Supporting information for

S.V.Chuvikov, E.A.Berdonosova, A. Krautsou, J.V.Kostina, V.V.Minin, E.A.Ugolkova,

S.N.Klyamkin

Peculiarities of high-pressure hydrogen adsorption on Pt catalyzed Cu-BTC metal-organic framework

Figure SI1. Experimental low temperature nitrogen adsorption/desorption isotherms for *Cu-BTC+Pt/C+Glu* mixture: as-prepared (a), after carbonization (b), and after first hydrogenation (c).

Figure SI2. Pore size distribution, cumulative pore area, and cumulative pore volume for *Cu-BTC+Pt/C+Glu* mixture: as-prepared (a), after carbonization (b), and after first hydrogenation (c).

Sample	a (Å)	b (Å)	V(Å ³)	Space group	GOF	Rp	wRp
Cu-BTC	26.314(2)	-	18221	Fm ³ m	1.13	2.71	3.68
Cu-BTC-milled	26.318(8)	-	18230	Fm ³ m	1.35	3.02	4.16
Cu-BTC+Pt/C	26.310(19)	-	18213	Fm ³ m	1.39	3.74	4.54
Cu-BTC+Pt/C+Glu	26.41(3)	-	18413	Fm ³ m	1.87	4.31	5.96
Cu-BTC+Pt/C-b	26.563(13)	28.298(19)	19968	P4/mmm	2.73	5.68	7.65
Cu-BTC+Pt/C-b+H ₂	26.20(3)	26.39 (4)	18120	P4/mmm	2.86	6.01	7.98

Table SI1. Refined structure parameters of the studied materials from XRD data.

Table SI2. Specific surface area and pore volume evaluated from nitrogen adsorption by BET theory and NLDFT approach.

	BET	' theory	2D-NLDFT-HS			
Sample	p/p ⁰ range	Surface area, m²/g	Cumulative surface area, m ² /g	Cumulative pore volume, cm ³ /g	RMSD, cm ³ /g	
Initial mixture Cu-BTC+Pt/C+Glu	0-0.011	1517	2005	0.57	4.88	
After carbonization Cu BTC+Pt/C-b	0-0.030	440	640	0.40	0.68	
After carbonization and hydrogenation Cu-BTC+Pt/C-b+H ₂	0-0.031	390	613	0.37	0.64	

EPR experiment details

The EPR spectra of the samples were modeled as the sum of the spectra of complexes with spins 1/2 and 1 with different spin Hamiltonian parameters:

$$\hat{H} = \beta(g_x S_x H_x + g_y S_y H_y + g_z H_z S_z) + D(S_z^2 - S(S+1)/3) + E(S_x^2 - S_y^2)$$

where S = 1/2, 1 - full complex spin; S_x , S_y , S_z – projections of the full spin on the x, y, z axis, respectively; *D*, *E* – components of the subtle interaction tensor (for S = 1); g_x , g_y , g_z – components of g-tensor; *H* – applied magnetic field.

Parameters D and E, components of g-tensor and relative concentrations of complexes are given in the Table S2. The Figures S2-S5 represent the experimental spectra in comparison with the simulated ones.

No	S	N⁰	С %	g _x	g _v	gz	$D(cm^{-1})$	$E(cm^{-1})$
Cu-BTC	1	1	16	2.03	2.15	2.32	0.4219	0.1292
	1/2	1	84	2.15	2.16	2.21	0.0	0.0
Cu-BTC+Pt/C	1	1	83	2.03	2.15	2.32	0.4209	0.1292
	1/2	1	17	2.15	2.15	2.19	0.0	0.0
Cu-BTC+Pt/C-b+H ₂	1	1	24	2.06	2.13	2.29	0.4256	0.1235
		2	47	2.08	2.20	2.40	0.0692	0.0037
	1/2	1	29	2.10	2.07	2.32	0.0	0.0
Cu-BTC+Pt/C-b	1	1	29	2.06	2.13	2.29	0.4116	0.1122
		2	57	2.08	2.20	2.40	0.0702	0.0047
	1/2	1	14	2.09	2.06	2.32	0	0

Table SI3. Spin Hamiltonian parameters

Fig. SI3. EPR spectrum of the pristine Cu-BTC; 1- experimental, 2 - simulated.

Fig. SI4. EPR spectrum of Cu-BTC+Pt/C; 1- experimental, 2 - simulated.

Fig. SI5. EPR spectrum of Cu-BTC+Pt/C-b; 1- experimental, 2 - simulated.

Fig. SI6. EPR spectrum of Cu-BTC+Pt/C-b+H₂; 1- experimental, 2 - simulated.

Fig. SI7. Hydrogen adsorption (close symbols) and desorption (open symbols) isotherms on Cu–BTC+Pt/C-b at 293 K; 2nd (\blacklozenge), 3rd (\blacksquare), 4th (\blacklozenge) cycles