Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supporting Information

Attenuated Total Reflectance Far-Ultraviolet and Deep-Ultraviolet Spectroscopy Analysis of the Electronic Structure of a Dicyanamide-Based Ionic Liquid with Li⁺

Masaya Imai^a, Ichiro Tanabe^{a*}, Akifumi Ikehata^b, Yukihiro Ozaki^{c,d} and Ken-ichi Fukui^{a,e*}

^a Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

^b National Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8642, Japan.

^c Department of Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan.

^d Toyota Physical Chemical Research Institute, Nagakute, Aichi 480-1192, Japan.

^e Department of Photomolecular Science, Institute of Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.

*Corresponding authors: E-mail addresses:

itanabe@chem.es.osaka-u.ac.jp (I.T.) and

kfukui@chem.es.osaka-u.ac.jp (K.F.)

Contents

- 1. Detailed time-dependent density functional theory (TD-DFT) calculations
- 2. Spectral decomposition via multivariable curve resolution-alternating least squares (MCR-ALS) calculations
- 3. Distance dependent TD-DFT calculations of Li[DCA]⁻
- 4. Residence autocorrelation function

1. Detailed time-dependent density functional theory (TD-DFT) calculations

Table S1 Calculated transition wavelengths, oscillation strength, main initial states, and main final states of [DCA]⁻.

Wavelength / nm	Oscillation strength	Initial state	Final state
226.76	0.0081	НОМО	LUMO
189.75	0.1784	HOMO	LUMO+6

Figure S1 Calculated oscillation strengths and molar extinction coefficient (ε) of [DCA]⁻. The molecular orbitals of the main initial and final states are presented at the bottom. This time-dependent density functional theory calculation was performed using the CAM-B3LYP/aug-cc-pVTZ basis set. The surrounding [BMP][DCA] was reflected as a continuum solvation model using the solvation model based on density-generic ionic liquid.

-	Wavelength / nm	Oscillation strength	Initial state	Final state	
	138.44	0.0168	HOMO-1	LUMO+1	
	133.95	0.0429	НОМО	LUMO+1	
	132.86	0.0393	НОМО	LUMO+2	
_	130.79	0.0473	HOMO-1	LUMO+1	

Table S2 Calculated transition wavelengths, oscillation strength, main initial states, and main final states of [BMP]⁺.

Figure S2 Calculated oscillation strengths and molar extinction coefficients (ε) of [BMP]⁺. The molecular orbitals of the main initial and final states are illustrated at the bottom. The optimisation was performed via density functional theory using the B3LYP/aug-cc-pVTZ basis set and the vertical transitions were calculated using the time-dependent density functional theory using the CAM-B3LYP/aug-cc-pVTZ basis set. The surrounding [BMP][DCA] was reflected as a continuum solvation model using the solvation model based on density-generic ionic liquid. Our calculations indicated that the absorption bands that derived from the intramolecular electronic transitions of [BMP]⁺ emerged below 130 nm. It was concluded that the electronic absorption of [BMP]⁺ did not contribute to the obtained absorption spectra in the 180–300 nm spectral region.

2. Spectral decomposition using multivariable curve resolution-alternating

least squares (MCR-ALS) calculations

The spectral decompositions illustrated in Figure 4 were performed using the multivariable curve resolutionalternating least squares (MCR-ALS) algorithm in the 180–250 nm spectral region. The detailed processes are presented below.

The absorption spectra of the Li-IL are illustrated in an 8 (number of concentrations of Li⁺ except for 0 M) × 701 (number of absorption data) matrix (*A*). Our goal was to decompose *A* into A_{IL} and $A_{Li[DCA]}$, the matrices of the absorption spectra derived from [DCA]⁻ without and with the effect of Li⁺ on the levels of the electronic states, respectively:

$$A = A_{\rm IL} + A_{\rm Li[DCA].} \tag{S1}$$

We assumed that A_{IL} can be expressed using the contribution vector of pure [BMP][DCA] (t^x) and the spectrum of pure [BMP][DCA] (A_0 , black line in Figure 1(a)) utilising Eq. (S2):

$$A_{\rm IL}^x = t^x A_0, \tag{S2}$$

in which

$$\boldsymbol{t}^{\boldsymbol{x}} = \begin{pmatrix} \boldsymbol{t}_1 \\ \boldsymbol{t}_2 \\ \vdots \\ \boldsymbol{t}_8 \end{pmatrix} = \boldsymbol{I} - \frac{\boldsymbol{x}}{\boldsymbol{c}_{\mathrm{IL},0}} \boldsymbol{c}_{\mathrm{Li}}, \qquad \boldsymbol{c}_{\mathrm{Li}} = \begin{pmatrix} \boldsymbol{c}_{\mathrm{Li},1} \\ \boldsymbol{c}_{\mathrm{Li},2} \\ \vdots \\ \boldsymbol{c}_{\mathrm{Li},8} \end{pmatrix}, \qquad \boldsymbol{I} = \begin{pmatrix} \boldsymbol{1} \\ \boldsymbol{1} \\ \vdots \\ \boldsymbol{1} \end{pmatrix}, \qquad (S3)$$

where $c_{IL,0}$ is the molar concentration of [DCA]⁻ in pure [BMP][DCA] (4.9 M), the numbers from 1 to 8 are the experiment numbers using [BMP][DCA] and different Li⁺ concentrations in the range of 0.054–0.27 M, and x is the test electronic coordination number (ECN) of [DCA]⁻ with electronic states affected by Li⁺. For each test ECN ($3 \le x \le 9$), A_{IL}^x was calculated using Eqs. (S2) and (S3). Furthermore, ΔA^x can be calculated as follows:

$$\Delta A^x = A - t^x A_0. \tag{S4}$$

Using the MCR-ALS algorithm for several x values $(3 \le x \le 9)$, ΔA^x was decomposed into spectral profiles (S^x) and contribution profiles (C^x) as follows:

$$\Delta A^x = C^x S^{xT} + E, \tag{S5}$$

 S^{xT} is the transposed matrix of S^x . The decomposed matrices were determined via the singular value decomposition and the ALS method, by minimising the residual error matrix (*E*) in a least square sense under the condition that all signs in S^x were positive. All MCR-ALS calculations were conducted using the

Unscrambler® X 10.5.1 software. ΔA^x was decomposed into two components: α and β , using MCR-ALS calculations. The obtained S^x (S^x_{α} and S^x_{β}) and C^x (C^x_{α} and C^x_{β}) spectra are presented in Figures 4 and S3, respectively. Moreover, ΔA^x can be expressed as a sum:

$$\Delta A^{x} = C^{x}_{\alpha} S^{xT}_{\alpha} + N^{x} \left(N^{x} \coloneqq C^{x}_{\beta} S^{xT}_{\beta} \right).$$
(S6)

Using Eqs. (S4) and (S6), *A* was decomposed into three terms:

$$A = A_{\rm IL}^x + C_{\alpha}^x S_{\alpha}^{xT} + N^x, \tag{S7}$$

and each of the terms in Eq. (S7) is presented in Figures 5 and S4.

We observed two tendencies. First, Figures 4 and S3 illustrate that C_{α}^{x} became increasingly proportional with the concentration of Li⁺ as x increased, which is described using Eq. (S8):

$$\boldsymbol{C}_{\boldsymbol{\alpha}}^{x} = k_{x}\boldsymbol{c}_{\mathrm{Li}} \left(k_{x}: constant\right), \tag{S8}$$

and the fitting results and coefficients of determination (R^2) are also presented in these figures. Second, the contribution of the other spectra matrix (N^x) to A (Figures 5 and S4) decreased as x increased. The quantitative spectral contributions of N^x to A were defined as a noise ratio, as follows:

Noise ratio =
$$\frac{\sum_{n=1}^{8} \int_{180}^{250} |N_n^x| d\lambda}{\sum_{n=1}^{8} \int_{180}^{250} |A_n| d\lambda}.$$
(S9)

When its contribution was negligible, N^x could be ignored. Therefore, we successfully separated A into $t^x A_0$ (the absorption spectra matrix of pure [BMP][DCA]) and $c_{Li}\overline{A^x}$ (the absorption spectra matrix of [DCA]⁻ affected by Li⁺ or including those of pure):

$$A = t^{x} A_{0} + c_{\text{Li}} \overline{A^{x}} \ (\overline{A^{x}} = k_{x} S_{\alpha}^{xT}).$$
(S10)

Figure S5 depicts the relationship between the noise ratios and R^2 for each x. If Eq. (S10) is satisfied at the minimum x, it corresponds to ECN because $c_{Li}\overline{A^x}$ can be simply expressed by absorption spectra of [DCA]⁻ affected by Li⁺. The correlational plot (Figure S5) converges at x = 5, suggesting that ECN is 5.

Figure S3 Decomposition of ΔA^x into two absorption spectra $(S^x_{\alpha} \text{ and } S^x_{\beta})$ and two contributions $(C^x_{\alpha} \text{ and } C^x_{\beta})$ using the multivariable curve resolution-alternating least squares algorithm for each test ECN (x). All S^x_{α} and S^x_{β} spectra were unit-vector normalised. The results of the linear fittings and the coefficients of determination (R^2) are also illustrated.

Figure S4 The terms of the absorption spectra in Eq. (S7): $A_{IL}^x(t^x A_0)$, $C_{\alpha}^x S_{\alpha}^{xT}$, and $N^x(C_{\beta}^x S_{\beta}^{xT})$ evaluated for each test ECN (*x*). The coloured lines represent different concentration of Li⁺. The noise ratios in Eq. (S9) were determined by integrating the absorption spectra of $N^x(C_{\beta}^x S_{\beta}^{xT})$ with absolute values.

Figure S5 Relationship between noise ratios and coefficients of determination (R^2) of C_{α}^x for various test ECN ($3 \le x \le 9$) illustrated as coloured dots in the legend.

3. Distance-dependent TD-DFT calculations of Li[DCA]⁻

Figure S6 Results of time-dependent density functional theory calculations for the intermolecular distance (d) between Li⁺ and the nearest terminal N atom of [DCA]⁻. The intermolecular distances between Li⁺ and the nearest terminal N atom of [DCA]⁻ were changed from 2 to 10 Å along the N–CN bond of the [DCA]⁻ using 1 Å steps and the other geometries of Li[DCA] illustrated in Figure 2(a) were maintained. Main initial and final molecular orbitals were extracted.

4. Residence autocorrelation function

Figure S7 Averaged residence autocorrelation functions (ACF) of the terminal N atoms in the first solvation layer ($0 \le r \le 3.32$ Å), intermediate layer ($3.32 \le r \le 7.00$ Å), and outside the intermediate layer ($7.00 \le r \le 10.0$ Å). The depicted AFCs were calculated as the averaged values of three ACFs obtained in 0–10, 10–20, 20–30 ns.