Supporting Information for

Unveiling the potential of superalkali cation Li₃⁺ for capturing

nitrogen

Dan Yu,^a Di Wu,^a, Jing-Yao Liu,^a Ying Li,^{*a} Wei-Ming Sun^{*b}

^{*}E-mail: liyingedu@jlu.edu.cn (Y. Li); sunwm@fjmu.edu.cn (W.-M. Sun)

 ^a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, (P. R. China)
^bDepartment of Basic Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou 350108

⁽P. R. China)

_		LP (N1)→	LP (N2) \rightarrow	LP (N2) \rightarrow	LP (N3)→	LP (N3) \rightarrow	LP (N3) \rightarrow	LP (N4) \rightarrow	LP (N4)→	LP (N4) \rightarrow
		s(Li1)	s(Li2)	s(Li1)	s(Li3)	s(Li2)	s(Li1)	s(Li3)	s(Li2)	s(Li1)
_	I	11.72								
	II-1	12.04	12.04							
	II-2	12.33		12.33						
	III-1	12.30	12.30		12.30					
	III-2	12.53		12.53	12.36					
	III-3	13.49		13.49			13.40			
	IV-1	12.59		12.59		12.68		12.68		
	IV-2	13.55		13.57			13.57		12.57	
	IV-3	12.77		12.77		12.77			12.77	
	IV-4	13.63		13.63			13.63			13.63

Table S1 Second order stabilization energies (kcal/mol) of the orbital interactions in the low-lying $Li_3^+(N_2)_n$ (n = 1-4) complexes.

Table S2 NMR shielding constants and ¹⁵N chemical shifts (both in ppm) of the lowest-lying $\text{Li}_3^+(N_2)_n$ (n = 1-4) complexes at the MP2/6-311+G(d) computational level.

System	σLil	σLi3	σ N1	σ N1'	σ Ν4	σ N4'	δ predicted (N1)	δ predicted (N1')
$Li_{3}^{+}(N_{2})$	91.95	94.61	-10.72	-42.55			-95.5	-64.0
$Li_{3}^{+}(N_{2})_{2}$	92.05	95.15	-11.29	-41.66			-95.0	-64.8
$Li_{3}^{+}(N_{2})_{3}$	92.24	92.24	-11.90	-40.62			-94.4	-65.9
$Li_{3}^{+}(N_{2})_{4}$	92.47	91.42	-12.20	-39.67	-19.23	-42.35	-94.1	-66.8

Fig. S1 Optimized structures of the $\text{Li}_3^+(N_2)_n$ (n = 5-7) complexes and their relative energies (E_{rel} , in kcal/mol) at the MP2/6-311+G(d) level.

Fig. S2 Optimized structures of the $[Li_3(N_2)_n]^+$ (n = 5-7) isomers (with complete Li₃ ring cleavage) and their relative energies (E_{rel} , in kcal/mol) at the MP2/6-311+G(d) level.

Fig. S3 Optimized low-lying structures of the $\text{Li}_3^+(N_2)_n$ (n = 8-12) complexes and their relative energies (E_{rel} , in kcal/mol) at the B3LYP/6-311+G(d) level.

Fig. S4 The graphs of highest occupied molecular orbitals (HOMOs) of the $Li_3^+(N_2)_n$ (n = 1-4) complexes.

Fig. S5 Energetics (zero-point correction included) for the isomerization process of III-7' and III-6'attheMP2/6-311+G(d)level.

Fig. S6 Molecular graphs of the $\text{Li}_3^+(N_2)_n$ (n = 1-4) complexes and the electron density (ρ , in au) and its Laplacian ($\nabla^2 \rho$ in the parentheses, in au) at the Li…N BCPs.

Fig. S7 Equilibrium structures of the products for the $Li_3^+(N_2)_n \rightarrow Li^+(N_2)_m + Li_2(N_2)_{n-m}$ reaction (channel 1).

Fig. S8 Equilibrium structures of the products for the $Li_3^+(N_2)_n \rightarrow Li(N_2)_m^+ Li_2^+(N_2)_{n-m}$ reaction (channel 2).