36518	
0	2.24707	-0.99445	0.29746	
н	2.01155	-0.01991	-1.47535	
С	-2.73010	-0.27113	0.00987	
Н	-0.89073	-0.91009	0.97047	
Н	-0.98478	-1.30271	-0.73449	
Н	-2.98741	0.47384	0.76128	
Н	-3.27143	-1.18900	0.23349	
Н	-3.06386	0.09819	-0.95877	
-				
² HC	0			
E _{el} :	-113.6837609	E _{VZF}	o = 0.0132749	I
н	-0.86747	1.20854	0.00000	
C	0.06196	0.58132	0.00000	
ō	0.06196	-0.58706	0.00000	
1 1				

² C⊦	I₃CH₂CHCH			
E _{el} :	= -156.2340474	E _{VZF}	s = 0.0952780	
С	-1.90735	0.06360	-0.29879	
С	-0.79548	0.33469	0.32708	
н	-0.72008	1.26046	0.89647	
С	0.44538	-0.52689	0.31169	
Н	0.24402	-1.44231	-0.24508	
Н	0.68118	-0.81897	1.33797	
С	1.63474	0.21496	-0.29384	
Н	-2.27360	-0.73667	-0.92325	
Н	1.84208	1.13212	0.25864	
Н	1.42941	0.48820	-1.32854	
Н	2.53319	-0.40102	-0.27303	
² C⊦	I ₃ CH ₂ CCH ₂			
E _{el} :	= -156.5120562	E _{VZP}	= 0.0948598	
С	-0.72374	-0.03486	-0.38003	
С	-1.91727	-0.17977	0.12733	
С	0.55513	0.60544	-0.03389	
С	1.70034	-0.40116	0.08918	
н	-2.17963	0.26965	1.08575	
H	-2.69506	-0.74242	-0.37550	
H	0.42922	1.14944	0.91114	
H	0.80117	1.35097	-0.79365	
H	1.48391	-1.134/1	0.86455	
н	2.03132	0.1042/	0.34100	
н	1.8423/	-0.93509	-0.8494/	

MECP in the Vicinity of IM-1t and IM-1s in the $O(^{3}P) + 1$ -Pentyne Reaction (M06-2x/cc-pVTZ level)

MECP for O(³ P) + 1-pentyne	
E _{el} = -270.398355 E _{VZP} (est.) = 0.1	115707
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.38791 .11632 .07534 .00922 .05208 .22701 .89730 .83955 .87873 .86401 .93656 .82242 .09421 .14377

Species in the HCO Formation Pathways on the Singlet State Surface for $O(^{3}P) + 1$ -Pentyne

IM	-1s			
E _{el} :	= -269.9632421	E _{VZP}	= 0.1149591	
С Н С С Н С С Н Н Н О Н Н Н И О Н Н	$\begin{array}{c} 1.81855\\ -0.68448\\ 0.99236\\ -0.44703\\ -0.95563\\ -1.09237\\ -2.60850\\ -0.55229\\ -0.79853\\ 2.13857\\ 2.23377\\ -3.02199\\ -2.91338\\ -3.06055\end{array}$	$\begin{array}{c} 0.04422\\ -0.96742\\ 1.05211\\ 0.91312\\ 1.54823\\ -0.46763\\ -0.37194\\ 1.48605\\ -1.07361\\ 0.24090\\ -0.90225\\ 0.10551\\ 0.21746\\ -1.35835 \end{array}$	$\begin{array}{c} 0.37194\\ 0.86800\\ -0.19796\\ -0.15135\\ -0.88029\\ -0.01196\\ 0.07820\\ 0.80362\\ -0.86951\\ 1.41855\\ -0.27183\\ -0.81100\\ 0.94444\\ 0.16762 \end{array}$	
cis- E _{el} :	-IM-2s = -270.0757868	E _{vzp}	= 0.1193254	
С H C C H C C H H H H H H H	1.95700 3.01624 0.97646 -0.34658 -0.97084 -1.07407 -0.74703 -0.74705 -2.58699 1.67989 1.38006 -3.09360 -2.91594 -2.91595	-0.01517 0.30091 1.08220 0.89764 1.78808 -0.41109 -0.99717 -0.99709 -0.23534 -1.19068 2.08692 -1.19886 0.31662 0.31657	$\begin{array}{c} -0.00005\\ -0.00025\\ 0.00003\\ 0.00003\\ 0.00006\\ -0.00002\\ 0.86169\\ -0.86179\\ -0.00002\\ 0.00006\\ 0.00003\\ -0.00005\\ -0.88137\\ 0.88137\end{array}$	

Note that ${}^{2}\text{HCO}$ and ${}^{2}\text{CH}_{3}\text{CH}_{2}\text{CHCH}$ are listed in the triplet section but also appear as products on the singlet surface.

trans-IM-2s		
$E_{el} = -270.0774196$ $C -1.62098$ $H -1.10664$ $C -0.79783$ $C 0.51405$ $H 0.99457$ $C 1.44856$ $H 1.90332$ $H 0.92548$ $C 2.55484$ $O -2.80810$ $H -1.34578$ $H 3.27115$ $H 2.13638$ $H 3.09443$	$\begin{split} E_{VZP} &= 0.1195995 \\ \hline -0.40918 & -0.05532 \\ -1.33207 & -0.37247 \\ 0.79979 & 0.09758 \\ 0.87202 & -0.13191 \\ 1.83377 & 0.03120 \\ -0.21072 & -0.57165 \\ 0.09998 & -1.51611 \\ -1.14373 & -0.76656 \\ -0.43440 & 0.46179 \\ -0.42149 & 0.15329 \\ 1.67554 & 0.42377 \\ -1.17408 & 0.10778 \\ -0.78488 & 1.40464 \\ 0.49239 & 0.65854 \end{split}$	
TS-2s		
$E_{el} = -269.9608538$ imag freq = 427.8 <i>i</i> C 1.77010 H -0.63012 C 0.95034 C -0.43299 H -0.98879 C -1.15982 C -2.61826 H -0.24072 H -1.09302 H 1.90575 O 2.37122 H -3.14586 H -2.70131 H -3.13201	$\begin{split} E_{VZP} &= 0.1136101 \\ \hline &-0.00209 & 0.43020 \\ \hline &-1.17111 & 0.45645 \\ \hline &1.04524 & -0.11405 \\ \hline &0.84395 & -0.25544 \\ \hline &1.64144 & -0.75108 \\ \hline &0.48819 & -0.20829 \\ \hline &0.33769 & 0.20343 \\ \hline &1.32510 & 0.80565 \\ \hline &0.92190 & -1.20795 \\ \hline &0.03022 & 1.53281 \\ \hline &0.79740 & -0.26200 \\ \hline &0.33737 & -0.47139 \\ \hline &0.06782 & 1.21255 \\ \hline &-1.29705 & 0.18385 \end{split}$	
TS-4s		
E _{el} = -270.0676705 imag freq = 160.8 <i>i</i>	E _{VZP} = 0.1185071	
$\begin{array}{cccc} & 1.65311 \\ H & 1.59161 \\ C & 0.79933 \\ C & -0.45571 \\ H & -1.00137 \\ C & -1.21645 \\ H & -0.59364 \\ H & -1.45569 \\ C & -2.51198 \\ O & 2.38766 \\ H & 1.27115 \\ H & -3.07614 \\ H & -3.14493 \\ H & -2.30206 \end{array}$	$\begin{array}{ccccc} -0.18846 & 0.47257 \\ -0.55453 & 1.51608 \\ 0.99230 & 0.13884 \\ 0.89339 & -0.27487 \\ 1.80662 & -0.49430 \\ -0.38267 & -0.46669 \\ -1.23935 & -0.20463 \\ -0.48988 & -1.52791 \\ -0.39679 & 0.34401 \\ -0.72500 & -0.31004 \\ 1.96168 & 0.25862 \\ -1.31039 & 0.16253 \\ 0.44966 & 0.07544 \\ -0.33041 & 1.41136 \end{array}$	