Effect of cation structure on the cellulose dissolution in aqueous solutions of

organic onium hydroxides

Akiko Tsurumaki, Miyu Tajima, Mitsuru Abe, Daiki Sato, and Hiroyuki Ohno*

*Corresponding author

Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei,

Tokyo, 184-8588 Japan; E-mail: ohnoh@cc.tuat.ac.jp; Tel: +81-42-388-7024; Fax: +81-42-388-7024.

1. Materials

·		
	Turne of II	
10	200	Туре ог н
8.85 (d, J = 6.0 Hz, 2H*)	8.84 (d, <i>J</i> = 5.5 Hz, 2H*)	benzene ring
8.54 (t, J = 7.8 Hz, 1H*)	8.53 (t, J = 7.8 Hz, 1H*)	benzene ring
8.07 (t, J = 6.6 Hz, 2H*)	8.05 (t, J = 6.9 Hz, 2H*)	benzene ring
4.80 (s, 21H)	4.79 (s, 401H)	H ₂O and O H
4.61 (t, <i>J</i> = 7.6 Hz, 2H)	4.60 (t, J = 7.3 Hz, 2H)	NCH ₂
2.04-1.96 (m, 2H)	1.95-2.03 (m, 2H)	NCH ₂ CH ₂
1.41-1.32 (m, 2H)	1.30-1.40 (m, 2H)	N(CH ₂) ₂ C H₂
0.94 (t, <i>J</i> = 7.3 Hz, 3H)	0.93 (t, J = 7.3 Hz, 3H)	N(CH ₂) ₃ C H₃

Table S1-1. Assignment of NMR spectra of *N*-butylpyridinium hydroxide ([C₄py]OH)

*The integral of chemical shift was less than 2H or 1H due to the decomposition of pyridinium ring in alkaline state. The decomposition was observed even diluted state (*Nw*=200).

Table S1-2. Assignment of NMR spectra of 1-butyl-3-methylimidazolium hydroxide ([C₄mim]OH)

	Type of H			
10	15	20	25	туре огн
8.32 (d, J = 214.2 Hz,	8.53 (d, J = 189.6 Hz,	8.50 (d, J = 175.8 Hz,	8.52 (d, J = 163.2 Hz,	NC H N
1H*)	1H*)	1H*)	1H*)	
7.24-7.45 (m, 2H*)	7.24-7.45 (m, 2H*)	7.25-7.43 (m, 2H*)	7.23-7.43 (m, 2H*)	NC H C H N
4.88 (s, 21H)	4.88 (m, 31H)	4.91 (s, 41H)	4.89 (m, 51H)	H ₂O and O H
4.11 (t, J = 7.2 Hz, 2H)	4.12 (t, J = 7.2 Hz, 2H)	4.11 (t, <i>J</i> = 7.2 Hz, 2H)	4.13 (t, J = 7.2 Hz, 2H)	NC H₂
3.80 (t, J = 29.2, 3H)	3.83 (t, J = 19.8 Hz, 3H)	3.82 (t, J = 20.3 Hz, 3H)	3.87 (t <i>, J</i> = 21.5 Hz, 3H)	NC H ₃
1.70-1.75 (m, 2H)	1.72-1.78 (m, 2H)	1.71-1.77 (m, 2H)	1.74-1.80 (m, 2H)	NCH ₂ CH ₂
1.19 (q, J = 7.4 Hz, 2H)	1.22 (q, J = 7.4 Hz, 2H)	1.21 (q, J = 7.4 Hz, 2H)	1.24 (q, J = 7.4 Hz, 2H)	N(CH ₂) ₂ C H₂
0.71-0.81 (m, 3H)	0.76-0.86 (m, 3H)	0.75-0.85 (m, 3H)	0.78-0.88 (m, 3H)	N(CH ₂) ₃ C H ₃

*The integral of chemical shift was less than 2H designating the de-protonation at the C(2) position of imidazolium ring.

Nw				Tuna of U
10	15	20	25	Туреогн
5.53-5.57 (m,1H*)	5.36 (s, 1H)	5.22 (s, 1H)	-	CH₂O H
5.43 (s, 21H)	5.24 (s, 31H)	5.10 (s, 41H)	-	H ₂O and O H
3.86 (t, J = 5.7 Hz, 2H)	3.87-3.90 (m, 2H)	3.91-3.94 (m, 2H)	-	NCH2C H₂
3.26 (t, J = 5.7 Hz, 2H)	3.29 (t, J = 5.7 Hz, 2H)	3.32 (t, J = 5.7 Hz, 2H)	-	NC H₂
3.07 (s, 9H)	3.08 (s, 9H)	3.11 (s, 9H)	-	NCH ₃

Table S1-3. Assignment of NMR spectra of cholinium hydroxide ([Ch]OH)

*The integral of chemical shift was less than 1H due to the de-protonation of the hydroxyl group of cholinium cation.

Table S1-4. Assignment of NMR spectra of *N*-butyl-*N*-methylmorpholiniuim hydroxide ([Mor₁₄]OH) (500 MHz, D₂O)

Nw				Turne of U
10	15	20	25	Туре ог н
5.06 (s, 21H)	5.02 (s, 31H)	4.98 (s, 41H)	4.95 (s, 51H)	H ₂O and O H
3.84-3.92 (m, 4H)	3.91 (t, J = 4.9 Hz, 4H)	3.92 (t, J = 4.6 Hz, 4H)	3.95 (t, <i>J</i> = 4.6 Hz, 4H)	CH ₂ OCH ₂
3.28-3.35 (m, 6H)	3.31-3.38 (m, 6H)	3.32-3.39 (m, 6H)	3.34-3.43 (m, 6H)	NCH ₂ and CH ₂ NCH ₂
3.03 (s, 3H)	3.06 (s, 3H)	3.07 (s, 3H)	3.09 (s, 3H)	NC H 3
1.59-1.63 (m, 2H)	1.63-1.66 (m, 2H)	1.64-1.67 (m, 2H)	1.67-1.70 (m, 2H)	NCH ₂ C H₂
1.22-1.26 (m, 2H)	1.26-1.30 (m, 2H)	1.27-1.31 (m, 2H)	1.29-1.34 (m, 2H)	N(CH ₂) ₂ C H₂
0.81 (t, J = 7.4 Hz, 3H)	0.85 (t, J = 7.4 Hz, 3H)	0.86 (t, J = 7.4 Hz, 3H)	0.88 (t, J = 7.4 Hz, 3H)	N(CH ₂) ₃ C H ₃

Table S1-5. Assignment of NMR spectra of *N*-butyl-*N*-methylpiperidinium hydroxide ([Pip₁₄]OH) (500 MHz, D₂O)

Nw				Turna of U
10	15	20	25	туре огн
5.04 (s, 21H)	5.03 (s, 31H)	4.99 (s, 41H)	4.97 (s, 51H)	H ₂O and O H
3.12-3.18 (m, 6H)	3.14-3.19 (m, 6H)	3.17-3.22 (m, 6H)	3.19-3.24 (m, 6H)	NCH ₂ and CH ₂ NCH ₂
2.86 (s, 3H)	2.88 (s, 3H)	2.90 (s, 3H)	2.91 (s, 3H)	NC H 3
1.67-1.74 (broad, 4H)	1.71 (broad, 4H)	1.75 (broad, 4H)	1.76 (broad, 4H)	C H ₂ CH ₂ NCH ₂ C H ₂
1.44-1.58 (m, 4H)	1.45-1.60 (m, 4H)	1.47-1.64 (m, 4H)	1.49-1.66 (m, 4H)	N(CH ₂) ₂ C H₂ (in ring) and NCH ₂ C H₂
1.18-1.25 (m, 2H)	1.20-1.27 (m, 2H)	1.22-1.30 (m, 2H)	1.25-1.32 (m, 2H)	N(CH ₂) ₂ C H₂
0.80 (t, J = 7.4 Hz, 3H)	0.82 (t, J = 7.4 Hz, 3H)	0.85 (t, J = 7.4 Hz, 3H)	0.86 (t, J = 7.4 Hz, 3H)	N(CH ₂) ₃ C H₃

Table S1-6. Assignment of NMR spectra of N-but	-N-methylpyrrolidinium hydroxide	([Pyr ₁₄]OH) (500 MHz, D ₂ O)
--	----------------------------------	--

Nw				Turne of LL
10	15	20	25	туре ог н
5.07 (s, 21H)	5.02 (s, 31H)	4.97 (s, 41H)	4.94 (s, 51H)	H₂ O and O H
3.30-3.38 (m, 4H)	3.33-3.39 (m, 4H)	3.34-3.43 (m, 4H)	3.35-3.44 (m, 4H)	CH ₂ NCH ₂
3.15-3.18 (m, 2H)	3.17-3.21 (m, 2H)	3.20-3.24 (m, 2H)	3.21-3.26 (m, 2H)	NC H₂
2.88 (s, 3H)	2.90 (s, 3H)	2.93 (s, 3H)	2.95 (s, 3H)	NC H 3
2.04 (broad, 4H)	2.07 (broad, 4H)	2.10 (broad, 4H)	2.12 (broad, 4H)	C H ₂ CH ₂ NCH ₂ C H ₂
1.57-1.62 (m, 2H)	1.61-1.65 (m, 2H)	1.63-1.69 (m, 2H)	1.65-1.73 (m, 2H)	NCH ₂ C H₂
1.20-1.25 (m, 2H)	1.23-1.28 (m, 2H)	1.26-1.32 (m, 2H)	1.26-1.35 (m, 2H)	N(CH ₂) ₂ C H₂
0.80 (t, J = 7.4 Hz, 3H)	0.82 (t, J = 7.3 Hz, 3H)	0.86 (t, J = 7.6 Hz, 3H)	0.87 (t, J = 7.3 Hz, 3H)	N(CH ₂) ₃ C H₃

Nw				Type of H
10	15	20	25	
4.82 (s, 21H)	4.82 (s, 31H)	4.82 (s, 41H)	4.84 (s, 51H)	H ₂O and O H
3.18 (t, J = 7.3 Hz, 8H)	3.12 (t, J = 8.1 Hz, 8H)	3.10 (t, J = 8.0 Hz, 8H)	3.10 (t, J = 8.5 Hz, 8H)	NC H₂
1.54 (br, 8H)	1.52 (br, 8H)	1.52 (br, 8H)	1.54 (br, 8H)	NCH ₂ CH ₂
1.33 (m, 8H)	1.30 (m, 8H)	1.29 (m, 8H)	1.29 (m, 8H)	N(CH ₂) ₂ C H₂
0.88 (t, J = 7.3 Hz,	0.88 (t, J = 7.3 Hz,	0.88 (t, J = 7.2 Hz,	0.88 (t <i>, J</i> = 7.3 Hz,	N(CH ₂) ₃ C H 3
12H)	12H)	12H)	12H)	

Table S1-7. Assignment of NMR spectra of tetrabutylammonium hydroxide ([N₄₄₄₄]OH)

Table S1-8. Assignment o	f NMR spectra of	tetrabutylphosphonium	hydroxide ([P ₄₄₄₄]OH)
--------------------------	------------------	-----------------------	------------------------------------

Nw				Tuno of H
10	15	20	25	туреогн
4.86 (s, 21H)	4.85 (s, 31H)	4.87 (s, 41H)	4.87 (s, 51H)	H ₂O and O H
2.14-2.20 (m, 8H)	2.10-2.16 (m, 8H)	2.10-2.15 (m, 8H)	2.09-2.15 (m, 8H)	PC H₂
1.34-1.50 (m, 16H)	1.36-1.47 (m, 16H)	1.39-1.56 (m, 16H)	1.35-1.50 (m, 16H)	PCH ₂ C H₂CH₂
0.89 (t, J = 6.9 Hz,	0.89 (t <i>, J</i> = 7.1 Hz,	0.89 (t, J = 7.2 Hz,	0.89 (t, J = 7.4 Hz,	P(CH ₂) ₃ C H ₃
12H)	12H)	12H)	12H)	

Table S1-9. Assignment	of NMR spectra	of N,N-dibutylpyrro	olidinium hydroxide	e ([Pyr ₄₄]OH)
------------------------	----------------	---------------------	---------------------	----------------------------

Nw 10	Type of H
10	
4.93 (s, 21H)	H ₂O and O H
3.39 (broad, 4H)	CH ₂ NCH ₂
3.09 (t, <i>J</i> = 8.2 Hz, 4H)	NC H ₂
2.02 (broad, 4H)	C H ₂ CH ₂ NCH ₂ C H ₂
1.55-1.47 (m, 4H)	NCH ₂ C H₂
1.23 (q, J = 7.3 Hz, 4H)	N(CH ₂) ₂ C H₂
0.79 (t, <i>J</i> = 7.3 Hz, 6H)	N(CH ₂) ₃ C H ₃

Table S1-10. Assignment of NMR spectra of *N*,*N*-dibutylmorpholinium hydroxide ([Mor₄₄]OH)

Nw	- Type of H	
10		
4.87 (s, 21H)	<i>H</i> ₂O and O <i>H</i>	
4.03 (t, J = 4.6 Hz, 4H)	CH₂OCH₂	
3.49 (t, <i>J</i> = 5.0 Hz, 4H)	CH₂NCH₂	
3.40-3.44 (m, 4H)	NC H₂	
1.65-1.73 (m, 4H)	NCH ₂ C H₂	
1.44-1.34 (m, 4H)	N(CH ₂) ₂ C H₂	
0.95 (t, J = 7.3 Hz, 6H)	N(CH ₂) ₃ C H ₃	

2. Methods

2.1 Kamlet-Taft parameter calculation

Three solutions having 30.0 mL of dehydrated methanol and 0.03 g of each dye were prepared. 0.075 mL of either dye_{NN} and dye_{4N} solution or 0.15mL of dye_{Rei} solution was separately transferred to an empty vial and dried under vacuum at 60 °C for 6 h. To these vials, 0.3mL of the chloride solutions were added and stirred gently. The sample solutions were placed in a quartz cell with a light path length of 0.1 mm and their UV-vis spectra were recorded. The Kamlet-Taft parameters were calculated according to the following equations (Equation (1) – (4)):

 $E_{\rm T}(30) = 0.9986(28592 / \lambda_{\rm max\,(Rei)}) - 8.6878 \cdots (1)$

 $\pi^* = 0.314(27.52 - v_{NN}) \qquad \cdots (2)$ $\alpha = 0.0649 E_T(30) - 2.03 - 0.72\pi^* \qquad \cdots (3)$ $\beta = (1.035v_{NN} + 2.64 - v_{4N}) / 2.80 \qquad \cdots (4)$

where, $\lambda_{\max(dye)}$ is the maximum absorption wavelength of the dye and v_{dye} is given as 1 / ($\lambda_{\max(dye)} \times 10^{-4}$).

3. Results

	Viscosity / cP			
Type of OHAS	Nw ^a =10	Nw ^a =15	Nw ^a =20	Nw ^a =25
[Ch]	_b	2.43	1.35	0.79
[Mor ₁₄]	9.61	4.80	2.93	1.98
[Pip ₁₄]	6.60	6.20	3.18	2.07
[Pyr ₁₄]	7.04	4.24	2.27	2.09
[N ₄₄₄₄]	N.A.	N.A.	N.A.	N.A.
[P ₄₄₄₄]	12.6	5.36	4.66	4.95

Table S2. Viscosity	y of OHAS with different Nw at 25 °C
---------------------	--------------------------------------

 $^{\rm a}$ Ratio of H_2O/OH (mol/mol), $^{\rm b}$ not evaluated due to the decomposition of cation structures

Figure S1. ¹H NMR spectra of [Py₁₄]OH, [Py₄₄]OH, [Mor₁₄]OH, and [Mor₄₄]OH.