Supporting Information

A Boron-decorated Melon-based Carbon Nitride as a Metalfree Photocatalyst for N₂ Fixation: a DFT Study

Mei Zheng,[†] Yi Li,^{†,‡} Kaining Ding,[†] Yongfan Zhang,^{†,‡} Wenkai Chen,^{†,‡} Wei Lin^{*,†,‡}

[†]State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
[‡] Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China

Corresponding authors: wlin@fzu.edu.cn.

side ogge ger and a constant of the second sec

side опаралисто опаралисто опаралистические опаралисто опаралисто опаралисто опаралисто опаралисто опаралистиче

side crossingeno-criteridence or construction or construction or construction of the criterio or construction or construction

Fig. S1 The top and side views of optimized structures of B-decorated melon-based CNs with (a) B_{int} , (b) B_N , and (c) B_C configurations.

Table S1 Binding energy (E_b) and formation energies (E_{form}) of B-decorated melonbased CNs with B_{int} , B_N and B_C , in which B_{int} represents a B atom adsorption on melon-based CN, while the B_N and B_C are doping of single B atom to N and C atom respectively.

	B _{int1}	B _{int3}	B _{int4}	B _{int5}			
$E_{\rm b}({\rm eV})$	-1.93	-1.92	-3.42	-2.96			
	B _{N1}	B _{N2}	B _{N3}	B _{N4}	B _{N5}	B _{N6}	B_{N7}
$E_{\rm form} ({\rm eV})$	1.92	1.31	0.52	2.23	0.97	2.21	1.63
	B _{C1}	B _{C2}	B _{C3}	B _{C4}	B _{C5}	B _{C6}	
$E_{\rm form} ({\rm eV})$	1.62	0.96	0.70	0.74	0.83	1.04	

Fig. S2 Free energy diagrams for N_2 reduction through distal, alternating and enzymatic mechanisms on the (a) B_{int5} , (b) B_{N3} , (c) B_{N5} and (d) B_{N2} .

Fig. S3 The various intermediates for N_2 reduction through distal, alternating and enzymatic mechanisms on the (a) B_{int4} , (b) B_{int5} , (c) B_{N3} , (d) B_{N5} and (e) B_{N2} .

Fig. S4 The charge difference density of adsorbed N_2 on (a) B_{int4} through the end-on pattern, (b-c) B_{int5} through side-on and end-on patterns, (d) B_{N3} through the end-on pattern, (e-f) B_{N5} and (g-h) B_{N2} through the side-on and end-on patterns, respectively. The isosurface value is set to be 0.005 e/Å³. The orange and cyan regions represent charge accumulation and depletion, respectively.

Fig. S5 Free energy diagrams of HER on B_{int4} , B_{int5} , B_{N3} , B_{N5} and B_{N2} .

Fig. S6 The computed band structures of (a) pure melon-based CN and (b) B_{int4} . The Fermi level is set as zero in dotted lines.

Fig. S7 (a) Variations of energy against the time for AIMD simulation of B_{int4} ; the simulation is run under 300 K for 20 ps with a time step of 0.5 fs. (b) The structure of B_{int4} in the dynamic simulation process at about 11, 13 and 20 ps.