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1. Electronic properties of Sc2CT2 (T=O and OH) MXenes monolayers

Figure S1 (a) Top view and (c) side view of the most stable configuration of monolayer Sc2CO2; (b) and (d) 

of monolayer Sc2C(OH)2. 

The geometry optimization and optical properties of materials are performed using the plane-wave basis 

Vienna ab initio simulation package (VASP) based on universal density functional theory (DFT) 

calculations under the generalized gradient approximation (GGA) with the Perdew−Burke−Ernzerhof (PBE) 

functional[1-3]. The optimized lattice parameters of 2D Sc2CO2 and Sc2C(OH)2 are 3.404 Å and 3.264 Å, 

respectively. The cutoff kinetic energies for plane waves are set as 400 eV. The relaxation of energy is taken 

as 1.0 × 10−5 eV. For the calculations of the strained monolayer Sc2CT2 (T=O and OH) structures, to avoid 

interactions between adjacent layers, a vacuum layer with a thickness of 15 Å is utilized.

To determine the optoelectronic properties of 2D monolayer Sc2CT2 (T=O and OH) as a function of strain, 

the biaxial tensile strain from 1% to 5% has been applied to 2D Sc2CT2 monolayers. The electronic 

properties of the strained Sc2CT2 monolayers are shown in Figure S2. The band structure of Sc2CO2 

monolayer with 0%~2% strain shows indirect band-gap from valence band maximum (VBM) at the Γ point 

to conduction band minimum (CBM) at the K point as shown in Figure S2(a-c). For 3%~5% strained 



Sc2CO2 monolayer, however, the band structure shows direct band gap from VBM at the K point to CBM at 

the K point as shown in Figure S2(d-f). The band structure of strained Sc2CO2 monolayer is consistent with 

previous results[4]. For Sc2C(OH)2 monolayer, the band structure displays direct band-gap from VBM at the 

Γ point to CBM at the Γ point at 0%~2% tensile strained state as shown in Figure S2(g-i), while the band 

structure exhibits indirect band-gap from VBM at the Γ point to CBM at the M point at 3%~5% tensile 

strained state as shown in Figure S2(j-l).

Figure S2 Band structures of O-terminated MXene [Sc2CO2 (a-f)] and OH-terminated MXene [Sc2C(OH)2 

(g-l)] at different tensile strained states.



2. Linear optical properties of strained Sc2CT2 (T=O and OH) monolayers

The linear optical response is directly related to the complex dielectric function , and the ˆ= +re imi  

imaginary part of the dielectric function is given by the following equation (S1):
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Where superscripts a and b indicate Cartesians components; n and m represent the energy bands; 

 is the difference of the Fermi distribution functions;  is the frequency difference for nm n mf f f  nm n m   

bands n and m; and  is the unit cell volume.  is the matrix element of the position operator that is  a
nmr

defined as . Where  is the momentum matrix element. The real part of the dielectric /a a
nm nm nmr ip   mnp

function is obtained from  by Kramer–Kronig transformation. The linear optical properties such as the ( )im 

complex refractive index ( ) and the optical absorption ( ) can be obtained by the calculated ˆ= +n n i 

dielectric function as follows:

                                 (S2)2 ˆˆ , 4 /n     

where  is the wavelength;  and  are real and imaginary parts of the complex refractive index,  n 

respectively.



Figure S3. (a)~(f) In-plane and (g)~(l) out-of-plane of the linear optical coefficients including real ( ) real

and imaginary ( ) parts of the dielectric function, real ( ) and imaginary ( ) parts of the complex imag n 

refractive index, and absorption coefficient  of strained Sc2CO2 monolayers as a function of photon 

energy.



Figure S4. (a)~(f) In-plane and (g)~(l) out-of-plane of the linear optical coefficients including real ( ) real

and imaginary ( ) parts of the dielectric function, real ( ) and imaginary ( ) parts of the complex imag n 

refractive index, and absorption coefficient  of strained Sc2C(OH)2 monolayers as a function of photon 

energy.



3. Photoelastic tensor of strained Sc2CT2 (T=O and OH) monolayers

The second-order nonlinear susceptibility  corresponding formalism was derived in a ( 2 , , )abc   

simpler manner by Aversa and Sipe, and was rearranged by Rashkeev et al [5-7]. The second-order 

nonlinear susceptibility , which consists of the contribution from the pure interband ( 2 , , )abc   

processes , and the mixed interband and intraband processes  can be ( 2 , , )abc
e    ( 2 , , )abc

i   

described as:

               (S3)( 2 , , ) ( 2 , , ) ( 2 , , )abc abc abc
e i               

The contribution from these two processes could be obtained by:
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Where  is the position operator;  is the unit cell volume; superscripts a, b and c are Cartesians r 

components; , is the energy difference for the bands m and n;  is the generalized mn m n   h h h ;a
b

mnr

derivative of the coordinate operator.
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Where  is the difference between the electronic velocities at the bands n and m;  is ( ) /a a a
mn nn mmp p m   p

the momentum matrix element. At the zero-frequency limit, the Equation (S5) can be simplified as[5, 7]:
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To simplify the rank of tensors, the second order nonlinear susceptibility  is related to the second-order (2)
ijk

nonlinear coefficient  as .ld
(2) ( , ) 2 ( , )ijk ld    

According to the relationship between the second-order nonlinear coefficient  and the strain  (2, %)m
uld %m

[8, 9], the photoelastic tensor  can be obtained through the Equation (S9).%m
ulp
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Where  is the second-order nonlinear coefficient of the unstrained Sc2CT2 (T=O and OH) monolayers.(2,0)
uld

Figure S5 Photon energy-dependent photoelastic tensor elements pμl of (a-d) monolayer Sc2CO2 at different 

tensile strained states.



Figure S6 Photon energy-dependent photoelastic tensor elements pμl of (a-d) monolayer Sc2C(OH)2 at 

different tensile strained states.



4. Second harmonic generation in strained Sc2CT2 (T=O and OH) monolayers

The schematic setup for the second harmonic generation (SHG) in a reflection configuration is shown in 

Figure S7. The incident pump light is linearly polarized along the X direction with an incident angle θ to the 

sample surface. The electric field of the incident light can be given as:
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The second order nonlinear susceptibility  is related to the second-order nonlinear coefficient  as: (2)
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Figure S7 Schematic of SHG in a reflection configuration. XYZ and X′Y′Z′ represent the laboratory and 

crystal coordination, respectively.

The transformation tensor containing azimuthal angle could be obtained by a rotating operation .( )T 

                    (S12)
3 3 3

(2) (2)
, , , , , , ,

1 1 1  

     i j k i f j g k h f g h
f g h

d T T T d

                            (S13)
[ ] [ ] 0

( ) [ ] [ ] 0
0 0 1

 
  

 
   
  

Cos Sin
T Sin Cos

Here  denotes the angle between the mirror plane in the crystal structure and the polarization of the pump 

beam; Ti,f, Tj,g and Tk,h is an element in .Thus, the SHG components can be expressed as:( )T 
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where  is the permittivity of the space. Thus, the dependence of the two polarization components (parallel 0

and perpendicular) of SHG on sample orientation could be described as:
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Figure S8. Perpendicular component of the SHG intensity under different tensile strained states for (a) 

Sc2CO2 monolayers and (b) Sc2C(OH)2 monolayers.
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