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S1. Statistical Mechanics Approximation for Gibbs Free Energy 

To obtain Gibbs free energy 𝐺  at the given temperature 𝑇 , statistical mechanics 

approximations merely considering the vibrational contribution are directly applied on 

structures optimized by density functional theory (DFT) calculations at 0 K, which is in the 

form of1  

 𝐺(𝑇) = 𝐸'() + 𝐸+,- + ∫ 𝐶0,234
5
6 𝑑𝑇 − 𝑇𝑆234 (1) 

where 𝐸'() is the potential energy, 𝐸+,- is the zero point energy (ZPE), and 𝐶0,234 and 𝑆234 are 

the vibrational constant-volume heat capacity and the vibrational entropy respectively. 𝐸'() is 

the ground state energy from the DFT. 𝐸+,- can be calculated from the DFT based frequency 

calculation. The framework of the AIMD used in this study did not take the nuclear quantum 

effect into consideration. Thus, 𝐸+,- was excluded from the thermodynamic correction.  

The potential energies and thermodynamically corrected free energies are listed in Table 

S1. 

Table S1. Potential Energy and Free Energy along the NEB Pathway 

Image Potential Energy (eV) Free Energy at 300 K (eV) Notes 

1 0.0 0.0 Initial State 

2 0.0128 0.0129  

3 0.0137 0.0037  

4 0.4586 0.4686  

5 0.9161 0.9461 Transition State  

6 0.3885 0.4086  

7 0.1864 0.3764  

8 -0.0210 -0.0110  

9 -0.0530 -0.0530 Final State 
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S2. Enhanced Sampling Methods 

By the statistical mechanics, the free energy is defined as the multi-integral below 

 𝐴 = −𝑘𝑇 ln ∫ 𝑒?-(𝐪
A)/C5 d𝐪E (2) 

where 𝑘 is the Boltzmann constant and 𝐸(𝐪E) is the potential energy function of 𝑁 atoms’ 

general coordinates. There are plentiful enhanced sampling methods to calculate the potential 

of mean force (PMF). The constrained molecular dynamics (CMD)2 and the umbrella sampling 

(US)3 are two most frequently used methods both in surface and biochemical reactions.  

For the CMD, one will evaluate the free energy gradient (FEG) of the selected collective 

variable (CV) 𝜉 at given values. The most used mathematical formula is4  

 HI
HJ
=

K+LMN/O(PLQ
RST
OUL
O∇J∙∇+L)X

K+LMN/OX
 (3) 

where 𝑍J  is the metric tensor, 𝜆J  is the Lagrange multiplier and the rest in the numerator is the 

thermo correction. The above formula can be easily extended to the system with few 

constraints. Generally, the SHAKE algorithm is used to control the selected CV during the 

simulation. In our CMD-related simulations, we took 0.5 ps to equilibrate the system and about 

3.0 ps to average the FEG later. Most simulations produced the FEG with a standard error less 

than 0.04 eV/Å (see data in S3 and S7), which is estimated by the block average algorithm. 

When it comes to the US, a restraining potential will be added to the selected CV. Though 

the harmonic potential is used the most, only can the gaussian function be used in the 

implementation of VASP. The gaussian potential 𝐺 at given value of CV 𝜉6 is in the form of 

 𝐺 = ℎexp(− (J?J_)O

`aO ) (4) 

where ℎ is the height and 𝑤 is the width. To construct the PMF along the C-O bond distance 

𝑅d?e, we used a -5 eV height and 0.5 Å width gaussian function which was added to 𝑅d?e 

from 1.2 Å to 3.3 Å with an interval of 0.1 Å. The collected samples in this series of simulations 

generated a distribution of 𝑅d?e, which lasted about 3.0 ps after a 0.5 ps relaxation. Therefore, 
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weighted histogram analysis method (WHAM)5 converted the probability into the free energy 

by an iterative scheme. The US along the path-CV is discussed separately in S5. 

S3. Error Analysis of CMD and US along C-O Bond Distance 

The PMF along 𝑅d?e of CO oxidation on Pt (111) surface at 300 K was calculated by 

CMD and US listed in Table S2 and Table S3 respectively. 

Table S2. FEG and Standard Error by CMD 

𝑅d?e (Å) FEG (eV/Å) Standard Error (eV/Å) Notes 

3.300 -0.0323 0.0180 Initial State 

3.200 -0.0825 0.0078  

3.100 -0.1809 0.0116  

3.000 -0.2806 0.0113  

2.900 -0.3927 0.0133  

2.800 -0.5248 0.0159  

2.700 -0.6649 0.0078  

2.600 -0.8213 0.0255  

2.500 -1.0447 0.0102  

2.400 -1.2366 0.0271  

2.300 -1.4446 0.0424  

2.200 -1.6375 0.0228  

2.100 -0.3318 0.0261  

2.001 0.0517 0.0134 Transition State 

1.900 0.2065 0.0129  

1.800 0.5626 0.0104  

1.700 1.2118 0.0240  

1.600 1.4155 0.0217  
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𝑅d?e (Å) FEG (eV/Å) Standard Error (eV/Å) Notes 

1.500 3.0181 0.0234  

1.394 2.3951 0.0252  

1.304 0.7338 0.0396  

1.280 0.0146 0.0493 Final State 

1.218 2.9766 0.1737  

Table S3. Free Energy and Standard Error by US 

𝑅d?e (Å) Free Energy (eV) Standard Error (eV) Notes 

3.300 0.0000 0.0000 Initial State 

3.200 0.0021 0.0004  

3.100 0.0404 0.0010  

3.000 0.0633 0.0018  

2.900 0.0778 0.0026  

2.800 0.1331 0.0028  

2.700 0.1935 0.0033  

2.600 0.2579 0.0037  

2.500 0.3226 0.0039  

2.400 0.4179 0.0041  

2.300 0.5243 0.0042  

2.200 0.6584 0.0042  

2.100 0.7996 0.0044  

2.000 0.8332 0.0046 Transition State 

1.900 0.8296 0.0048  

1.800 0.7684 0.0048  

1.700 0.6947 0.0050  
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𝑅d?e (Å) Free Energy (eV) Standard Error (eV) Notes 

1.600 0.4982 0.0054  

1.500 0.2307 0.0055  

1.4 -0.0456 0.0054  

1.3 -0.2953 0.0054 Gas State 

1.2 -0.4175 0.0054  

S4. On-the-fly Free Energy Gradient Analysis of C-Pt Bond Distance 

Selecting reference bonds for the path-CV can be a tough task. To realize a fast screen of 

bonds responsible for the free energy change, we took the on-the-fly free energy gradient 

analysis. For few brute-force trajectories beginning from the TS, we could calculate the instant 

FEG of a selected CV by the vector form of FEG proposed by Darve et al..6 Since a plausible 

estimation of the FEG must be established on its average, we split the CV value into few small 

bins and averaged the instant FEGs. The analysis on 𝑅d≡e is shown in Figure S1. The bond 

distance changes around its equilibrated distance. Thus, we concluded that there is no net free 

energy contribution from C-O triple bond during the reaction. 
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Figure S1. 𝑅d≡e and its FEG during a brute-force trajectory. The bond distance and its FEG 

fluctuate at a certain period.  

S5. Path Collective Variable: Implementation and Sampling 

The path-CV7 taking bonds as the reference can be calculated as8  

 𝑠(𝚵) = i
,?i

∑ (3?i)kMl(𝚵M𝚵m)
On

moN
∑ kMl(𝚵M𝚵m)On
moN

 (5) 

 𝑧(𝚵) = − i
P
ln(∑ 𝑒?P(𝚵?𝚵m)O,

3qi ) (6) 

where 𝚵 = {𝜉i, … , 𝜉E} is path vector whose entries are bond distances, 𝑃 is the number of 

reference structures and 𝜆 is the coefficient which smooths the path. In our simulations, we 

took five bond distances, 𝑅d?e, 𝑅d?,)v, 𝑅e?,)w, 𝑅e?,)S, and 𝑅e?,)x, to form the path-CV. 

The value of 𝜆  is recommended as the reciprocal of the distance between two neighbor 

reference structures. Since we took 30 reference structures, 𝜆 was set to 100 Å-2.  
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To calculate the PMF along the path-CV, we utilized the US. Here, we took the harmonic 

potential as the restraint. The potential can be written as  

 𝐻 = i
`
𝑘(𝜉 − 𝜉6)` (7) 

where 𝑘 is the spring constant and 𝜉 can be the path progress 𝑠 or the path deviation 𝑧. We 

adopted the spring constant 500 eV for 𝑠 and 80 eV for 𝑧. To add this restraint to the system, 

we have to calculate the Jacobian matrix which transforms the cartesian coordinates to the path-

CV. The mathematical formulas are 

 Hz
H𝐑
= i

,?i

|}
|𝐑~?�

|�
|𝐑

~O
; 	 H�
H𝐑
= − i

P~
H~
H𝐑

 (8) 

 𝑓(Δ𝚵3) = ∑ 𝑒?P(�𝚵m)O,
3qi ; 	𝑔(Δ𝚵3) = ∑ (𝑖 − 1)𝑒?P(�𝚵m)O,

3qi  (9) 

 H~
H𝐑
= H∑ kMl(𝚵M𝚵m)

On
moN

H𝐑
= ∑ −2𝜆𝑒?P(𝚵?𝚵m)O(𝚵 − 𝚵3)

H𝚵T

H𝐑
,
3qi 	 (10) 

 H�
H𝐑
= H∑ (3?i)kMl(𝚵M𝚵m)

On
moN

H𝐑
= ∑ −2𝜆(𝑖 − 1)𝑒?P(𝚵?𝚵m)O(𝚵 − 𝚵3)

H𝚵T

H𝐑
,
3qi  (11) 

where 𝐑 = {𝑥i, … , 𝑥�E} is the cartesian coordinate and Δ𝚵3 = 𝚵 − 𝚵3 is the difference between 

the current structure and the 𝑖-th reference structure. This series of simulations for path-CV 

was carried out from 𝑠 = 0.0 to 𝑠 = 1.0 at an interval of 0.02 while 𝑧 was controlled around 

0.05. The system at each sample point first equilibrated for 0.5 ps and then produced for 3.0 

ps. The final 2-D PMF spanned by 𝑠 and 𝑧 was constructed by the 2-D WHAM. 

S6. Selected Brute-force Molecular Dynamics Trajectory 

The free energy decomposition analysis was performed on the selected brute-force MD 

trajectory starting from the TS. Those trajectories were carried out at a timestep of 0.2 fs. Since 

the integration timestep is really small, most of the output trajectories were very similar. Thus, 

we selected two trajectories, one from TS to FS and the other from TS to IS, as shown in Figure 

S2. 
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Figure S2. Two trajectories used to construct the reaction path. The trajectory ends with the 

initial state is shown in (a) while the other stops at the final state is shown in (b). For each 

trajectory, the potential energy and temperature changes are plotted. 

S7. Error Analysis of CMD along Linear Combination CVs 

For the further verification of insights from the free energy decomposition analysis, we 

chose 𝑆(𝑅d?e, 𝑅e?,)w) for the reaction before the TS and 𝑅d?e with 𝑆(𝑅e?,)S, 𝑅e?,)x) after 

the TS. The related information about these two processes are shown in Table S4 and Table 

S5. 

Table S4. Free Energy Gradient and Standard Error by CMD before TS  

𝑆(𝑅d?e, 𝑅e?,)w) FEG (eV/Å) Standard Error (eV/Å) Notes 

1.300 -0.0125 0.0181 Initial State 

1.200 -0.0650 0.1157  
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1.100 -0.1052 0.0133  

1.000 -0.1822 0.0163  

0.900 -0.2500 0.0137  

0.800 -0.3294 0.0051  

0.700 -0.4123 0.0085  

0.600 -0.4915 0.0048  

0.500 -0.5785 0.0074  

0.400 -0.6460 0.0066  

0.300 -0.6772 0.0099  

0.200 -0.6967 0.0120  

0.100 -0.6501 0.0124  

0.000 -0.5959 0.0128  

-0.100 -0.5283 0.0138  

-0.200 -0.4669 0.0140  

-0.300 -0.4212 0.0193  

-0.400 -0.4057 0.0104  

-0.500 -0.3660 0.0079  

-0.600 -0.3623 0.0081  

-0.700 -0.3215 0.0090  

-0.800 -0.2668 0.0143  

-0.900 -0.0599 0.0205  

-1.000 0.2875 0.0631 Transition State 

Table S5. Free Energy Gradient and Standard Error by CMD after TS 

𝑆 𝑅d?e FEG/Error in 𝑆 (eV/Å) FEG/Error in 𝑅 (eV/Å) Notes 

0.000 2.000 0.0010 / 0.0052 -0.0517 / 0.0121 Transition State 
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0.000 1.900 -0.0006 / 0.0084 0.1552 / 0.0152  

0.000 1.800 0.0026 / 0.0100 0.5836 / 0.0109  

0.000 1.700 0.0006 / 0.0035 0.9881 / 0.0264  

0.000 1.600 0.0016 / 0.0056 1.3813 / 0.0205  

0.000 1.500 0.0028 / 0.0066 1.5277 / 0.0326  

0.000 1.400 0.0060 / 0.0093 1.4170 / 0.0705  

0.100 1.400 -0.0164 / 0.0135 1.2353 / 0.0725  

0.200 1.400 -0.0979 / 0.0173 1.4393 / 0.0203  

0.300 1.400 -0.1203 / 0.0190 1.7492 / 0.0585  

0.400 1.400 -0.2673 / 0.0162 1.8273 / 0.0392  

0.500 1.400 -0.3346 / 0.0244 2.0948 / 0.0402  

0.600 1.400 -0.4181 / 0.0222 2.3947 / 0.0415  

0.700 1.400 -0.4513 / 0.0245 2.4030 / 0.0359  

0.800 1.400 -0.3981 / 0.0184 2.4927 / 0.0262  

0.900 1.400 -0.4008 / 0.0145 2.5652 / 0.0370  

1.000 1.400 -0.3070 / 0.0179 2.5080 / 0.0305  

1.100 1.400 -0.1865 / 0.0182 2.5720 / 0.0396  

1.200 1.400 -0.1272 / 0.0302 2.5886 / 0.0319  

1.200 1.280 -0.0086 / 0.0197 -0.0837 / 0.0355 Final State 
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