Supplementary Information

Study of the interactions between Brønsted acids and triethylphosphine oxide in solution by ³¹P NMR: evidences for 2:1 species

Elisabet Pires and José M. Fraile*

Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Facultad de Ciencias, CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, E-50009 Zaragoza, Spain

Figure S1. Variation of ³¹P chemical shift (ppm) with the acid/TEPO molar ratio in MeOH- d_4 : (\blacktriangle) PhPO₃H₂, (\Box) MeSO₃H, (\times) *p*TosOH, (\blacksquare) TfOH.

Figure S2. ³¹P NMR spectra of acid-TEPO mixtures in CDCl₃ at short (top) and long (bottom) equilibration time with different nominal molar ratios: a) AcOH/TEPO = 5; b) AcOH/TEPO = 15; c) TFA/TEPO = 2.5; d) MeSO₃H/TEPO = 5.

Fig. S3. Variation of ³¹P chemical shift (ppm) with TFE/TEPO molar ratio in CDCl₃.

Fig. S4. Variation of ³¹P chemical shift (ppm) with AcOH/TEPO molar ratio in CDCl₃.

Fig. S5. Variation of ³¹P chemical shift (ppm) with HCOOH/TEPO molar ratio in CDCl₃.

Fig. S6. Variation of ³¹P chemical shift (ppm) with PhPO₃H₂/TEPO molar ratio in CDCl₃. On the right (\approx 19 ppm), the signal corresponding to PhPO₃H₂.

Fig. S7. Variation of ³¹P chemical shift (ppm) with TFA/TEPO molar ratio in CDCl₃.

Fig. S8. Linear fit of ³¹P chemical shift (ppm) at low TFE/TEPO molar ratio.

Fig. S9. Linear fits of ³¹P chemical shift (ppm) at low and high AcOH/TEPO molar ratios.

Fig. S10. Linear fits of ³¹P chemical shift (ppm) at low and high HCOOH/TEPO molar ratios.

Fig. S11. Linear fit of ³¹P chemical shift (ppm) at low PhPO₃H₂/TEPO molar ratio.

Fig. S12. Linear fits of ³¹P chemical shift (ppm) at low and high TFA/TEPO molar ratios.

Fig. S13. Variation of ³¹P chemical shift (ppm) with MeSO₃H/TEPO molar ratio in CDCl₃.

Fig. S14. Variation of ³¹P chemical shift (ppm) with pTosH/TEPO molar ratio in CDCl₃.

Fig. S15. Variation of ³¹P chemical shift (ppm) with TfOH/TEPO molar ratio in CDCl₃.

Fig. S16. Linear fits of ³¹P chemical shift (ppm) at low and high MeSO₃H/TEPO molar ratios.

Fig. S17. Linear fit of ³¹P chemical shift (ppm) at low pTosH/TEPO molar ratio.

Fig. S18. Linear fits of ³¹P chemical shift (ppm) at low and high TfOH/TEPO molar ratios. Two signals appear at ratios > 1.

Fig. S19. Variation of ¹H chemical shift (ppm) of P-CH₂- groups with TfOH/TEPO molar ratio in CDCl₃.

Fig. S20. Correlation between ³¹P and ¹H (P-CH₂- signal) chemical shifts with all the acids and acid/TEPO molar ratios.

Fig. S21. Variation of ¹H chemical shift (ppm) of <u>H</u>-COOH with TEPO/HCOOH molar ratio in CDCl₃.

Fig. S22. Variation of ¹H chemical shift (ppm) of C<u>H</u>₃-SO₃H with TEPO/MeSO₃H molar ratio in CDCl₃.

Fig. S23. Variation of ¹H chemical shift (ppm) of H-COO<u>H</u> with TEPO/HCOOH molar ratio in CDCl₃.

Fig. S24. Variation of ¹H chemical shift (ppm) of CH₃-SO₃<u>H</u> with TEPO/MeSO₃H molar ratio in CDCl₃.

5.85 -75.90 -75.95 -76.00 -76.05 -76.10 -76.15 -76.20 -76.25 -76.30 -76.35

Fig. S25. Variation of ¹⁹F chemical shift (ppm) of C<u>F</u>₃-COOH with TEPO/TFA molar ratio in CDCl₃.

Fig. S26. Variation of ³¹P chemical shift (ppm) with pTosOH/TEPO molar ratio in solid state (MAS-NMR). Liquid pTosOH-TEPO adducts were imbibed on solid KBr.

Fig. S27. Variation of ³¹P chemical shift (ppm) with PhPO₃H₂/TEPO molar ratio in solid state (MAS-NMR). Liquid PhPO₃H₂-TEPO adducts were imbibed on solid KBr.

Fig. S28. Effect of spinning rate on the solid state (MAS NMR) spectra of: A) liquid pTosOH-TEPO adduct (acid/TEPO = 2.5) imbibed on solid KBr; B) pure TEPO.