SUPPLEMENTARY INFORMATION

The structure and chemical bonding in the inverse sandwich B₆Ca₂ and B₈Ca₂ clusters: conflicting aromaticity vs. double aromaticity[†]

Ying-Jin Wang,* Min-Min Guo, Gui-Lin Wang, Chang-Qing Miao, Nan Zhang, and Teng-Dan

Xue

Department of Chemistry, Xinzhou Teachers University, Xinzhou 034000, China

*E-mail: yingjinwang@sxu.edu.cn

Supplementary Information

- **Table S1.**Cartesian coordinates for global-minimum (GM) structures of (a) $(D_{2h}, {}^{1}A_{g})$ B₆Ca₂ and (b) $(D_{8h}, {}^{1}A_{1g})$ B₈Ca₂ clusters at the PBE0/6-311+G* level.
- Figure S1. Alternative optimized structures of B_6Ca_2 cluster at the PBE0/6-311+G* level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energy (ZPE), as well as for top two isomers (in square bracket) at the single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level.
- Figure S2. Alternative optimized structures of B₈Ca₂ cluster at the PBE0/6-311+G* level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energy (ZPE), as well as for top four isomers (in square bracket) at the singlepoint CCSD(T)/6-311+G*//PBE0/6-311+G* level.
- **Figure S3.** Canonical molecular orbitals (CMOs) of B_8Ca_2 (D_{8h} , ${}^1A_{1g}$). The CMOs are sorted into three subsets: (a) eight σ CMOs for eight two-center two-electron (2c-2e)

Lewis B–B σ single bonds in B₈ ring; (b) three globally delocalized CMOs for the σ framework in B₈ ring; and (c) three globally delocalized CMOs for π framework in B₈ ring.

- **Figure S4.** Canonical molecular orbitals (CMOs) of the competitor (C_s , ¹A') of B₈Ca₂. The CMOs are sorted into four subsets: (a) seven σ CMOs for seven two-center two-electron (2c-2e) Lewis B–B σ single bonds in the periphery of B₈ wheel; (b) two globally delocalized CMOs for σ framework in B₈ wheel; (c) three globally delocalized CMOs for π framework in B₈ wheel; and (d) one σ CMOs in Ca₂ dimer, as well as the LUMO.
- **Figure S5.** Chemical bonding pattern for the competitor (C_s , ¹A') of B₈Ca₂ cluster on the basis of AdNDP analysis. Occupation numbers (ONs) are indicated.

Figure S1. Alternative optimized structures of B_6Ca_2 cluster at the PBE0/6-311+G* level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top two isomers (in square bracket) at the single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level.

Figure S2. Alternative optimized structures of B_8Ca_2 cluster at the PBE0/6-311+G* level. Relative energies are shown in eV at PBE0 level with corrections for zero-point energies (ZPEs), as well as for top four isomers (in square bracket) at the single-point CCSD(T)/6-311+G*//PBE0/6-311+G* level.

Figure S3. Canonical molecular orbitals (CMOs) of B_8Ca_2 (D_{8h} , ${}^1A_{1g}$). The CMOs are sorted into three subsets: (a) eight σ CMOs for eight two-center two-electron (2c-2e) Lewis B–B σ single bonds in B_8 ring; (b) three globally delocalized CMOs for the σ framework in B_8 ring; and (c) three globally delocalized CMOs for π framework in B_8 ring.

Figure S4. Canonical molecular orbitals (CMOs) of the competitor (C_s , ¹A') of B₈Ca₂. The CMOs are sorted into four subsets: (a) seven σ CMOs for seven two-center twoelectron (2c-2e) Lewis B–B σ single bonds in the periphery of B₈ wheel; (b) two globally delocalized CMOs for σ framework in B₈ wheel; (c) three globally delocalized CMOs for π framework in B₈ wheel; and (d) one σ CMOs in Ca₂ dimer, as well as the LUMO.

Figure S5. Chemical bonding pattern for the third isomer $(C_s, {}^1A')$ of B₈Ca₂ cluster on the basis of AdNDP analysis. ONs are indicated.

Table S1.Cartesian coordinates for global-minimum (GM) structures of (a) $(D_{2h}, {}^{1}A_{g})$ B₆Ca₂ and (b) $(D_{8h}, {}^{1}A_{1g})$ B₈Ca₂ clusters at the PBE0/6-311+G* level.

(a) $B_6Ca_2 GM (D_{2h}, {}^1A_g)$

В	0.00000000	1.93579800	0.00000000
В	0.00000000	-0.80223400	1.05404300
В	-0.00000000	0.80223400	1.05404300
В	0.00000000	0.80223400	-1.05404300
В	-0.00000000	-0.80223400	-1.05404300
В	0.00000000	-1.93579800	0.00000000
Ca	-2.12915100	0.00000000	-0.00000000
Ca	2.12915100	0.00000000	-0.00000000

(b) $B_8Ca_2 GM (D_{8h}, {}^1A_{1g})$

В	0.00000000	2.02311700	0.00000000
В	1.43056000	1.43056000	0.00000000
В	0.00000000	-2.02311700	0.00000000
В	-1.43056000	1.43056000	0.00000000
В	-1.43056000	-1.43056000	0.00000000
В	1.43056000	-1.43056000	0.00000000
В	-2.02311700	0.00000000	0.00000000
В	2.02311700	0.00000000	0.00000000
Ca	0.00000000	0.00000000	1.78402600
Ca	0.00000000	0.00000000	-1.78402600