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S1. The details of self-consistent calculation for U.

    According to the linear response approach proposed by Cococcioni and 

Gironcoli,1 U is determined by the difference between the screened and bare second 

derivative of the energy with respect to localized state occupations at site I. This can I

be given as:
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    Applying localized potential shifts to the d levels of the Ni atoms to excite 

charge fluctuation on their orbitals, and solving the Kohn–Sham equations self-

consistently, an occupation-dependent energy functional can be obtained: 
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Using as the perturbation parameter, the effective interaction parameter U of site I I

can then be written as, 
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In the above derivation, U is calculated from the GGA ground state; it should be 

consistently obtained from the GGA+U ground state itself, which may be especially 

relevant when GGA and GGA+U differ qualitatively. Thus, Scherlis  et al. have 
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identified that the electronic terms in the GGA+U functional have quadratic 

dependence on the occupations: 2 
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    Where, the first term is the contribution already contained in the standard GGA 

functional; the second term is the customary ‘‘+U’’ correction. Thus, Uscf represents 

the effective on-site electron-electron interaction already present in the GGA energy 

functional for the GGA+U ground state when U is chosen to be Uin. The second 

derivative of Equad with respect to  also corresponds to the Uout obtained from I
i

linear-response:
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    Where, m can be interpreted as an effective degeneracy of the orbitals whose 

population is changing during the perturbation. Uout is linear in Uin for the relevant 

range of Uin–Uscf. From a few linear-response calculations for different Uin ground 

states, we can extract the Uscf that should be used for the NiI2 monolayer. The self-

consistent determination of U is performed by using the quantum espresso (QE) code3 

with the GGA (PBE) exchange–correlation functional and PAW pseudopotentials. 

The wave-function and electronic density cut-off energies are 60 Ry and 400 Ry, 

respectively. Fig. S1 plots Uout as a function of Uin, which shows a good linear 

relationship. It can be seen that the extrapolated U for NiI2 monolayer is 7.33 eV. 

Fig. S1 Linear response Uout calculated from the Uin ground state of NiI2 monolayer.

S2. The phonon spectra of the NiI2 monolayer under the -4% and 4% strains.



Fig. S2 The phonon spectra of the NiI2 monolayer under the -4% and 4% strains.

S3. MD movies of NiI2 monolayer under the 0%, -4% and 4% strains.

·0%.wmv represents the NiI2 monolayer under 0% strian at T=300K.

·-4%.wmv represents the NiI2 monolayer under -4% strian at T=300K.

·4%.wmv represents the NiI2 monolayer under 4% strian at T=300K.

S3. The details of calculating exchange parameter J from the energy difference 

between FM and AFM states( ).E

    The Hamiltonian can be expressed as：

                               jji iSJSH  ,

  Where is the nearest-neighboring exchange parameter. From Fig. 2(b) and 2(c) J

of the main text, we can estimate from the following equation for the NiI2 J

monolayer. 4

We construct a 2×2 supercell:
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