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1. Detailed time-dependent density functional theory (TD-DFT) calculations

Table S1 Calculated transition wavelengths, oscillation strength, main initial states, and main final states of
[DCA]T".

Wavelength / nm  Oscillation strength Initial state Final state
226.76 0.0081 HOMO LUMO
189.75 0.1784 HOMO LUMO+6
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Figure S1 Calculated oscillation strengths and molar extinction coefficient (¢) of [DCA]". The molecular
orbitals of the main initial and final states are presented at the bottom. This time-dependent density functional
theory calculation was performed using the CAM-B3LYP/aug-cc-pVTZ basis set. The surrounding
[BMP][DCA] was reflected as a continuum solvation model using the solvation model based on density-

generic ionic liquid.



Table S2 Calculated transition wavelengths, oscillation strength, main initial states, and main final states of
[BMP]".

Wavelength / nm  Oscillation strength Initial state Final state
138.44 0.0168 HOMO-1 LUMO+1
133.95 0.0429 HOMO LUMO+1
132.86 0.0393 HOMO LUMO+2
130.79 0.0473 HOMO-1 LUMO+1
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Figure S2 Calculated oscillation strengths and molar extinction coefficients (&) of [BMP]". The molecular
orbitals of the main initial and final states are illustrated at the bottom. The optimisation was performed via
density functional theory using the B3LYP/aug-cc-pVTZ basis set and the vertical transitions were calculated
using the time-dependent density functional theory using the CAM-B3LYP/aug-cc-pVTZ basis set. The
surrounding [BMP][DCA] was reflected as a continuum solvation model using the solvation model based on
density-generic ionic liquid. Our calculations indicated that the absorption bands that derived from the
intramolecular electronic transitions of [BMP]" emerged below 130 nm. It was concluded that the electronic

absorption of [BMP]" did not contribute to the obtained absorption spectra in the 180-300 nm spectral region.



2. Spectral decomposition using multivariable curve resolution-alternating

least squares (MCR-ALS) calculations

The spectral decompositions illustrated in Figure 4 were performed using the multivariable curve resolution-
alternating least squares (MCR-ALS) algorithm in the 180—250 nm spectral region. The detailed processes
are presented below.

The absorption spectra of the Li-IL are illustrated in an 8 (number of concentrations of Li* except for
0 M) x 701 (number of absorption data) matrix (A4). Our goal was to decompose A into Ay, and Apipca)
the matrices of the absorption spectra derived from [DCA]™ without and with the effect of Li" on the levels of

the electronic states, respectively:
A = Ay, + Ayi[pcal. (S1)

We assumed that Ay, can be expressed using the contribution vector of pure [BMP][DCA] (t*) and the
spectrum of pure [BMP][DCA] (4, black line in Figure 1(a)) utilising Eq. (S2):

AY = t*A,, (52)
in which
ty CLi1 1
X .
t* = t,z =1— —CLi» CLi — CL,LZ , I = 1 ) (53)
: CiL0 : :
tg CLi,S 1

where ¢y o 1s the molar concentration of [DCA]™ in pure [BMP][DCA] (4.9 M), the numbers from 1 to 8 are
the experiment numbers using [BMP][DCA] and different Li" concentrations in the range of 0.054-0.27 M,
and x is the test electronic coordination number (ECN) of [DCA]~ with electronic states affected by Li". For
each test ECN (3 <x<9), Aj, was calculated using Egs. (S2) and (S3). Furthermore, AA* can be calculated

as follows:
AA* = A — t*A,,. (54)

Using the MCR-ALS algorithm for several x values (3 <x<9), AA* was decomposed into spectral profiles

(8%) and contribution profiles (€C*) as follows:
AA* = C*S*T +E, (85)
S$*T is the transposed matrix of §*. The decomposed matrices were determined via the singular value

decomposition and the ALS method, by minimising the residual error matrix (E) in a least square sense under

the condition that all signs in $* were positive. All MCR-ALS calculations were conducted using the



Unscrambler® X 10.5.1 software. AA* was decomposed into two components: o and £, using MCR-ALS
calculations. The obtained §* (§3 and Sp)and C* (C7 and Cp) spectra are presented in Figures 4 and S3,

respectively. Moreover, AA* can be expressed as a sum:
AA* = CSYT + N* (N* = C}SE"). (S6)
Using Eqgs. (S4) and (S6), A was decomposed into three terms:
A = A} + CESXT + N7, (S7)

and each of the terms in Eq. (S7) is presented in Figures 5 and S4.
We observed two tendencies. First, Figures 4 and S3 illustrate that C7 became increasingly

proportional with the concentration of Li" as x increased, which is described using Eq. (S8):
C} = kycy; (k,: constant), (58)

and the fitting results and coefficients of determination (R?) are also presented in these figures. Second, the
contribution of the other spectra matrix (N*) to A (Figures 5 and S4) decreased as x increased. The

quantitative spectral contributions of N* to A were defined as a noise ratio, as follows:

250
Z?l:l f180 INflIdl

250 )
8L I A,lda

Noise ratio = (59)

When its contribution was negligible, N* could be ignored. Therefore, we successfully separated A into
t*A, (the absorption spectra matrix of pure [BMP][DCA]) and cy;A* (the absorption spectra matrix of
[DCA] affected by Li" or including those of pure):

A = t*Ay + ¢ A* (A* = k, SET). (510)
Figure S5 depicts the relationship between the noise ratios and R? for each x. If Eq. (S10) is satisfied at the

minimum x, it corresponds to ECN because ¢;;A* can be simply expressed by absorption spectra of [DCA]”
affected by Li*. The correlational plot (Figure S5) converges at x = 5, suggesting that ECN is 5.
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Figure S3 Decomposition of AA* into two absorption spectra (S5 and Sg) and two contributions (€7 and
Cp) using the multivariable curve resolution—alternating least squares algorithm for each test ECN (x). All
S7% and S;‘; spectra were unit-vector normalised. The results of the linear fittings and the coefficients of

determination (R?) are also illustrated.
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Figure S4 The terms of the absorption spectra in Eq. (S7): Afi(t*4,), CXS%T, and N’%C;S;‘;T) evaluated
for each test ECN (x). The coloured lines represent different concentration of Li'. The noise ratios in Eq.
(S9) were determined by integrating the absorption spectra of N*(C ;‘;SﬁT) with absolute values.
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Figure S5 Relationship between noise ratios and coefficients of determination (R?) of €% for various test
ECN (3 <x <9) illustrated as coloured dots in the legend.



3. Distance-dependent TD-DFT calculations of Li|DCA]™
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Figure S6 Results of time-dependent density functional theory calculations for the intermolecular distance
(d) between Li" and the nearest terminal N atom of [DCA]". The intermolecular distances between Li* and
the nearest terminal N atom of [DCA]” were changed from 2 to 10 A along the N-CN bond of the [DCA]~
using 1 A steps and the other geometries of LifDCA] illustrated in Figure 2(a) were maintained. Main initial

and final molecular orbitals were extracted.



4. Residence autocorrelation function
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Figure S7 Averaged residence autocorrelation functions (ACF) of the terminal N atoms in the first solvation
layer (0 < r < 3.32 A), intermediate layer (3.32 < < 7.00 A), and outside the intermediate layer (7.00 < r <
10.0 A). The depicted AFCs were calculated as the averaged values of three ACFs obtained in 0—10, 10—20,
20—-30 ns.



