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1. Electronic properties of Sc,CT, (T=0 and OH) MXenes monolayers

Side view

Figure S1 (a) Top view and (c) side view of the most stable configuration of monolayer Sc,CO,; (b) and (d)
of monolayer Sc,C(OH),.

The geometry optimization and optical properties of materials are performed using the plane-wave basis
Vienna ab initio simulation package (VASP) based on universal density functional theory (DFT)
calculations under the generalized gradient approximation (GGA) with the Perdew—Burke—Ernzerhof (PBE)
functional[1-3]. The optimized lattice parameters of 2D Sc,CO, and Sc,C(OH), are 3.404 A and 3.264 A,
respectively. The cutoff kinetic energies for plane waves are set as 400 eV. The relaxation of energy is taken
as 1.0 x 1073 eV. For the calculations of the strained monolayer Sc,CT, (T=0 and OH) structures, to avoid

interactions between adjacent layers, a vacuum layer with a thickness of 15 A is utilized.

To determine the optoelectronic properties of 2D monolayer Sc,CT, (T=0 and OH) as a function of strain,
the biaxial tensile strain from 1% to 5% has been applied to 2D Sc,CT, monolayers. The electronic
properties of the strained Sc,CT, monolayers are shown in Figure S2. The band structure of Sc,CO,
monolayer with 0%~2% strain shows indirect band-gap from valence band maximum (VBM) at the I" point

to conduction band minimum (CBM) at the K point as shown in Figure S2(a-c). For 3%~5% strained



Sc,CO, monolayer, however, the band structure shows direct band gap from VBM at the K point to CBM at
the K point as shown in Figure S2(d-f). The band structure of strained Sc,CO, monolayer is consistent with
previous results[4]. For Sc,C(OH), monolayer, the band structure displays direct band-gap from VBM at the
I point to CBM at the I' point at 0%~2% tensile strained state as shown in Figure S2(g-i), while the band
structure exhibits indirect band-gap from VBM at the I' point to CBM at the M point at 3%~5% tensile

strained state as shown in Figure S2(j-/).
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Figure S2 Band structures of O-terminated MXene [Sc,CO; (a-f)] and OH-terminated MXene [Sc,C(OH),

(g-1)] at different tensile strained states.



2. Linear optical properties of strained Sc,CT, (T=0 and OH) monolayers

The linear optical response is directly related to the complex dielectric function é=¢, ,+i¢,, , and the

imaginary part of the dielectric function is given by the following equation (S1):
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(@) =23 p Tl (S1)
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Where superscripts @ and b indicate Cartesians components; n and m represent the energy bands;

f.. = f.— . 1s the difference of the Fermi distribution functions; o, = @, —w, is the frequency difference for

nm

bands » and m; and o 1is the unit cell volume. ¢ is the matrix element of the position operator that is

nm

defined as »’ =-ip! /w, . Where p, 1is the momentum matrix element. The real part of the dielectric

function is obtained from ¢, (w) by Kramer—Kronig transformation. The linear optical properties such as the

im

complex refractive index (n=ntix) and the optical absorption (« ) can be obtained by the calculated

dielectric function as follows:
n=é,a=4nx/A (S2)

where 1 is the wavelength; » and « are real and imaginary parts of the complex refractive index,

respectively.
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Figure S3. (a)~(f) In-plane and (g)~(1) out-of-plane of the linear optical coefficients including real (&)

and imaginary (&™* ) parts of the dielectric function, real (» ) and imaginary ( k) parts of the complex

refractive index, and absorption coefficient « of strained Sc,CO, monolayers as a function of photon

energy.
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Figure S4. (a)~(f) In-plane and (g)~(1) out-of-plane of the linear optical coefficients including real (&)

and imaginary (&™* ) parts of the dielectric function, real (» ) and imaginary ( k) parts of the complex

refractive index, and absorption coefficient « of strained Sc,C(OH), monolayers as a function of photon

energy.



3. Photoelastic tensor of strained Sc,CT, (T=0O and OH) monolayers

abc

The second-order nonlinear susceptibility y“(-2®,®,®) corresponding formalism was derived in a

simpler manner by Aversa and Sipe, and was rearranged by Rashkeev et al/ [5-7]. The second-order

abc

nonlinear susceptibility y“(—2®,®,®), which consists of the contribution from the pure interband

processes y““(—2w,w,w), and the mixed interband and intraband processes y*(—2w,w,®) can be

described as:

abc abc abc

(2o,0,0)= 3" (20,0,0)+ " (20,0, ®) (S3)

The contribution from these two processes could be obtained by:
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Where r is the position operator; Q is the unit cell volume; superscripts a, b and ¢ are Cartesians

components; hw,, =hw, —ho,, is the energy difference for the bands m and n; r’  is the generalized

n;a

derivative of the coordinate operator.
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Where A? =(p. —ps )/ m is the difference between the electronic velocities at the bands n and m; p is

the momentum matrix element. At the zero-frequency limit, the Equation (S5) can be simplified as[5, 7]:
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To simplify the rank of tensors, the second order nonlinear susceptibility ;5;,? is related to the second-order

nonlinear coefficient d,, as y ) (w,w) =2d ,(o, ).

g
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According to the relationship between the second-order nonlinear coefficient d>"* and the strain m%

[8, 9], the photoelastic tensor p”” can be obtained through the Equation (S9).

ul
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Where d” is the second-order nonlinear coefficient of the unstrained Sc,CT, (T=0 and OH) monolayers.
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Figure S5 Photon energy-dependent photoelastic tensor elements p,,; of (a-d) monolayer Sc,CO, at different

tensile strained states.
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Figure S6 Photon energy-dependent photoelastic tensor elements p,, of (a-d) monolayer Sc,C(OH), at

different tensile strained states.



4. Second harmonic generation in strained Sc,CT, (T=0 and OH) monolayers
The schematic setup for the second harmonic generation (SHG) in a reflection configuration is shown in

Figure S7. The incident pump light is linearly polarized along the X direction with an incident angle 6 to the

sample surface. The electric field of the incident light can be given as:

E, E, cos[0]
E, |= 0 (S10)
E, E, sin[0]

The second order nonlinear susceptibility ;(;,f) is related to the second-order nonlinear coefficient d, as:

dy (S11)

Figure S7 Schematic of SHG in a reflection configuration. XYZ and X'Y'Z' represent the laboratory and
crystal coordination, respectively.

The transformation tensor containing azimuthal angle could be obtained by a rotating operation 7'(¢).

3 3 3
DY WEDY DY WY i (512)
= g1 =
Cos[¢] Sin[¢g] O
T(¢)=|-Sin[¢] Cos[¢] 0 (S13)
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Here ¢ denotes the angle between the mirror plane in the crystal structure and the polarization of the pump

beam; T} T}, and Ty is an element in 7'(¢) .Thus, the SHG components can be expressed as:



[ EXw,0)
P (20) EX(w,0)
P Q) | =264 ' (#) E(2,9) (S14)
P«”(zw) TN 2E (@,0)E, (0,0)
: 2E_ (0,0)E. (0,0)
2E (@,0)E, (0,0)

where ¢, 1s the permittivity of the space. Thus, the dependence of the two polarization components (parallel

and perpendicular) of SHG on sample orientation could be described as:

1, c[-P(d,,¢)cos[0]+ P.(d ;. #)sin[0]]’
I, Pyz(dﬂla@

(S15)
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Figure S8. Perpendicular component of the SHG intensity under different tensile strained states for (a)

Sc,CO, monolayers and (b) Sc,C(OH), monolayers.
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